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Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction
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Homoclinic and heteroclinic orbits provide a skeleton of the full dynamics of a chaotic dynamical system and
are the foundation of semiclassical sums for quantum wave packets, coherent states, and transport quantities.
Here, the homoclinic orbits are organized according to the complexity of their phase-space excursions, and
exact relations are derived expressing the relative classical actions of complicated orbits as linear combinations
of those with simpler excursions plus phase-space cell areas bounded by stable and unstable manifolds. The
total number of homoclinic orbits increases exponentially with excursion complexity, and the corresponding
cell areas decrease exponentially in size as well. With the specification of a desired precision, the exponentially
proliferating set of homoclinic orbit actions is expressible by a slower-than-exponentially increasing set of cell
areas, which may present a means for developing greatly simplified semiclassical formulas.
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I. INTRODUCTION

Specific sets of rare classically chaotic orbits are central
ingredients for sum rules in classical and quantum systems
[1]. Classical sum rules over unstable periodic orbits describe
various entropies, Lyapunov exponents, escape rates, and
the uniformity principle [2]. Gutzwiller’s trace formula [3]
for quantum spectra is over unstable periodic orbits, closed
orbit theory of atomic spectra [4,5] gives the absorption
spectrum close to the ionization threshold of atoms placed in
magnetic fields, and heteroclinic (homoclinic) orbits arising
from intersections between the stable and unstable manifolds
of different (same) hyperbolic trajectories describe quantum
transport between initial and final localized wave packets [6].

It is often the case that the nonlinear flows of phase-space
densities are completely captured by the stable and unstable
manifolds of one or just a few short periodic orbits, hence
also by the homoclinic and heteroclinic orbits that arise from
intersections between these manifolds. These orbits can thus
play the important role of providing a “skeleton” of transport
for the system. It is not a unique choice, but each choice
provides the same information. For example, an unstable
periodic orbit gives rise to an infinity of homoclinic orbits,
but it is also true that families of periodic orbits of arbitrary
lengths accumulate on some point along every homoclinic
orbit [7–9], and the periodic orbit points can be viewed as
being topologically forced by the homoclinic point on which
a particular sequence accumulates [10,11].

Two problems are immediately apparent. The first is the
particular importance of having accurate evaluations of clas-
sical actions because these quantities are divided by h̄ and
play the role of phase factors for the interferences between
terms, and their remainder after taking the modulus with
respect to 2π must be �2π . A straightforward calculation
would proceed with the numerical construction of the actions,
which would be plagued by the sensitive dependence on initial
conditions for long orbits. An alternative method has been
developed by the authors [11,12]. That scheme converts the

calculation of unstable periodic orbit actions into the evalua-
tion of homoclinic orbit action differences. The homoclinic
orbit actions can then be stably obtained as phase-space
areas via the MacKay-Meiss-Percival principle [13,14], or
directly from the stable constructions of homoclinic orbits
[9,15–18]. Beside the action functions, another quantity of the
periodic orbits, namely their stability exponents, also plays the
crucial role of the prefactor in Gutzwiller’s trace formula. In
Sec. IV D, a relation Eq. (29) is introduced that determines the
stability exponents of periodic orbits from ratios between ar-
eas bounded by stable and unstable manifolds, or equivalently,
distribution of homoclinic points on the manifolds. Therefore,
both the action and the stability exponent of periodic orbits
can be calculated from the knowledge of homoclinic orbits,
without the numerical construction of periodic orbits them-
selves.

The second problem is more fundamental. Namely, the
total number of periodic orbits increases exponentially with
increasing period and for the homoclinic orbits with increas-
ingly complicated excursions. This is a reflection of the
nonvanishing rate of information entropy production associ-
ated with chaotic dynamics, which in an algorithmic com-
plexity sense has been proven equivalent to the Kolmogorov-
Sinai entropy [19–23], and hence the Lyapunov exponents
via Pesin’s theorem [24,25]. On the other hand, entropies
introduced for quantum systems [26–28] vanish due to the
nonzero size of h̄, if these systems are isolated, bounded,
and not undergoing a measurement process. This gives one
the intuitive notion and hope that there must be a means to
escape the exponential proliferation problem of semiclassical
sum rules.

Therefore, a scheme to replace classical and semiclassical
sum rules that from the outset clearly have vanishing infor-
mation entropy content is highly desirable [29]. The pseudo-
orbits of the cycle expansion [1,30,31], the primitive orbits of
Bogomolny’s surface of section method [32], and multiplica-
tive semiclassical propagator [33] were steps in this direction.
Building on the methods of [11], we develop exact relations
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for the decomposition of homoclinic orbit relative actions
with complicated excursions in terms of multiples of the two
primary ones and sets of phase-space areas. Accounting for
an error tolerance determined by h̄ reduces the exponentially
proliferating set of homoclinic orbit actions to combinations
of an input set (i.e., phase-space cell areas) that increase
more slowly than exponentially (i.e., algebraically) with time,
thus resolving the conflict between the entropies of classical
and quantum chaotic systems, and directly linking h̄ to the
boundary between surviving and nonsurviving information in
quantum mechanics.

This paper is organized as follows. Section II introduces
the basic concept of homoclinic tangle. Section III introduces
the relative action functions between homoclinic orbit pairs.
Section IV reviews the concepts of winding number and
transition time of homoclinic orbits, and introduces a hierar-
chical ordering of homoclinic points in terms of their winding
numbers. Organizing the homoclinic points using the winding
numbers, we identify an asymptotic scaling relation between
families of homoclinic points, which puts strong constraints
on the distribution of homoclinic points along the manifolds.
Section V gives two central results of this paper. The first one
(Sec. V B) is an exact formula for the complete expansion
of homoclinic orbit actions in terms of primary homoclinic
orbits and phase-space cell areas bounded by the manifolds.
The second one (Sec. V C) is the demonstration that a coarse-
grained scale, determined by h̄, allows for an approximation
that eliminates exponentially small areas from the complete
expansion, which gives an approximate action expansion that
requires a subset of cell areas growing subexponentially.

II. BASIC CONCEPTS

Consider a two-degree-of-freedom autonomous Hamilto-
nian system. With energy conservation and applying the stan-
dard Poincaré surface of section technique [34], the contin-
uous flow leads to a discrete area-preserving map M on the
two-dimensional phase space (q, p). Assume the existence
of a hyperbolic fixed point x = (qx, px ) under M: M(x) = x.
Associated with it are the one-dimensional stable [S(x)] and
unstable [U (x)] manifolds, which are the collections of phase-
space points that approach x under successive forward and
inverse iterations of M, respectively. Typically, S(x) and U (x)
intersect infinitely many times and form a complicated pattern
named a homoclinic tangle [34–36], as partially illustrated in
Fig. 1. This figure demonstrates the simplest but generic type
of homoclinic tangle, a “Smale horseshoe” [37,38], which re-
sults from the exponential stretching along U (x), compressing
along S(x), and eventually a binary folding to create mixing
dynamics. Refer to Appendix B for a detailed introduction
of the Smale horseshoe. The area-preserving Hénon map
[39] shown by Eq. (B3) with parameter a = 10 is used to
generate this figure, along with all forthcoming numerical
implementations in this article.

The main objects of study in this article, the homoclinic
orbits, arise from intersections between S(x) and U (x). These
are the orbits asymptotic to x under both forward and inverse
iterations of M. For instance, the point h0 in Fig. 1 is a
homoclinic intersection between the manifolds, and its orbit
{. . . , h−1, h0, h1, . . .} approaches x under both forward and

x

h0
g0

g-1

h1

g1

h-1g-2

a(0)b(0)

FIG. 1. Horseshoe-shaped homoclinic tangle formed by S(x)
(red dashed curve) and U (x) (black solid curve), with two primary
homoclinic orbits {h0} and {g0}. Notice that the U (x) segments
beyond g0 and h1 are simply connected and omitted from the figure
for clarity, and the same for the S(x) segments beyond g−1 and h−1.

inverse iterations. In spite of the infinity of homoclinic orbits
arising from the pattern in Fig. 1, for the most part only
two of them, {h0} and {g0}, have a fundamental importance.
They have the special property that the segments U [x, h0] and
S[h0, x] only intersect at x and h0. Consequently, the loop
US[x, h0] ≡ U [x, h0] + S[h0, x] is a single loop, so the orbit
{h0} “circles” around the loop only once. The same is true for
{g0}. A “winding number” of 1 can thus be associated with
both {h0} and {g0}, and they are commonly referred as the
primary homoclinic orbits. All other orbits have winding num-
bers greater than 1. To be shown later, their classical actions
can be built by the two primary orbit actions and certain sets
of phase-space areas bounded by S(x) and U (x). More details
about the winding numbers will be introduced in Sec. IV.

The topological structures of homoclinic tangles are well
understood nowadays, and they provide a foundation for our
analysis on the homoclinic orbit actions in later sections.
With the help of certain generating Markov partitions iden-
tified from the homoclinic tangle (V0 and V1 in Fig. 15 in
Appendix B), the nonwandering orbits of the system can be
put into a one-to-one correspondence with bi-infinite strings
of integers, i.e., the symbolic dynamics [40–43] of chaotic
systems. For example, the hyperbolic fixed point x in Fig. 1
is labeled by the bi-infinite string 0.0, where the overhead bar
indicates infinite repetitions of the symbolic string underneath
it, and the decimal point indicate the location of the current
iteration. This symbolic code reflects the fact that x stays
in V0 under all forward and inverse iterations. The primary
homoclinic points h0 and g0 are labeled by h0 ⇒ 01.10 and
g0 ⇒ 01.0, respectively. Other than the points on {h0} and
{g0}, all homoclinic points a of x must have a symbolic string
of the form

a ⇒ 01s−m · · · s−1.s0s1 · · · sn10 = 01s̃−.s̃+10 (1)

along with all possible shifts of the decimal point, where each
digit si ∈ 0, 1 (−m � i � n). The substrings s̃− = s−m · · · s−1

and s̃+ = s0s1 · · · sn. The 0 on both ends means the orbit
approaches the fixed point asymptotically. The orbit {a} can
then be represented by the same symbolic string:

{a} ⇒ 01s̃−s̃+10 (2)
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with the decimal point removed, as compared to Eq. (1). The
finite symbolic segment “1s̃−s̃+1” is often referred to as the
core of the symbolic code of a, with its length referred to as
the core length.

In the horseshoe map, besides the hyperbolic fixed point x,
there is another hyperbolic fixed point with reflection, denoted
by x′. This fixed point has symbolic code x′ ⇒ 1.1; i.e., it
stays in V1 under all forward and inverse iterations. Denote
the stability exponents of x and x′ by μ0 and μ1, respectively;
i.e., the subscripts indicate the symbolic code. These two
exponents are of special interest later.

We skip further detailed introduction here and refer the
reader to excellent references such as [35,36,44], and to
Appendices A and B for the concepts of trellises, sym-
bolic dynamics, and for the definitions of notations adopted
throughout this article. The symbolic dynamics will be the
main language adapted to identify homoclinic orbits in this
study. However, although well resolved [45], the assignment
of symbolic codes to homoclinic points is still a nontrivial
task in general. The readers are referred to Appendix C for a
detailed assignment scheme. In the forthcoming contents, the
symbolic codes of all homoclinic points are assumed known.

III. RELATIVE ACTIONS

The classical actions of homoclinic orbits are divergent as
they come from the infinite sum over the generating functions
associated with each iteration along the orbit. Hence, it is
necessary to consider relative actions, which are finite. For
any phase-space point zn = (qn, pn) and its image M(zn) =
zn+1 = (qn+1, pn+1), the mapping M can be viewed as a
canonical transformation that maps zn to zn+1 while preserving
the symplectic area; therefore a generating (action) function
F (qn, qn+1) can be associated with this transformation such
that [13,14]

pn = −∂F/∂qn,

pn+1 = ∂F/∂qn+1. (3)

Despite the fact that F is a function of qn and qn+1, it is
convenient to denote it as F (zn, zn+1). This should cause no
confusion as long as it is kept in mind that it is the q variables
of zn and zn+1 that go into the expression of F . A special
example is the generating function of the fixed point, F (x, x),
that maps x into itself under one iteration. For homoclinic
orbits {h0}, the classical action is the sum of generating
functions between each step

F{h0} ≡ lim
N→∞

N−1∑
n=−N

F (hn, hn+1). (4)

However, according to the MacKay-Meiss-Percival action
principle [13,14], convergent relative actions can be obtained
by comparing the classical actions of a homoclinic orbit pair:

�F{h′
0}{h0} ≡ lim

N→∞

N−1∑
n=−N

[F (h′
n, h′

n+1) − F (hn, hn+1)]

=
∫

U [h0,h′
0]

p dq +
∫

S[h′
0,h0]

p dq = A◦
US[h0,h′

0], (5)

where the ◦ superscript in the last term indicates that the
area evaluated is interior to a path that forms a closed loop,
and the subscript indicates the path US[h0, h′

0] = U [h0, h′
0] +

S[h′
0, h0]. Such an action difference is referred to as the rela-

tive action between {h′
0} and {h0}. A special case of interest

is the relative action between a homoclinic orbit {h0} and the
fixed point itself {x}:

�F{h0}{x} = lim
N→∞

N−1∑
n=−N

[F (hn, hn+1) − F (x, x)]

= A◦
US[x,h0], (6)

which gives the action of {h0} relative to the fixed point orbit
action, and is simply referred to as the relative action of {h0}.
An equivalent approach, which makes use of the information
about the stable and unstable manifolds of hyperbolic fixed
points to obtain convergent expressions of homoclinic and
heteroclinic orbit actions as algebraic areas evaluated under
these manifolds, was given by Tabacman in Ref. [46]. There,
it was shown that the homoclinic and heteroclinic orbits can
be calculated as critical values of certain action functions
constructed from the generating function of the system and
the local stable and unstable manifolds near the fixed points.
However, our goal is to identify hidden relations between the
homoclinic orbit actions without numerical constructions of
the orbits themselves. As shown ahead, this requires informa-
tion about the global stable and unstable manifolds.

A generalization of Eq. (6) applies to four arbitrary homo-
clinic orbits of x, namely {a0}, {b0}, {c0}, and {d0}. Expressing
the relative actions of each of them using Eq. (6) and calculat-
ing the action difference between the following two pairs of
orbits gives(

�F{a0}{x} − �F{b0}{x}
) − (

�F{c0}{x} − �F{d0}{x}
)

= (
A◦

US[x,a0] − A◦
US[x,b0]

) − (
A◦

US[x,c0] − A◦
US[x,d0]

)
= A◦

SUSU [a0,c0,d0,b0], (7)

where

A◦
SUSU [a0,c0,d0,b0] ≡

∫
S[a0,c0]

p dq +
∫

U [c0,d0]
p dq

+
∫

S[d0,b0]
p dq +

∫
U [b0,a0]

p dq (8)

is the curvy parallelogram area bounded by alternating seg-
ments of S(x) and U (x) connecting the four homoclinic
points.

IV. HIERARCHICAL STRUCTURE OF HOMOCLINIC
POINTS

A. Winding numbers and transit times

The infinite set of homoclinic orbits can be put into a hier-
archical structure, organized using a winding number [47,48]
that characterizes the complexity of phase-space excursion of
each individual orbit. The winding number of a homoclinic
point h is defined to be the number of single loops (i.e.,
loops with no self-intersection) that the loop US[x, h] can be
decomposed into [48]. The primary homoclinic points h0 and
g0 points in Fig. 1 are associated with orbits having winding
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number 1, since both US[x, h0] and US[x, g0] are single loops.
They form the complete first hierarchical family.

The nonprimary homoclinic points a(0) and b(0) in Fig. 1
are both associated with winding number 2, i.e., the loop
US[x, a(0)] = US[x, h0] + US[h0, a(0)], both of which are
single loops, and similarly for b(0), US[x, b(0)] = US[x, g0] +
US[g0, b(0)]. All points on a particular orbit are associated
with the same winding number. Roughly speaking, a winding-
n orbit “circles” the complex region n times from the infinite
past to the infinite future, and therefore the winding number
characterizes the complexity of its phase-space excursion.
Figure 1 of Ref. [48] has a nice illustration.

Within each family, the orbits can be further organized
by their transit times [35,36], which contains the length of
the phase-space excursion of a homoclinic orbit. With the
“open system” assumption, there are no homoclinic points
on segments U ′

n and Sn [for the definition of fundamental
segments Un, U ′

n, Sn, and S′
n, see Eq. (A3)]. Therefore, any

homoclinic point z0 must arise from the intersection between
some Un and S′

m segments, with n and m being appropriate
integers such that z0 ∈ Un ∩ S′

m. The transit time of {z0},
denoted by t , is defined as the difference in the indices of
Un and S′

m: t = (n − m). Starting from z−n ∈ U0 ∩ S′
m−n, and

mapping t times, Mt (z−n) = z−m ∈ Un−m ∩ S′
0. Thus, t is the

number of iterations needed to map the orbit from U0 to S′
0.

Note that, excluding the primary homoclinic orbits, {g0} and
{h0}, all homoclinic orbits have positive definite t since there
are no intersections of Un with S′

0 with negative integer n or 0;
i.e., the first intersection of S′

0 is with U1.
Since the mapping preserves the topology, Mk (z0) = zk ∈

Un+k ∩ S′
m+k , every orbit {z0} has one and only one point

(which is z0) on S′
m. Therefore, enumerating homoclinic

points on S′
m is equivalent to enumerating all distinct ho-

moclinic orbits in the trellis [see Eq. (A5) for the defi-
nition of a trellis]. In practice, it is convenient to choose
m = −1. Equivalently, all homoclinic points on S′

−1 with a
maximum t = n + 1 are intersections with the trellis T−1,n

(=T−1,t−1). The total number of homoclinic orbits increases
exponentially rapidly with the transit time. For example, in
Fig. 2, U0 intersects S′

−1 at two points: a(0) and b(0). U1 inter-
sects S′

−1 at four points a(1), b(1), c(1), and d (1). Furthermore,
U2 intersects S′

−1 at eight points, where the four points a(2),
b(2), c(2), and d (2) are winding-2, and the remaining four
points, on the upper half of S′

−1, are not explicitly labeled
and are winding-3. Including g−2 and h−1, the total number
of homoclinic points on S′

−1 is exactly 2(t+1).

B. Asymptotic accumulation of homoclinic points

Although homoclinic tangles create unimaginably compli-
cated phase-space patterns, their behaviors are highly con-
strained by a few simple rules of Hamiltonian chaos; namely
exponential compression and stretching occurs while pre-
serving phase-space areas, and manifolds cannot intersect
themselves or other manifolds of the same type. Therefore,
locally near any homoclinic point, unstable (stable) manifolds
form fine layers of near-parallel curves, with distances in
between the curves scaling down exponentially rapidly as they
get closer towards that point. As numerically demonstrated
by Eq. (10) in Ref. [48], such asymptotic scaling relations

c(1)

d(1)

c(2)

a(0)
b(0)

a(1)

b(1)

a(2)
b(2)

h0

g0

g-1
g-2

h-1

d(2)

h1

g1

g2
h2

FIG. 2. Upper panel: Trellis T−1,2. Lower panel (zoomed-in):
The hierarchy of homoclinic points on S′

−1 can be organized as the
following: the winding-1 points g−2 and h−1 constitute the first-order
family. The sequence of winding-2 points a(n) and b(n) (n � 0) form
two second-order families that accumulate on g−2 asymptotically
under Eqs. (9) and (10). Similarly on the right side of S′

−1, we
have the winding-2 points c(n) and d (n) (n � 1) accumulating on
h−1, which form two second-order families as well. Consequently,
three families of areas [A◦

SUSU [g−2,b(n),d (n),h−1]
], [A◦

SUSU [b(n),a(n),c(n),d (n)]
],

and [A◦
SUSU [a(n),b(n−1),d (n−1),c(n)]

] accumulate on the bottom segment
U [g−2, h−1] under Eq. (16), with the same asymptotic exponent μ0.

exist inside every family of homoclinic points. A concrete
mathematical description of this phenomenon is given by
Lemma 2 in Appendix B 3 of [49], which states “iterates of
a curve intersecting the stable manifold approach the unstable
manifold.” Refer to Appendix D for a brief overview of the
lemma.

The asymptotic scaling ratio of the accumulation is deter-
mined by the stability exponent of the hyperbolic fixed point,
μ0, as in Eq. (D1). Starting from Eq. (D1), let the zu base point
be g−2 in Fig. 2, and the curve C that passes through zu be the
stable manifold segment from S′

−1 that passes through g−2.
Furthermore, choose the C0 curve to be U0, which intersects
S′

−1 at a(0) and b(0). The pair of points a(0) and b(0) here play
the role of the z(0) point in Fig. 18, which are the leading terms
of the two families of winding-2 homoclinic points [a(n)] and
[b(n)], respectively, that accumulate asymptotically on g−2.
The two families of points [a(n)] and [b(n)] are generated from
iterating U0 forward and intersecting the successive images
Un (n ∈ Z+) with S′

−1, and are located on the upper and lower
side of Un, respectively. The accumulation can be expressed
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in the asymptotic relation

lim
n→∞ a(n) = g−2,

lim
n→∞ |a(n) − g−2|enμ0 = C(g−2, a(0) ), (9)

where || is the standard Euclidean vector norm, and
C(g−2, a(0) ) is a positive constant depending on the base
point g−2 and the leading term a(0) in the asymptotic family.
Similarly for b(n) we have

lim
n→∞ b(n) = g−2,

lim
n→∞ |b(n) − g−2|enμ0 = C(g−2, b(0) ). (10)

Notice that Eqs. (9) and (10) are obtained directly from
Eq. (D1), by the substitutions zu → g−2 and z(n) → a(n)/b(n).
Therefore, the two families of winding-2 homoclinic points
[a(n)] and [b(n)] accumulate asymptotically onto the winding-
1 point g−2 along the stable manifold, under the scaling
relations described by Eqs. (9) and (10). These relations will
be denoted symbolically as

a(n) n+1
↪→

S
g−2,

b(n) n+1
↪→

S
g−2, (11)

where the
n+1
↪→

S
symbol indicates that a(n) and b(n) are the

(n + 1)th members of their respective families, [a(0), a(1), . . .]
and [b(0), b(1), . . .], that accumulate on g−2 along the stable
manifold with asymptotic exponent μ0.

The asymptotic accumulation relations can be used to infer
symbolic dynamics of homoclinic points. Given the symbolic
codes of the base point, e.g., g−2 from Eq. (9), the symbolic
codes of the entire families of homoclinic points that accumu-
late on it can be uniquely determined by suitable additions of
110 · · · or 100 · · · strings to the left side of the core of g−2.
Given g−2 ⇒ 0.010, it can be inferred that (see Fig. 17)

a(0) ⇒ 01.110

b(0) ⇒ 01.010 (12)

and

a(n) ⇒ 0110n−1.010
(n � 1),

b(n) ⇒ 0100n−1.010 (13)

where “0n−1” denotes (n − 1) repetitions of 0. The general
rule is, the symbolic codes of a(n) and b(n) (n � 0) are ob-
tained by adding the substrings “110n” and “100n”, respec-
tively, to the left end of the core of g−2, keeping the position
of the decimal point relative to the right end of the core.

Following the same pattern, on the right side of S′
−1 (see

Fig. 17), there are two families of winding-2 homoclinic
points [c(n)] and [d (n)] (n � 1) that accumulate asymptotically
along the stable manifold on the winding-1 point h−1 under
scaling relations similar to Eqs. (9) and (10):

c(n) n
↪→

S
h−1,

d (n) n
↪→

S
h−1, (14)

and their symbolic codes are determined from that of h−1:

(c(n) ⇒ 0110n−1.110)
n

↪→
S

(h−1 ⇒ 0.110),

(d (n) ⇒ 0100n−1.110)
n

↪→
S

(h−1 ⇒ 0.110), (15)

with the same rule of adding the “110n−1” and “100n−1”
substrings. This assignment rule for the symbolic code is valid
for any homoclinic points in the system. As the construction
is rather technical, refer to Appendix C for the detailed
systematic assignments of symbolic dynamics.

An important consequence of the above asymptotic rela-
tions between homoclinic points is that the phase-space areas
spanned by them also scale down at the same rate. Using the
present example, three families of areas can be easily identi-
fied, which are [A◦

SUSU [g−2,b(n),d (n),h−1]], [A◦
SUSU [b(n),a(n),c(n),d (n)]],

and [A◦
SUSU [a(n),b(n−1),d (n−1),c(n)]] (n � 2). Each follows the scal-

ing relation,

lim
n→∞

A◦
SUSU [g−2,b(n),d (n),h−1]

A◦
SUSU [g−2,b(n+1),d (n+1),h−1]

= eμ0 , (16)

and similarly for the [A◦
SUSU [b(n),a(n),c(n),d (n)]] and

[A◦
SUSU [a(n),b(n−1),d (n−1),c(n)]] families as well. These areas

are all from the partition of the lobe L′
−1 using successively

propagated lobes Ln. Returning to Fig. 2, where successive
intersections between the fundamental segments Un and
S′

−1 of Eq. (A3) accumulate on g−2 and h−1, the following
three identifications can be made: A◦

SUSU [g−2,b(n),d (n),h−1] is
the area between the lower side of Un and U [g−2, h−1],
A◦

SUSU [b(n),a(n),c(n),d (n)] is the area between the lower and upper
sides of Un, and A◦

SUSU [a(n),b(n−1),d (n−1),c(n)] is the area between
the upper side of Un and the lower side of Un−1. As more
lobes are added, such areas approach U [g−2, h−1], and the
ratio tends to eμ0 . Hence Eq. (16) can be understood as an
asymptotic relation between area partitions of L′

−1 in the
neighborhood of U [g−2, h−1].

The above relations are obtained by choosing the zu base
point in Eq. (D1) to be the winding-1 points g−2 and h−1, and
studying the accumulations of winding-2 homoclinic points
on them. Generally speaking, since the choice of the zu base
point is arbitrary, one can just as well choose zu to be a
winding-m homoclinic point on U (x), and there will always
be two families of winding-(m + 1) homoclinic points that
accumulate on zu along S(x) under similar relations, with
the same scaling ratio eμ0 . Therefore, Eq. (16) holds for
any winding-m homoclinic point and the winding-(m + 1)
families of areas that accumulate on it. Such relations are
true in the neighborhood of any homoclinic point, and they
imply that the computation of a few leading area terms in any
[A◦

SUSU [··· ]] family suffices to determine the rest of the areas,
depending on the desired degree of accuracy.

An important subtlety in the scaling relations concerns the
exponent μ0. Due to the exponential compressing and stretch-
ing nature of chaotic dynamics, it is well known that the new
cell areas bounded by adjacent stable and unstable segments
from a trellis with increasing iteration numbers must become
exponentially small. See Appendix A of Ref. [12] for a brief
review. In particular, one can anticipate that the new cell areas
from T−1,n decrease on average similarly to the horizontal
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v(-1)

w(-1)

g0
v(-2)

w(-2)

h1
y(-1)

z(-1)

y(-2)z(-2)

FIG. 3. Accumulation of homoclinic points along U (x) under
M−1. Two families of homoclinic points [v(−n)] and [w(−n)] are
created from S′

−n ∩ U0, that accumulate on g0 along U0. Notice that
only the n = 1, 2 cases are plotted here. Similarly, the two families
[y(−n)] and [z(−n)] are created from S′

−n ∩ U1, and accumulate on h1

along U1.

strips Hs−n···s−1 in Figs. 3 and 4 of Ref. [12], which scale at
the rate e−nμ, where μ is the system’s Lyapunov exponent.
However, in general μ0 �= μ, μ0 measuring the stretching rate
of the hyperbolic fixed point, which is expected to be �μ.
This begs the question as to how this could be consistent. In
Sec. IV D, it is shown that this presumably larger exponent μ0

only applies to calculating the ratios between successive areas
within the specific families such as those in Eq (16). Between
different families, the scaling exponents change to smaller
values, which is consistent with the Lyapunov exponent being
smaller than μ0. A shorthand reference to this is to say that
Eq. (16) is a fast scaling relation, in the sense that they happen
at faster rates than the average instability of the system as a
whole, μ.

Identical scaling results hold under the inverse mapping
M−1 upon switching the roles of the stable and unstable mani-
folds. Shown in Fig. 3 is a simple example of the inverse case,
where families of homoclinic points accumulate along the
unstable manifold. For convenience, the a(0) and b(0) points
from Fig. 2 are relabeled in this figure as v(−1) and w(−1),
respectively. Successive inverse mappings of S′

−1 intersect
with U0 and create two families of winding-2 points [v(−n)]
and [w(−n)] (n � 1), which accumulate on the primary point
g0 along the unstable manifold, under scaling relations similar
to Eq. (9). Similarly to Eq. (11), the accumulation along U (x)
is denoted by

v(−n) n
↪→
U

g0,

w(−n) n
↪→
U

g0, (17)

where
n

↪→
U

indicates that v(−n) and w(−n) are the nth

members of their respective families, [v(−1), v(−2), . . .] and
[w(−1),w(−2), . . .], that accumulate on g0 along the unstable
manifold with asymptotic exponent μ0.

Also shown in Fig. 3 are two other families of winding-2
points [y(−n)] and [z(−n)] generated from S′

−n ∩ U1, which
accumulate on h1 along the unstable manifold. Notice
that points y(−1) and z(−1) are identical to c(1) and a(1)

from Fig. 2, respectively. Consequently, three families of
areas [A◦

SUSU [h1,g0,w(−n),z(−n)]], [A◦
SUSU [z(−n),w(−n),v(−n),y(−n)]], and

[A◦
SUSU [y(−n),v(−n),w(−n+1),z(−n+1)]] (n � 2) accumulate on S[h1, g0]

under the asymptotic ratio eμ0 , similarly to Eq. (16). There-
fore, the asymptotic behaviors of the manifolds between M
and M−1 are identical, upon interchanging the roles of S(x)
and U (x). We would like to emphasize that this is a general
result that comes from the stability analysis of the system,
which holds true whether the system is time-reversal symmet-
ric or not.

There is an interesting special case of the accumulation
relations for which zu is chosen to be the fixed point x itself.
For this case, the primary orbits {gi} and {hi} themselves
become two families of homoclinic points that accumulate on
x with asymptotic ratio eμ0 under both forward and inverse
mappings:

hi ↪→
S

x,

gi ↪→
S

x, (18)

and

h−i ↪→
U

x,

g−i ↪→
U

x, (19)

although the meaning of the order number for each point
inside these two families now becomes ambiguous, therefore
removed from the top of the “↪→” sign. The hyperbolic fixed
point x is now viewed as a “homoclinic point” of winding
number 0, on which the winding-1 primaries accumulate.

C. Partitioning of phase-space areas

Of particular relevance to calculating the homoclinic orbit
relative actions is the sequence of trellises T−1,nu , with nu =
0, 1, . . . , N . New homoclinic points appear on S′

−1 upon each
unit increase of nu, and their relative actions are closely
related to certain phase-space areas called cells. Given a trellis
Tns,nu and four homoclinic points a, b, c, d ∈ Tns,nu that form a
simple closed region bounded by the loop SUSU [a, b, c, d] =
S[a, b] + U [b, c] + S[c, d] + U [d, a], it is called a cell of
Tns,nu if there are no stable and unstable manifold segments
from Tns,nu that enter inside the region. Consequently, there
are no homoclinic points other than the four vortices on the
boundary of the cell. For example, both V0 and V1 are cells of
T−1,0 (Fig. 15). However, in T−1,1 (Fig. 4) they get partitioned
by U1 and are not cells anymore since there are unstable
segments inside them. Each trellis gives a specific partition
to the phase space. By fixing ns = −1 and increasing the nu

value, the resulting sequence of trellises yields a systematic
and ever-finer partition of the phase space, which acts as the
skeletal-like structure for the study of homoclinic orbits.

In fact, of all the cell areas of T−1,nu , two subsets are
relevant to the action calculations. The first subset, defined
as type-I cells, are those from the region V0 partition (Fig. 15).
Equivalently, the type-I cells are those with two stable bound-
ary segments located on S[x, g0] and S[b(0), g−2], respectively.
Similarly, the second subset, or the type-II cells, are those
from the partition of V ′ in Fig. 15. Equivalently speaking, the
type-II cells are those with two stable segments located on
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Aα

Aβ

Aγ

x g-2

g1 b(1)

h1

g0

a(1)
b(0)

B γ

B β Bα

a(0)

h-1

c(1)
d(1)

FIG. 4. Partitioning of cell areas in T−1,1. The three type-I cells
are Aα , Aβ , and Aγ . The three type-II cells are Bα , Bβ , and Bγ . The
A cell from T−1,0 is partitioned into three cell areas in T−1,1: A =
Aα + Aβ + Aγ . Similarly for the type-II cell, B = Bα + Bβ + Bγ .

S[b(0), g−2] and S[h−1, a(0)], respectively. Figure 4 shows the
examples of T−1,1, three type-I cells Aα , Aβ, Aγ and three type-
II cells Bα , Bβ , Bγ . Section V B shows that the knowledge of
these types of cell areas is sufficient for the action calculation
of all homoclinic orbits.

In the partitioning of cell areas from increasing trellises,
there are families of areas corresponding to fast and slow
scaling relations. Since the homoclinic orbit actions are ul-
timately expressed using these areas, an investigation of this
kind is crucial for the understanding of asymptotic cluster-
ing of homoclinic orbit actions. The partitioning process is
recursive in nature, and the partition of the existing cells of
T−1,n by T−1,n+1 is the critical step. This process eventually
leads to an organization of the cells into treelike structures,
and a classification of the scaling rates using the branches
of the trees. As introduced in the discussion of Fig. 5, these
structures are identical for the type-I and type-II cells, so it
suffices to concentrate mostly on the type-I cells.

Aβ

Aαα

Aαβ

Aαγ

Aγα

Aγβ

Aγγ

h0

g0

g-1
Bαα

Bαβ

Bβ

Bαγ

Bγγ
Bγβ

Bγα

FIG. 5. Zoomed-in graph around the complex region of T−1,2

(same as the lower panel of Fig. 2). The Aα and Aγ areas in Fig. 4
are partitioned into three subareas: Aα = Aαα + Aαβ + Aαγ and Aγ =
Aγα + Aγβ + Aγ γ . The Aβ area does not get partitioned because of
the open system assumption, i.e., manifolds outside of the complex
region do not revisit the complex region in future iterations. Since
the type-I and type-II cells are always partitioned by any lobe Ln

simultaneously, the Bα and Bγ cells from Fig. 4 are partitioned in
identical ways with Aα and Aγ , respectively.

A ∼ωβ

A ∼ωα

A ∼ωγ

aα bα

aβ bβ

cβ dβ

aγ bγ

FIG. 6. (Schematic) The cell Aω̃ in T−1,n is partitioned into three
new cells in T−1,n+1 by lobe Ln+1: Aω̃ = Aω̃α + Aω̃β + Aω̃γ , where
Aω̃β ⊂ Ln+1. The rule of assignment is, Aω̃β is always assigned to
the middle cell, and Aω̃α is assigned to the cell with the two corners,

namely aα and bα , such that aβ, cβ

k
↪→

S
aα and bβ, dβ

k
↪→

S
bα , where

the order number k is an appropriate integer that depends on ω̃.
Finally, Aω̃γ is assigned to the last cell. The same pattern applies
to all the B cells as well.

The partition starts from T−1,0, where the only type-I cell
is V0. In order to introduce a partition subscript, V0 is denoted
A. In the next iteration, A is partitioned by T−1,1, in which the
lobe L1 enters A dividing it into three finer cells, namely Aα ,
Aβ , and Aγ , as shown in Fig. 4. Similarly, denote the cell V ′ of
T−1,0 by B. B is partitioned by T−1,1 in an identical way: B =
Bα + Bβ + Bγ since the unstable lobes always enter the type-I
and type-II regions simultaneously for the complete horseshoe
map, and also for a large class of incomplete horseshoe maps
as well.

In the next iteration, T−1,2 introduces finer partitions in
which L2 enters Aα and Aγ , dividing both of them into three
new cells: Aα = Aαα + Aαβ + Aαγ and Aγ = Aγα + Aγ β +
Aγ γ , as labeled in Fig. 5. Therefore, future partitions of a cell
correspond to the addition of the α, β, and γ symbols to the
end of its existing subscript, except if its subscript ends in β

(which terminates that sequence).
In open systems such as the Hénon map, the Aβ area

does not get partitioned by future iterations because points
outside the complex region do not reenter the complex region;
therefore no unstable manifolds will extend inside the lobes
Li for all i ∈ Z. Since Aβ belongs to the inside of L1, it will
not be partitioned by any future trellises. The same are true for
Aαβ , Aγ β , and all areas whose subscript ends with β in future
trellises, which belong to some future lobes Li.

The relative position of the new cells is nontrivial. For
example, as shown in Fig. 5, Aαα , Aαβ , and Aαγ are positioned
from the bottom to the top, while Aγα , Aγ β , Aγ γ are positioned
from the top to the bottom, begging the question, how should
the order of symbols be assigned for the newly generated cells
in a consistent way? The answer is buried in the scaling rela-
tions among homoclinic points. As shown in Fig. 6, consider
an arbitrary cell area Aω̃ in T−1,n, which is partitioned into
three new cells, Aω̃α , Aω̃β , and Aω̃γ in T−1,n+1 by lobe Ln+1.
Here ω̃ denotes a length-n string of symbols composed by
arbitrary combinations of α and γ (but not β). The middle
cell is always labeled by ω̃β. Let the four homoclinic points
on the corners of this cell be aβ , bβ , cβ , and dβ , respectively,
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all of which belong to Un+1. The ω̃α subscript is then assigned
to the cell with the two corners on which aβ , bβ , cβ , and dβ

accumulate:

aβ, cβ

k
↪→

S
aα,

bβ, dβ

k
↪→

S
bα, (20)

where the order number k depends on the detailed forms of ω̃.
The ω̃γ subscript is assigned to the remaining cell.

If the symbolic codes of aα and bα are aα ⇒ 01s̃−.s̃+10
and bα ⇒ 01s̃′

−.s̃′
+10, where s̃± and s̃′

± are substrings com-
posed by 0s and 1s, then it can be inferred using Eq. (C5) that

aβ ⇒ 0100k−11s̃−.s̃+10,

cβ ⇒ 0110k−11s̃−.s̃+10, (21)

and

bβ ⇒ 0100k−11s̃′
−.s̃′

+10,

dβ ⇒ 0110k−11s̃′
−.s̃′

+10. (22)

For a concrete example, consider the partition A = Aα +
Aβ + Aγ in Fig. 4, where Aω̃ = A with ω̃ being an empty
string. The Aβ is first identified as the one in the middle.

Notice that its corners g1, h1 ↪→
S

x and a(1), b(1) 2
↪→

S
g−2; thus

Aα is assigned to the cell at the bottom, and Aγ is thus the cell
at the top. One can verify that the assignments of cells in Fig. 5
follow the same pattern. In particular, the relative positions of
the Aγα , Aγ β , and Aγ γ cells are indeed reversed. This can be
seen from the zoomed-in Fig. 7, where the four corners of
Aγ β , namely v, w, r (1), and s(1), accumulate on g0 and b(0):

v,w
1

↪→
S

g0 and r (1), s(1) 1
↪→

S
b(0). Thus, Aγα is assigned to the

cell on the top of Aγ β , and Aγ γ the one at the bottom. The
partition of the B cells follows an identical scheme.

A complete assignment of the areas’ symbols are de-
termined by the accumulation relations between homoclinic
points along S(x), which can be carried on with increasing
iterations of T−1,n to obtain ever-finer partitions of type-I and
type-II cell areas. The progressive partitioning of the type-I
cells can be represented by a partition tree shown in Fig. 8.
Defining the node A to be the 0th level of the tree, which is a
cell generated by T−1,0, then nodes at the nth level along the
tree represent the cells newly generated by T−1,n. Notice the
β nodes do not get expanded at the next level, because of the
open system assumption. A finite truncation of the partition
tree to the nth level corresponds to the partition of the type-I
areas up to T−1,n. Note that the partition tree of type-II cell
areas is identical to the type-I tree upon changing the symbols
A into B.

D. Scaling relations and periodic orbit exponents

In this section we demonstrate numerically a fundamental
relation between the stability exponents of periodic orbits and
the scaling ratios in certain families of areas of the partition
tree. The relation provides an efficient way to compute the
stability exponents of periodic orbits from the areas bounded
by stable and unstable manifolds, which does not require the
numerical construction of periodic orbits.

a(0)

b(0)

g0

e(1)

r(1)
v

f (1)

s(1)
w

h1

a(1)

c(1)

Aγα

Aγβ

Aγγ

B γα

B γβ

B γγ

FIG. 7. (Zoomed-in graph) The Aγ and Bγ cells from Fig. 4
are partitioned by L2 into three new cells each. The Aγβ area is

assigned to the middle one. Since v,w
1

↪→
S

g0 and r (1), s(1) 1
↪→

S
b(0),

Aγα is assigned to the top one, leaving Aγ γ to be the bottom one. The
same rules apply to the B cells as well.

The complete and exact decomposition of the homoclinic
orbit actions requires only the areas of the partition trees. On
the other hand, their areas scale down asymptotically with the
tree level exponentially, with the exponents determined by the
specific paths that one moves down the trees. The simplest
example is a path of consecutive “α” directions. Start from
any α, β, or γ node of the tree, denoted by Aω̃α , Aω̃β , and

A

Aα Aβ Aγ

Aαα Aαβ Aαγ Aγα Aγβ Aγγ

T−1,0 :

T−1,1 :

T−1,2 :

FIG. 8. The partition tree of type-I cell areas. Nodes at the nth
level along the tree are areas generated from the partition of T−1,n−1

by T−1,n. Every α and γ nodes are partitioned into three new nodes
at the next level, while the β nodes do not get partitioned any further.
The partition tree of type-II areas follows an identical pattern upon
changing the symbols A into B. To order the cells as in the trellis,
proceeding from the top of the tree, reverse the order for the next
level down each time the number of γ symbols is odd.
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Aω̃γ , respectively, and move to deeper levels along the left
directions. The successive cells areas visited by such paths
form three families: [Aω̃αn ], [Aω̃αn−1β], and [Aω̃αn−1γ ], that scale
down with the stability exponent of the fixed point:

lim
n→∞

Aω̃αn

Aω̃αn+1
= lim

n→∞
Aω̃αn−1β

Aω̃αnβ

= lim
n→∞

Aω̃αn−1γ

Aω̃αnγ

= eμ0 , (23)

where αn denotes n consecutive α characters in the string.
Identical relations hold for the B cells as well.

The exponents in Eqs. (16) and (23) are identical, and this
is not a coincidence. Returning to Sec. IV B, the three fami-
lies of areas [A◦

SUSU [g−2,b(n),d (n),h−1]], [A◦
SUSU [b(n),a(n),c(n),d (n)]], and

[A◦
SUSU [a(n),b(n−1),d (n−1),c(n)]] (n � 2) are just [Bω̃αn ], [Bω̃αn−1β],

and [Bω̃αn−1γ ] (n � 2), respectively, upon letting ω̃ = ∅ (null
string). Therefore, Eq. (16) is just a special case of Eq. (23).
In fact, just as Eq. (16) is a direct consequence of the
accumulation relations in Eqs. (11) and (14), the general
formula Eq. (23) also comes from the accumulation of cor-
responding homoclinic points at the vertices of the cells.
This can be demonstrated by Fig. 9, where three fami-
lies of areas [Aω̃αn ], [Aω̃αn−1β], and [Aω̃αn−1γ ] (n � 2) ac-
cumulate on U [aα, bα]. Starting from the Aω̃ cell in T−1,n

and mapping to higher iterations, the addition of Ln+m

(m = 1, 2, . . .) partitions Aω̃αm−1 into three new areas: Aω̃αm ,
Aω̃αm−1β , and Aω̃αm−1γ , which approach the U [aα, bα] seg-
ment asymptotically. The two sequences of points [aαm−1β]
and [cαm−1β] (m � 1), which are created from successive
intersections between Un+m and S[aα, aγ ], give rise to
two families of points that accumulate on the base point
aα:

aαm−1β, cαm−1β

k+m−1
↪→

S
aα, (24)

with exponent μ0, where k depends on the detailed form of ω̃.
Similarly, the two sequences of points [bαm−1β] and [dαm−1β]

(m � 1), generated from successive intersections between
Un+m and S[bα, bγ ], give rise to two families of points that
accumulate on the base point bα:

bαm−1β, dαm−1β

k+m−1
↪→

S
bα, (25)

with the same exponent μ0 as well.
The scaling relations for the cell areas in Eq. (23) come

from the scaling relations of their vertices in Eqs. (24) and
(25). In particular, denote the length of the stable manifold
segment S[a, b] by ds(a, b); then the lengths ds(aα, aαm−1β ),
ds(aαm−1β, cαm−1β ), and ds(cαm−1β, aαm−2β ) scale as
(see Fig. 9)

lim
m→∞

ds(aα, aαm−1β )

ds(aα, aαmβ )
= lim

m→∞
ds(aαm−1β, cαm−1β )

ds(aαmβ, cαmβ )

= lim
m→∞

ds(cαm−1β, aαm−2β )

ds(cαmβ, aαm−1β )
= eμ0 . (26)

Considering that the points in Eq. (26) are infinitely close
under the m → ∞ limit, so the stable manifold segments
connecting them are infinitely close to straight-line segments,
the distances between homoclinic points can be replaced
by the differences in their p (or q) coordinates (assuming
the generic cases in which the local manifolds do not form

A

A

A

a b

a b

c d

a b

A

A

A

a b

a

A

A

A

a b

a b

c d

a b

b

c d

a b

T-1,n+1

T-1,n+2

T-1,n+3

Ln+2

Ln+3

Ln+1

FIG. 9. (Schematic) Successive partitions of Aω̃ ⊂ T−1,n in later
trellis T−1,n+m. Upper panel (T−1,n+1): The same as Fig. 6, where Aω̃ is
partitioned into three areas by Ln+1. Middle panel (T−1,n+2): Zoomed-
in graph of Aω̃α in T−1,n+2, where Aω̃α is partitioned by Ln+2 into
three new areas. Lower panel (T−1,n+3): Zoomed-in graph of Aω̃αα

in T−1,n+3, where Aω̃αα is partitioned by Ln+3 into three new areas.
The addition of successive lobes create four families of homoclinic
points, [aαm−1β ], [cαm−1β ], [bαm−1β ], and [dαm−1β ], that accumulate on
aα and bα under Eqs. (24) and (25) with exponent μ0. Therefore, the
three families of areas [Aω̃αm ], [Aω̃αm−1β ], and [Aω̃αm−1γ ] also converge
onto U [aα, bα] with exponent μ0, as described by Eq. (23).

caustics):

lim
m→∞

p(aαm−1β ) − p(aα )

p(aαmβ ) − p(aα )

= lim
m→∞

p(cαm−1β ) − p(aαm−1β )

p(cαmβ ) − p(aαmβ )

= lim
m→∞

p(aαm−2β ) − p(cαm−1β )

p(aαm−1β ) − p(cαmβ )
= eμ0 , (27)

where p(a) denotes the p-coordinate value of a. The same
relations hold for the q-coordinate values as well. The leading
terms of the homoclinic families in Eq. (27) are shown in
Fig. 9.

Thus, the asymptotic area scaling relations originate from
the asymptotic relations between the positions of homoclinic
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TABLE I. eμ0 scaling: The scaling exponents in the “α” direction
starting from Aα , Aβ , and Aγ are listed in the three columns, respec-
tively. Clearly, they all converge to μ0 asymptotically.

n ln
( Aαn

A
αn+1

)
ln

( A
αn−1β

Aαnβ

)
ln

( A
αn−1γ

Aαnγ

)
1 2.144099 2.103342 2.197343
2 2.142725 2.142323 2.156467
3 2.142084 2.142521 2.144631
4 2.141952 2.142060 2.142364
5 2.141929 2.141949 2.141991
6 2.141927 2.141929 2.141933
μ0 2.141926 2.141926 2.141926

points on the invariant manifolds. Furthermore, the scaling
relations between the phase-space positions of certain homo-
clinic points give rise to the stability exponent of the fixed
point x. In fact, the same relations exist for the stability
exponent of any unstable periodic orbit in general [50].

As an example of Eq. (23), the three families of
areas [A◦

SUSU [g−2,b(n),d (n),h−1]], [A◦
SUSU [b(n),a(n),c(n),d (n)]], and

[A◦
SUSU [a(n),b(n−1),d (n−1),c(n)]] (n � 2) from Eq. (16) can be

identified as [Bω̃αn ], [Bω̃αn−1β], and [Bω̃αn−1γ ], respectively, by
letting ω̃ be an empty string. Comparing the areas in Fig. 2
and Fig. 5, the leading terms in the tree families are identified
as A◦

SUSU [g−2,b(2),d (2),h−1] = Bαα , A◦
SUSU [b(2),a(2),c(2),d (2)] = Bαβ ,

and A◦
SUSU [a(2),b(1),d (1),c(2)] = Bαγ . Although not plotted in the

figure, future lobes partition Bαα into ever-finer areas and
create the three infinite families of areas that converge to the
bottom segment U [g−2, h−1].

To check the accuracy of Eq. (23), the first seven areas
of the three families [Aαn ], [Aαn−1β], and [Aαn−1γ ] are given
in Table I. The three columns give the scaling exponents
obtained from [Aα, Aαα, Aααα, . . .], [Aβ, Aαβ, Aααβ, . . .], and
[Aγ , Aαγ , Aααγ , . . .], respectively. Even for the first ratio
(worst case), the predicted exponent is good to better than two
decimal places. By the bottom of each column, the distinction
first appears only in the sixth digit.

The opposite direction down the tree follows increasing
repetitions of γ leading to the families [Aω̃γ n−1α], [Aω̃γ n−1β],
and [Aω̃γ n ] (n � 1), respectively. The exponential shrinking
rate is much slower, and numerical evidence with specific
families of cells shown in Tables II and III indicate that the
scaling along such “γ ” directions converge to the stability ex-
ponent μ1 of x′, i.e., the hyperbolic fixed point with reflection:

lim
n→∞

Aω̃γ n−1α

Aω̃γ nα

= lim
n→∞

Aω̃γ n−1β

Aω̃γ nβ

= lim
n→∞

Aω̃γ n

Aω̃γ n+1
= eμ1 , (28)

which is in complete analogy to Eq. (23), except for a dif-
ferent direction along the tree, and with a different scaling
exponent.

The above-mentioned tables indicate that the scaling of
cells along consecutive “α” directions yield the exponent μ0,
and cells along consecutive “γ ” directions yield the exponent
μ1. Such phenomena are still just special cases of a general
relation that links the scaling exponents along different direc-
tions to the symbolic codes of periodic orbits. The association
is simple: a scaling step in the “α” direction contributes a

TABLE II. eμ1 scaling: The scaling exponents in the “γ ” direc-
tion starting from Aα , Aβ , and Aγ are listed in the three columns,
respectively. Clearly, they all converge to μ1, the stability exponent
of the periodic orbit 1.

n ln
( A

γ n−1α

Aγ nα

)
ln

( A
γ n−1β

Aγ nβ

)
ln

( Aγ n

A
γ n+1

)
1 1.320085 2.365152 1.468471
2 1.707766 1.384612 1.446403
3 1.343392 1.460855 1.500372
4 1.535619 1.496668 1.477362
5 1.467206 1.478053 1.484760
6 1.487618 1.484611 1.482549
7 1.481780 1.482579 1.483168
8 1.483367 1.483164 1.482999
μ1 1.483036 1.483036 1.483036

symbolic digit “0”, and a scaling step in the “γ ” direction
contributes a digit “1”. To formulate this process, define a
mapping 
 that maps a string of Greek letters “α” and “γ ” to
a string of symbolic codes of “0” and “1”, with the grammar
α �→ 0 and γ �→ 1. For example, 
(γαγ ) = 101, and the
asymptotic scaling exponent in successive “γαγ ” directions
is the stability exponent of the 101 periodic orbit, μ101.

In the most general case, consider beginning with an arbi-
trary node (denoted by either Aω̃α , Aω̃β , or Aω̃γ , depending on
its location) in the type-I partition tree, and study the scaling
exponent in an arbitrary direction η̃ deepening along the tree.
Here η̃ is a Greek letter string composed by “α”s and “γ ”s
that specifies the scaling path. The scaling exponent along η̃

is determined by the stability exponent of the periodic orbit

(η̃), μ
(η̃):

lim
n→∞

Aω̃η̃n−1α

Aω̃η̃nα

= lim
n→∞

Aω̃η̃n−1β

Aω̃η̃nβ

= lim
n→∞

Aω̃η̃n−1γ

Aω̃η̃nγ

= eμ
(η̃) ,

(29)

which is in complete analogy to Eqs. (23) and (28). Notice the
relations are independent of ω̃; i.e., any node of the tree can
be used as a starting node (the n = 1 terms) of the scaling.
Identical relations hold for B cells in the type-II partition tree
as well. See Table IV for a simple example of Eq. (29).

TABLE III. eμ1 scaling: The scaling exponents in the “γ ” direc-
tion starting from Aαα , Aαβ , and Aαγ are listed in the three columns,
respectively. They all converge to μ1.

n ln
( A

αγ n−1α

Aαγ nα

)
ln

( A
αγ n−1β

Aαγ nβ

)
ln

( Aαγ n

A
αγ n+1

)
1 1.364533 2.471588 1.449553
2 1.703491 1.352048 1.444654
3 1.332763 1.460781 1.502057
4 1.541193 1.497815 1.476780
5 1.465512 1.477561 1.484950
6 1.488134 1.484780 1.482495
7 1.481634 1.482527 1.483189
μ1 1.483036 1.483036 1.483036
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TABLE IV. eμ01 scaling: The scaling exponents in the “αγ ”
direction starting from Aαα , Aαβ , and Aαγ are listed in the three
columns, respectively. Clearly, they all converge to μ01, the stability
exponent of the periodic orbit 01.

n ln
( A

α(αγ )n−1α

Aα(αγ )nα

)
ln

( A
α(αγ )n−1β

Aα(αγ )nβ

)
ln

( A
α(αγ )n−1γ

Aα(αγ )nγ

)
1 3.520098 4.629501 3.603747
2 3.226675 3.202485 3.292394
3 3.259026 3.255664 3.248603
4 3.256531 3.256733 3.257234
μ01 3.256614 3.256614 3.256614

Similarly to Eq. (23), the origin of Eq. (29) comes from
a fundamental relation linking the stability exponents of un-
stable periodic orbits to the distribution of certain families of
homoclinic points (which can be identified as the vertices of
the cell areas) on the invariant manifolds.

V. HOMOCLINIC ACTION FORMULAS

All the tools are now in place to develop exact relations ex-
pressing the classical actions of any homoclinic orbit in T−1,N

(therefore up to transition time N + 1), in terms of the type-I
and type-II cell areas of T−1,N . In this method, the calculation
of numerical orbits, which suffers from sensitive dependence
on initial errors and is unstable in nature, is converted into
the calculation of areas bounded by S(x) and U (x), which can
be evaluated in stable ways. The exact relations of Sec. V B
are perfectly adapted for the development of approximations
in Sec. V C that make use of the asymptotic scaling relations
among the areas, and that lead to approximate expressions for
the homoclinic orbit actions in T−1,N using only the type-I
and type-II cell areas from T−1,d (N ), where d (N ) is an integer
much smaller than N . Consequently, it is possible to express
the exponentially increasing set of homoclinic orbit actions
using a set of areas that is increasing at a much slower rate
(e.g., algebraic or linear).

A. Projection operations

The main process leading to the homoclinic action formu-
las in this section is to express the actions of the homoclinic
orbits with large winding numbers in terms of those with small
winding numbers, i.e., the decomposition of orbits according
to their hierarchical structure. To accomplish this, there are
some projection operations to be defined which establish
mappings between orbits with different winding numbers.

Given a winding-n (n � 1) homoclinic point y and two

winding-(n + 1) points z and w such that z
k

↪→
S

y and w
k

↪→
S

y

(∀k � 1) and S[y,w] ⊂ S[y, z], define the projection oper-
ation along the stable manifold, denoted by PS , to be the
mapping that maps z and w into the base point y:

PS (z) = PS (w) = y. (30)

The corresponding operation on the symbolic strings, de-
noted by πS , can be readily obtained by working backward
from Eq. (C5). Namely, given the symbolic codes of z and
w, the πS operation deletes the substrings “110k−1” and

“100k−1”, respectively, from the left ends of the cores of z and
w, while maintaining the position of the decimal point relative
to the right end of the core. The resulting symbolic code is
then y. Take the points a(0) ⇒ 01.110, b(0) ⇒ 01.010, and

g−2 ⇒ 0.010 in Fig. 1 as examples; we know a(0), b(0) 1
↪→

S
g−2,

thus PS (a(0) ) = PS (b(0) ) = g−2. Correspondingly for the sym-
bolic codes

πS (01.110) = 0.010,

πS (01.010) = 0.010, (31)

where the πS operation deletes either the “11” (for a(0)) or
“10” (for b(0)) substring from the left of the cores while
keeping the position of the decimal points relative to the right
end of the core unchanged.

Similar operations can be defined for the accumulating
homoclinic families along the unstable manifold under the
inverse mappings as well. Given a winding-n homoclinic point

y′, and the winding-(n + 1) points z′ and w′ such that z′ k
↪→
U

y′

and w′ k
↪→
U

y′ and U [y′,w′] ⊂ U [y′, z′], define the projection

operation along the unstable manifold, denoted by PU , to be
the mapping

PU (z′) = PU (w′) = y′. (32)

The corresponding operation πU on the symbolic codes is then
defined by working backward from Eq. (C6). Namely, given
the symbolic codes of z′ and w′, the πU operation deletes the
substrings “0k−111” and “0k−101”, respectively, from the right
ends of the cores of z′ and w′, while maintaining the position
of the decimal point relative to the left end of the core. The
resulting symbolic code then gives y′.

In the preceding definitions, the projection operations must
be applied to homoclinic points with winding numbers �2.
However, they can be naturally extended to apply to the
primary (winding-1) points as well. The extension is straight-
forward: for any primary homoclinic point gi or hi, define

PS (gi ) = PU (gi ) = PS (hi ) = PU (hi ) = x (33)

with corresponding πS and πU operations mapping the sym-
bolic codes of hi and gi into 0.0, i.e., that of the hyperbolic
fixed point x. This is consistent with the scaling relations of
Eqs. (18) and (19) as well.

Since πS and πU operate on different sides of the cores,
it is easy to see that they commute: πSπU = πU πS . Since the
symbolic codes are in one-to-one correspondences with the
phase space points, the projection operations PS and PU also
commute: PSPU = PU PS . Therefore, a mixed string of opera-
tions consisting of n applications of PS and m applications of
PU , disregarding their relative orders, can always be written as
Pn

S Pm
U , and similarly for the mixed string of operations of πS

and πU as well. Such operations are extensively used in the
decomposition scheme in Sec. V B.

As an example, consider the c(1) ⇒ 011.110, h−1 ⇒
0.110, and h1 ⇒ 011.0 points from Fig. 10. The accu-

mulation relations are c(1) 1
↪→

S
h−1 ↪→

U
x and c(1) 1

↪→
U

h1 ↪→
S

x,

thus PU PS (c(1) ) = PU (h−1) = x and PSPU (c(1) ) = PS (h1) = x.
On the other hand, using the symbolic dynamics we have
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x

h0
g0

g-1

h1

g1

h-1g-2

a(0)b(0)

a(1)

b(1)

c(1)

d(1)

FIG. 10. An example of the homoclinic orbit action decompo-
sition. As shown by Eq. (37), the relative action of the winding-2
orbit {d (1)} is decomposed into the sum of the relative actions of the
winding-1 orbits {h−1} and {g1}, and a phase-space area A◦(d (1) ) =
A◦

SUSU [d (1),h−1,x,g1]
marked by the hatched region in the figure. Similar

decomposition can be done for any homoclinic point on S′
−1.

πU πS (011.110) = πU (0.110) = 0.0 and πSπU (011.110) =
πS (011.0) = 0.0, consistent with the results from the accu-
mulation relations.

B. Exact decomposition

The derivation of the exact formula makes repeated use
of the MacKay-Meiss-Percival action principle described by
Eqs. (5) and (6), and expresses the relative classical actions
of homoclinic orbits as sums of phase-space areas bounded
by S(x) and U (x). The fixed-point orbit {x} becomes a natural
candidate for a reference orbit, and the actions of all homo-
clinic orbits {h} can be expressed relative to {x} in the form of
�F{h}{x}, as shown by Eq. (6).

Start by calculating the actions of the two primary orbits
{g0} and {h0}, which readily follow from Eq. (6). The two
areas A◦

US[x,h0] and A◦
US[x,g0] are straightforward to evaluate

since only short segments of S(x) and U (x) are required.
Having the primary relative orbit actions available, the actions
of all winding-n orbits (n � 2) can be determined recursively
from the actions of the winding-(n − 1) and winding-(n − 2)
orbits. In particular, given any winding-n (n � 2) homoclinic
point y ∈ S′

−1 ∩ Um, the action of {y} can be expressed using
three auxiliary orbits: {PS (y)}, {PU (y)}, and {PSPU (y)}. Substi-
tuting {y}, {PU (y)}, {PS (y)}, and {PSPU (y)} into Eq. (7) gives(

�F{y}{x} − �F{PU (y)}{x}
) − (

�F{PS (y)}{x} − �F{PSPU (y)}{x}
)

= A◦
SUSU [y,PS (y),PSPU (y),PU (y)] (34)

and therefore

�F{y}{x} = �F{PS (y)}{x} + �F{PU (y)}{x} − �F{PSPU (y)}{x}
+A◦

SUSU [y,PS (y),PSPU (y),PU (y)]. (35)

Notice that the PS and PU operations reduce the winding
number of y by 1. Similarly, from Eqs. (C5) and (C6) the core
length is reduced by at least 2, since their effect is to delete
substrings of a minimum of two digits from the original core
(“110k−1” or “100k−1” for PS , “0k−111” or “0k−101” for PU ).
Therefore, the three auxiliary orbits are guaranteed to have
simpler and shorter phase-space excursions than {y}. In this
sense, Eq. (35) provides a decomposition of the relative action

of any arbitrary homoclinic orbit into the relative actions of
three simpler auxiliary homoclinic orbits, plus a phase-space
area bounded by the manifolds. By repeated contractions, the
decomposition could be pushed to involving only the primary
homoclinic orbits, the fixed point, and a set of A◦

SUSU [··· ] areas.
Implied by this process is that the inverse sequences could be
used beginning with the two primary homoclinic orbits, fixed
point, and a set of areas to construct the relative actions of all
the homoclinic orbits.

The particular form of A◦
SUSU [y,PS (y),PSPU (y),PU (y)] indicates

that the area depends only on the homoclinic point y. Once y
is chosen, the uniqueness of PS (y), PU (y), and PSPU (y) means
that the area is uniquely calculated. Thus, in the forthcoming
contents the shorthand notation

A◦(y) ≡ A◦
SUSU [y,PS (y),PSPU (y),PU (y)] (36)

will be used frequently to simplify the notation.
An important outcome, buried in Eq. (35), relates to the

particular form of A◦(y). For any y ∈ S′
−1 ∩ Um, the locations

of its projections are highly constrained: PS (y) ∈ S′
−1, PU (y) ∈

S[x, g0], and PSPU (y) ∈ S[x, g0]. As a consequence, A◦(y) is
always expressible by the type-I and -II cell areas of T−1,m.
Consider d (1) ∈ (S′

−1 ∩ U1) from Fig. 10 for example; the use
of Eq. (35) yields

�F{d (1)}{x} = �F{h−1}{x} + �F{g1}{x} − �F{x}{x} + A◦(d (1) ),

(37)

where �F{x}{x} = 0 gives zero contributions. Comparing
Fig. 10 with Fig. 4, the A◦(d (1) ) term (hatched region in
Fig. 10) is expressible by two cell areas from the type-I and
type-II partition trees of T−1,1:

A◦(d (1) ) = Aα + Bα, (38)

both of which are finite curvy trapezoids bounded by the
manifolds that can be evaluated simply. The same results hold
for all homoclinic points on S′

−1 with a single exception—a(0).
The use of Eq. (35) on a(0) gives

�F{a(0)}{x} = �F{g−2}{x} + �F{g0}{x} + A◦(a(0) ),

where the evaluation of A◦(a(0) ) = A◦
SUSU [a(0),g−2,x,g0] requires

the additional area A◦
SU [a(0),b(0)] that is not part of the partition

tree areas. Although the calculation of A◦
SU [a(0),b(0)] is not

difficult, to make the scheme consistent for all homoclinic
points, an alternate form of Eq. (35) is used for a(0) only:

�F{a(0)}{x} = �F{h−1}{x} + �F{g0}{x} + A◦
SUSU [a(0),h−1,x,g0]

(39)

so A◦
SUSU [a(0),h−1,x,g0] is expressible by cell areas A + B.

Although A◦(y) is expressible by linear combinations of
type-I and type-II partition tree areas, Aω̃ and Bω̃, the precise
mapping between this area and the tree area symbols must
be determined. Given the symbolic code of any homoclinic
point y ∈ (S′

−1 ∩ Um), the explicit mapping links A◦(y) with
specific linear combinations of cell areas from the type-I and
type-II partition trees of T−1,m. Since the transition time of y
is m + 1, according to Eq. (C2), its core length is m + 3. Let
s̃ = s1s2 · · · sm+2sm+3 (si ∈ {0, 1}, s1 = sm+3 = 1) be the core
of the symbolic code of y; then the linear combination of cell
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areas depends solely on s̃. As the association is rather techni-
cal, the details are given in Appendix E. The correspondence
is given by Eq. (E4) using the notation and other relations also
defined in the Appendix.

Even though the actions of individual homoclinic orbits
can always be calculated directly with the MacKay-Meiss-
Percival action principle, �F{y}{x} = A◦

US[x,y], for those orbits
with large transit times, the integration path US[x, y] will be
stretched exponentially long and extend far from the fixed
point. Accurate interpolation of the path will require an expo-
nentially growing set of points on the manifolds to maintain
a reasonable density, an impractical task given the formidable
computation time and memory space. On the other hand, using
Eqs. (35) and (E4), the entire set of the homoclinic orbit
actions arising from any trellis T−1,N can be calculated with
the two primary orbit actions, �F{h0}{x} and �F{g0}{x}, and
the areas of the cells of the type-I and type-II partition trees
of T−1,N . These areas are confined to a finite region of the
phase space, and bounded by stable and unstable manifolds
with small curvatures, which are far easier to compute. Notice
that both the symbolic codes of homoclinic points and the
numerical areas in the partition trees can be generated with
straightforward computer algorithms, so the recursive use of
Eqs. (35) and (E4) give rise to an automated computational
scheme for the exact calculation of homoclinic orbit actions.

Equivalently, one may carry out the recursive process
explicitly, which leads to an expression of the homoclinic orbit
action as a cell-area expansion. This is done by expanding
the three auxiliary homoclinic orbit actions in Eq. (35) us-
ing the equation itself, repeatedly, until all auxiliary orbits
reduce to the primary homoclinic orbits. However, there is
a technical difficulty of Eq. (35) to take into account: the
point PU (y) is no longer on S′

−1, so the area term in its own
expansion, A◦(PU (y)), is no longer being expressed by the
type-I and type-II cell areas. Consequently, Eq. (E4) breaks
down for PU (y). The same is true for point PSPU (y) as well.
To adjust for this problem, all that is needed is to identify
the representative point of the orbit {PU (y)} on S′

−1, denoted
by P′

U (y). In fact, P′
U (y) is just an image of PU (y) under

several inverse mappings. The number of inverse mappings
is straightforwardly identified. All homoclinic points on S′

−1

have symbolic codes of the form 0ζ̃ .010 (if they are located
on S[b(0), g−2]) or 0ζ̃ .110 (if they are located on S[h−1, a(0)]),
where ζ̃ denotes an arbitrary symbolic string of binary digits.
Equivalently stated, the decimal point in the symbolic code of
any homoclinic point on S′

−1 is always two digits left of the
right end of its core. Hence, the resultant shift of the decimal
point of PU (y) yields P′

U (y). Suppose the decimal point of
PU (y) is n′ digits to the right side of the right end of its core;
then the P′

U operation can be defined as

P′
U (y) ≡ M−(n′+2)PU (y). (40)

The corresponding symbolic operation π ′
U can be defined

as a shift of the decimal point for n′ + 2 digits towards the left,
after the operation πU .

For the special cases of y = hi or y = gi, i.e., a primary
homoclinic point, PU (y) reduces to x, and n′ loses its meaning.
For those cases, define

P′
U (hi ) = P′

U (gi ) = x (41)

a(0)

b(0)

g0

r(1)
v

s(1)
w

h1

a(1)

c(1)

FIG. 11. Relative areas for the decomposition of the winding-3
orbit {r (1)}. The A◦(r (1) ) term in Eq. (43) is marked as the hatched
region in the lower panel, which is just −Aγα . The long and curvy,
hatched region in the upper panel is the A◦(v) term in Eq. (45). Areas
like this may not be expressible by the type-I and type-II cell areas.

and the corresponding π ′
U operation maps the symbolic codes

of the primary homoclinic points into 0.0, i.e., that of the
hyperbolic fixed point.

The commutative relations hold for both the projection
operations and their symbolic counterparts: PSP′

U = P′
U PS and

πSπ
′
U = π ′

U πS . Using the P′
U operation, Eq. (35) can be writ-

ten alternatively as

�F{y}{x} = �F{PS (y)}{x} + �F{P′
U (y)}{x}

−�F{PSP′
U (y)}{x} + A◦(y), (42)

in which the representative points P′
U (y) and PSP′

U (y) of the
auxiliary homoclinic orbits {P′

U (y)} and {PSP′
U (y)} both locate

on S′
−1 now. Therefore, the recursive expansion of Eq. (42)

can be continued until all auxiliary orbits involved are primary
homoclinic orbits.

The above motivation for introducing this extra P′
U op-

eration is better demonstrated with the example in Fig. 11.

For the winding-3 homoclinic point r (1), we have r (1) 1
↪→

S
b(0)

and r (1) 1
↪→
U

v; therefore the projection operations on it

give PS (r (1)) = b(0), PU (r (1)) = v, and PSPU (r (1)) = g0. Thus,
Eq. (35), when applied to r (1), reads

�F{r(1)}{x} = �F{b(0)}{x} + �F{v}{x}

−�F{g0}{x} + A◦(r (1)), (43)
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where A◦(r (1) ) = A◦
SUSU [r(1),b(0),g0,v] is the negative area of

the hatched region (−Aγα) from the lower panel of Fig. 11.
Among the three auxiliary orbit actions in the above expres-
sion, �F{g0}{x} is already a primary orbit action; therefore
no further decomposition is needed for it. The other two,
�F{b(0)}{x} and �F{v}{x}, are both winding-2 orbits, and thus
need to be further decomposed via Eq. (35) again. This is fine
for �F{b(0)}{x}, since b(0) is already on S′

−1, and thus,

�F{b(0)}{x} = �F{g−2}{x} + �F{g0}{x} − �F{x}{x} + A◦(b(0) ),

(44)

where A◦(b(0) ) = A◦
SUSU [b(0),g−2,x,g0] = Aα + Aβ + Aγ . How-

ever, the same procedure, when applied to �F{v}{x}, gives rise
to undesired subtleties. Notice that v �∈ S′

−1, PS (v) = g0, and
PU (v) = g2, which lead to the expansion

�F{v}{x} = �F{g0}{x} + �F{g2}{x} − �F{x}{x} + A◦(v),

(45)

where A◦(v) = A◦
SUSU [v,g0,x,g2] is a long, thin, and folded area

indicated by the hatched region in the upper panel of Fig. 11.
The expressions of such areas in terms of the type-I and -II
cells are not immediately apparent, and the correspondence
relation Eq. (E4) will fail. The fix, however, is simple and
straightforward: use the representative point of {v} on S′

−1.
This point can be easily identified from the symbolic dynam-

ics. Given that b(0) ⇒ 01.010 and r (1) 1
↪→

S
b(0), we know from

Eq. (C5) that r (1) ⇒ 0101.010. Since v = PU (r (1) ), its sym-
bolic code is then v ⇒ πU (0101.010) = 0101.0, which indi-
cates that v = M2(b(0) ). Therefore, the representative point
of {v} on S′

−1 is identified to be b(0). Correspondingly, one
can verify the validity of Eq. (40) since P′

U (r (1) ) = b(0); i.e.,
P′

U (y) indeed yields the correct representative point of {PU (y)}
on S′

−1. Therefore, �F{v}{x} = �F{b(0)}{x}, which is expressible
via Eq. (44) again. The final expression for {r (1)} is then

�F{r(1)}{x} = 3�F{g0}{x} + 2A◦(b(0) ) + A◦(r (1))

= 3�F{g0}{x} + 2A − Aγα, (46)

which only involves �F{g0}{x} and several type-I cell areas.
As shown by Eq. (49) later, similar decomposition can be
written for any homoclinic orbit, and the resulting expansions
will only involve the two primary orbit actions, �F{g0}{x} and
�F{h0}{x}, plus a linear combination of some type-I and type-II
cell areas.

The general process proceeds as follows. Consider
the case of {y} with winding-2. Then PSPU (y) = x, thus
�F{PSPU (y)}{x} = 0. The two nonvanishing auxiliary orbits are
{PS (y)} and {P′

U (y)}, both of which are primary orbits, so
Eq. (42) is already a complete expansion. For all higher
winding cases, n � 3, it is possible to expand the �F{PS (y)}{x}
and �F{P′

U (y)}{x} terms in Eq. (42) using the equation itself to
obtain a twice-iterated formula

�F{y}{x} = �F{P2
S (y)}{x} + �F{PSP′

U (y)}{x}
+�F{P′2

U (y)}{x} − �F{P2
S P′

U (y)}{x} − �F{PSP′2
U (y)}{x}

+A◦(y) + A◦(PS (y)) + A◦(P′
U (y)). (47)

Since y, PS (y), and P′
U (y) are all located on S′

−1, with the
help of Eq. (E4), the three A◦ areas in the above formula are
all expressible using type-I and type-II areas. For the orbits
with n = 3, both �F{P2

S P′
U (y)}{x} and �F{PSP′2

U (y)}{x} vanish, so
no more expansions are needed. An example of this is al-
ready provided by Eq. (46) previously. For the n � 4 cases,
the above procedure can be carried on repeatedly, until the
Pn−i

S P′i
U (y) (1 � i � n − 1) action terms are present, which

reduce y into x. To further simplify the notations, define the
mixed projections of PS and P′

U on y as

P(y; i; j) ≡ Pi− j
S P′ j

U (y), (i � j). (48)

Then, a general formula for the complete action decomposi-
tion of any winding-n homoclinic orbit {y} (where y ∈ S′

−1 ∩
Um) can be written as

�F{y}{x} =
n−1∑
i=0

�F{P(y;n−1;i)}{x} +
n−2∑
i=0

i∑
j=0

A◦(P(y; i; j)),

(49)
where �F{P(y;n−1;i)}{x} = �F{Pn−1−i

S P′i
U (y)}{x} are relative actions

of the primary homoclinic orbits, therefore either �F{h0}{x}
or �F{g0}{x}. The A◦(P(y; i; j)) terms in the double sum
are areas of the curvy parallelograms spanned by four
homoclinic points of various winding numbers, generated
from mixed projections of y. By design, all P(y; i; j) points
in these areas are located on S′

−1; thus the A◦(P(y; i; j))
terms are expressible using the type-I and type-II cells via
Eq. (E4).

Equation (49) gives a complete expansion of the homo-
clinic orbit actions in terms of the primary homoclinic orbit
actions plus the cell areas of type-I and type-II partition
trees. It converts the determinations of numerical orbits into
area calculations in a finite region of the phase space, and
avoids exponentially extending integration paths associated
with complicated orbits. Furthermore, the two types of cells
come from a nearly parallel and linear foliated phase-space
region with relatively small curvature along the manifolds, so
the numerical interpolation of the manifolds does not require a
very dense set of points, and therefore renders the calculations
practical.

Nevertheless, the total number of the cell areas proliferates
with the same rate as the homoclinic points on S′

−1. This is
because the cells can be put into a one-to-one correspondence
with the nonprimary homoclinic points on S′

−1, such that each
cell corresponds to the homoclinic point at its upper right
corner. For example, in Fig. 4, the cells Aα , Aβ , Aγ , Bα , Bβ ,
and Bγ correspond to points b(1), a(1), b(0), d (1), c(1), and a(0),
respectively. As we increase the integer N of the trellis T−1,N ,
new cells emerge at an identical rate with new homoclinic
points on S′

−1, both of which proliferate as 2N+2 = eα(N+2),
where α = ln 2 is the topological entropy of the system.
Therefore, the exact evaluation of homoclinic orbit actions,
Eq. (49), requires an exponentially increasing set of areas for
its input, as must happen.

A few words are in order for the symbolic dynamics. In all
the derivations up till now, we have assumed the homoclinic
tangle forms a complete horseshoe structure, which allows all
possible sequences of binary digits. Although this is often true
for highly chaotic systems, for other types of systems with
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g0

h-1

g-1

g-2

a(1)

b(1)

a(2)

b(2)

c(2)

d(2)

FIG. 12. (Schematic) Homoclinic tangle forming an incomplete
horseshoe. Comparing to the complete horseshoe case (Fig. 2), the
points a(0), b(0), c(1), and d (1) are pruned. However, the accumu-
lation relations (thus the projection operations) for the unpruned
homoclinic points remain the same. Therefore, for the unpruned
homoclinic points, Eqs. (35) and (49) remain valid.

mixed dynamics, the homoclinic tangles will in general form
incomplete horseshoe structures that coexist with stability
islands in phase space. A simple kind of incomplete horseshoe
is shown by Fig. 12. The symbolic dynamics of such systems
are more complicated as certain substrings are not admissible
by the dynamics and therefore “pruned” from the symbol
plane [51,52]. Therefore, not all symbolic strings may exist,
and their very existence is determined by a “pruning front”
[51] which separates the allowed and disallowed orbits in
the symbol plane. In spite of this apparent complication, the
foundations of our final result Eq. (49) hold true in general,
even for incomplete horseshoes. Namely, the accumulation
of homoclinic points along the manifolds, and the projection
operations defined accordingly, remain valid for all types of
horseshoe structures. For instance, in Fig. 12, although a(0)

and b(0) are pruned, we still have a(n) n
↪→

S
g−2 and b(n) n

↪→
S

g−2

(where n � 1). As compared to Eq. (11), the pruning removes
the first members (a(0) and b(0)) of the two accumulating
families, but leaves the rest unchanged. Therefore, as long as
the pruning front (or a finite approximation of it) has been
established by methods such as [53], Eqs. (35) and (49) will
be applicable to any admissible homoclinic orbit {y} since all
the projections involved are admissible as well. Therefore,
their range of applicability is not limited to the complete
horseshoes.

A complication that does arise in the incomplete horseshoe
cases is the pruning of the area partition trees. Depending on
the complexities of the horseshoes, more types of trees might
be needed, and their structures will not be as simple as the
one in Fig. 8. Certain nodes will be pruned away, and there
may not exist a finite grammar rule. Just like the pruning
fronts, the partition trees are also system-specific, and we
anticipate that the numerical algorithms for generating the
pruning front should already contain adequate information
for generating the partitions trees as well, although more
sophisticated investigations along this direction are needed.

C. Information reduction

In semiclassical approximations, the classical actions di-
vided by h̄ determine phase angles, and as it is already an
approximation to begin with, it is possible to tolerate small
errors, say ε = δF/h̄, measured in radians. As a practical mat-
ter, once this ratio is �0.1 or some similar scale, constructive
and destructive interferences are properly predicted, and much
greater precision becomes increasingly irrelevant. Given that
the areas in Eq. (49), or similarly of the partition tree cells,
shrink exponentially rapidly, most of these corrections can be
dropped or ignored.

Identifying the necessary information begins with an esti-
mate of orders of magnitudes of the areas terms in Eq. (49).
Given any trellis T−1,N , the maximum winding number of a
homoclinic orbit is nmax = N/2 + 2. Due to the slow scaling
direction of the tree structure, the orbit y ⇒ 01N+1.110 yields
an expansion with the largest possible number of significant
A◦(P(y; i; j)) terms, and hence an upper bound on the number
of necessary areas.

It is reasonable to assume the cell areas A and B of T−1,0

are of the same magnitude, and it is sufficient to consider
the ratios R = A◦(P(y; i; j))/A. Via Eq. (E4), A◦(P(y; i; j))
is expressible as a linear combination of cell areas of partition
trees of T−1,N−2i. These cell areas are at the (N − 2i)th level of
the partition trees; hence the scaling relation, Eq. (28), gives
ratio estimates ∼e−μ1(N−2i). As a result, the inner area sum of
Eq. (49) gives

i∑
j=0

A◦(P(y; i; j)) ∼ A · O((i + 1)e−μ1(N−2i)). (50)

Comparing this estimate with the threshold δF yields a max-
imum value of the depth d ≡ N − 2i of the tree needed:

A(i + 1)e−μ1d � δF , (51)

therefore

e−μ1d � ε h̄

A(i + 1)
. (52)

A slightly more conservative bound replaces i + 1 with
nmax ≈ N/2 and gives after some algebra

d � 1

μ1
ln

NA

2ε h̄
. (53)

Therefore, in order to calculate all homoclinic orbit actions
arising from T−1,N within the error tolerance ε h̄, we only need
to determine numerically the type-I and type-II cell areas of
the partition trees of T−1,d . Recall that the number of cell areas
in T−1,d is estimated by

eαd ∼
(

NA

2ε h̄

) α
μ1

, (54)

whereas the number of homoclinic orbits in T−1,N is ∝eαN ,
where α = ln 2 is the topological entropy of the system. Thus,
the exponentially proliferating homoclinic orbit actions in
T−1,N are expressible by the algebraically proliferating cell
areas from T−1,d , a significant information reduction.

In practice, the use of T−1,d to construct the relative ac-
tions of T−1,N alters the area sum in Eq. (49), such that any
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FIG. 13. The logarithmic dependence of d with respect to N
using the slow scaling exponent μ1 = 1.483, error tolerance δF/A =
0.001, and a = 10 for the Hénon map. For the computation of large
trellises such as N = 100, the approximate formula of Eq. (55) only
requires the computation of cell areas up to trellis number d = 8.

A◦(P(y; i; j)) terms with P(y; i; j) �∈ T−1,d will be excluded
from the double sum, leading to the reduced action formula

�F{y}{x} =
n−1∑
i=0

�F{P(y;n−1;i)}{x}

+
n−2∑
i=0

i∑
j = 0

P(y; i; j) ∈ T−1,d

A◦(P(y; i; j)) + O(δF ),

(55)

where the constraint P(y; i; j) ∈ T−1,d is imposed, therefore
eliminating the (exponentially many) cell areas smaller than
the error threshold δF .

D. Numerical example

For the Hénon map in Eq. (B3) with a = 10, and an error
tolerance δF/A = 0.001, the natural logarithmic dependence
of d on N is shown in Fig. 13. The information reduction
is significant: even for the calculation of homoclinic orbit
actions of T−1,100, which is obviously impossible via tra-
ditional methods, our scheme only requires the numerical
computation of cell areas up to T−1,8, an effortless task for
personal computers.

For the numerical verification of Eqs. (49) and (55), we
calculate the relative actions of the homoclinic orbits of T−1,N

in three different ways. The first method is to implement
the orbit finder method introduced in our previous work
[18], which determines the numerical orbits {y} and thus
their relative actions, �F (ref.)

{y}{x}. These actions are the standard
reference actions for comparison. The second method is to
calculate the cell areas in the partition trees of T−1,N , and
evaluate the actions �F (exact)

{y}{x} using Eqs. (49) and (E4). These

should only differ from �F (ref.)
{y}{x} due to relying on double

precision computation since both are exact evaluations with
no approximations involved. On the contrary, in the third

method the tolerance is δF/A = 0.001 (where A ≈ 10.973 for
the current case of a = 10), and only cell areas of the partition
trees up to the reduced trellis T−1,d are used with Eqs. (55) and
(E4) to obtain the approximate actions, �F (approx.)

{y}{x} .
Every homoclinic orbit up to iteration number N = 10

is constructed, which corresponds to trellis T−1,10. The total
number of orbits is 212 = 4096. The reduced iteration number
for this case is d = 6; i.e., the relative homoclinic orbit actions
in T−1,10 should be given to an accuracy A × O(10−3) ∼ 1 ×
10−2 or better using only the cell areas from T−1,6.

Due to the large number of orbits, it is impractical to list the
results for �F (exact)

{y}{x} and �F (approx.)
{y}{x} for every orbit. Instead,

we show the two orbits that yield the maximum errors. The
homoclinic orbit that leads to the maximum error in �F (exact)

{y}{x}
out of all 4096 orbits is {y} ⇒ 010100011000110, for which

�F (exact)
{y}{x} − �F (ref.)

{y}{x} = 8.08 × 10−8. (56)

Compared to the orbit action itself, �F (ref.)
{y}{x} =

−466.602 850 894 90, the relative error is around 1.7 × 10−10,
almost as good as possible due to the presence of interpolation
error. This demonstrates the accuracy of Eq. (49).

As for �F (approx.)
{y}{x} , the maximum error emerges for the orbit

{y} ⇒ 01111111111110, for which

�F (approx.)
{y}{x} − �F (ref.)

{y}{x} = −5.453 × 10−3, (57)

which is well below the error tolerance 1 × 10−2. Compared
to the orbit action itself, �F (ref.)

{y}{x} = −628.514 708 240 16, the
relative error is around 8.7 × 10−6.

VI. CONCLUSIONS

It is possible to construct the complete set of homoclinic
orbit relative actions arising from horseshoe-shaped homo-
clinic tangles in terms of the primitive orbits’ relative actions
and an exponentially decreasing set of parallelogram-like
areas bounded by stable and unstable manifolds. Important
constraints exist on the distribution of homoclinic points
[48,49], which are imposed by the topology of the homoclinic
tangle. This enables an organizational scheme for the orbits by
their winding numbers and assigns binary symbolic codes to
each of them. The projection operations, PS and PU , together
with the corresponding symbolic operations, πS and πU , link
homoclinic points of different winding numbers. Based on a
judicious use of the MacKay-Meiss-Percival action principle
and mixed projections of all degrees, an exact geometric
formula [Eq. (49)] emerges that determines their relative
actions in terms of cell areas from a finite region of phase
space, which are bounded by manifolds with low curvatures.
However, these areas still proliferate at the same rate as the ho-
moclinic points, which become exponentially hard to compute
for large iteration numbers N . To overcome this, we made use
of the exponential decay of cell areas in the partition trees, and
eliminated all small areas that are asymptotically negligible.
The exponentially shrinking areas have their origins in the
asymptotic foliations of stable and unstable manifolds, and are
thus generic to all chaotic systems. The resulting approximate
expression [Eq. (55)] relies on a logarithmically reduced
amount of information relative to the exact Eq. (49). It gives
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the relative actions or orbits in T−1,N using only the areas
from T−1,d , in exchange for comprising the accuracy by a
designated order of magnitude O(δF = ε h̄).

For semiclassical trace formulas, once the actions are
determined to within an appropriate tolerance level such as
mentioned above, additional accuracy becomes irrelevant and
of no consequence. Straightforward computations of the ac-
tions rely on the numerical constructions of orbits, for which
the difficulties are twofold. First, in highly chaotic systems,
numerical determination of individual long orbits suffer from
sensitive dependence on initial errors. Second, the total num-
ber of orbits proliferates exponentially rapidly with relevant
timescales (the trellis number N in our case). For homoclinic,
heteroclinic, and periodic orbits in Hamiltonian chaos with
two degrees of freedom, the first difficulty is not funda-
mental, and solvable in many ways. The second difficulty,
addressed in the present article, illustrates in great detail how
information entropy vanishes for quantum systems (isolated,
bounded, nonmeasured) from the perspective of semiclassical
theory. The reduction of information implied by h̄ or any error
tolerance criterion produces an exponentially increasing set
of output calculations using a slower-than-exponentially (i.e.,
algebraically) increasing set of input information.

This method has the potential to serve as a generic
paradigm for the information reduction of semiclassical cal-
culations of chaotic systems. Although the present work is
focused on homoclinic orbit actions, the results can be im-
mediately generalized into broader contexts, such as the eval-
uation of unstable periodic orbit actions. Such connections
are given by Eqs. (27), (38), and (45) in Ref. [12]. These
equations convert the evaluation of periodic orbit actions into
the calculation of action differences between certain auxil-
iary homoclinic orbits constructed from the symbolic codes
of the periodic orbit. Therefore, upon the determination of
homoclinic orbit actions, the determination of periodic orbit
actions becomes a simple manipulation of symbolic strings
and subtractions within the homoclinic action set, a trivial
task that poses no serious difficulties. Therefore, just like the
homoclinic orbit actions, the exponentially increasing set of
periodic orbit actions is expressible with the same reduced set
of cell areas as well. Further extension of the current method
concerns the stability exponents of unstable periodic orbits,
which is a topic under current investigation.
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APPENDIX A: HOMOCLINIC TANGLE

In this Appendix we illustrate the fundamental concepts
and definitions related to homoclinic tangles that are used
throughout this article. Consider a two-degree-of-freedom au-
tonomous Hamiltonian system. With energy conservation and
applying the standard Poincaré surface of section technique
[34], the continuous flow leads to a discrete area-preserving
map M on the two-dimensional phase space (q, p). Assume
the existence of a hyperbolic fixed point x = (qx, px ) under M:

x
g-1

h0
g0

L 0

L’0

FIG. 14. Trellis T−1,1. The fundamental segments U0 and S′
0 are

indicated by thick solid and thick dashed curve segments, respec-
tively. The lobes L0 and L′

0 (hatched regions) form the turnstile which
governs the phase-space transport.

M(x) = x. Associated with it are the one-dimensional stable
[S(x)] and unstable [U (x)] manifolds, which are the collec-
tions of phase-space points that approach x under successive
forward and inverse iterations of M, respectively. Typically,
S(x) and U (x) intersect infinitely many times and form a
complicated pattern named a homoclinic tangle [34–36], as
partially illustrated in Fig. 1.

Homoclinic tangles have been extensively studied as the
organizing structures for classical transport and escape prob-
lems [13,35,36,44,49,54–57]. Of particular interest are the
homoclinic orbits, which lie along intersections between S(x)
and U (x),

h0 = S(x)
⋂

U (x), (A1)

whose images under both M and M−1 approach x asymp-
totically: M±∞(h0) = h±∞ = x. The bi-infinite collection of
images Mn(h0) = hn is often referred to as a homoclinic orbit

{h0} = {. . . , h−1, h0, h1, . . .}. (A2)

A primary homoclinic point, h0, arises if the stable and
unstable segments, S[h0, x] and U [x, h0], intersect only at
x and h0. The resulting closed loop US[x, h0] = U [x, h0] +
S[h0, x] is topologically equivalent to a circle. As a result,
the phase-space excursion of the primary homoclinic orbit
{h0} takes the simplest possible form. It “circles” around
the loop once from infinite past to infinite future. Figure 1
shows the simplest kind of homoclinic tangle having only
two primary homoclinic orbits, {h0} and {g0}. In practice,
more complicated homoclinic tangles are possible. However,
generalizations are straightforward and not considered here.

The entire homoclinic tangle, as an infinite entity, can be
constructed from iterations of finite segments on S(x) and
U (x). Identifying the fundamental segments as

Un ≡ U [hn, gn], U ′
n ≡ U (gn−1, hn),

Sn ≡ S(gn, hn), S′
n ≡ S[hn, gn−1], (A3)

Un+k = Mk (Un), and similarly for U ′
n, Sn, and S′

n. Shown in
Fig. 14 are examples of U0 (thick solid segment) and S′

0
(thick dashed segment). The manifolds can be built as
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nonoverlapping unions of the respective fundamental seg-
ments:

U (x) =
∞⋃

n=−∞
(Un ∪ U ′

n),

S(x) =
∞⋃

n=−∞
(Sn ∪ S′

n), (A4)

and likewise for the homoclinic tangle. The topology of a
homoclinic tangle contains important dynamical information,
and is often studied over its truncations, namely a trellis
[35,36] defined as

Tns,nu ≡
( ∞⋃

i=ns

(Si ∪ S′
i )

)⋃ (
nu⋃

i=−∞
(Ui ∪ U ′

i )

)
, (A5)

where the integers ns and nu give the lower and upper bounds
for the indices of the stable and unstable fundamental seg-
ments, respectively. For example, the pattern shown in Fig. 14
is T−1,1.

For the study of chaotic transport, it is customary to define
some special regions inside the homoclinic tangle, which gov-
ern the flux in and out of the tangle. Following the conventions
[13,36], the phase-space region bounded by loop US[x, g0] is
the complex (also referred to as the resonance zone by Easton
[35]), and the regions bounded by the loops US[hn, gn] and
US[gn−1, hn] are lobes denoted by Ln and L′

n, respectively.
The union of lobes L0 and L′

0 is often called a turnstile [13],
as demonstrated by the hatched regions in Fig. 14.

A simplifying assumption adopted here is the “open sys-
tem” condition [36,49], which assumes that the lobes L′

n
and L−n with n � 1 extend out to infinity as n increases
and never enter the complex region. Consequently, there are
no homoclinic points distributed on the segments, S(gn, hn)
and U (gn−1, hn), which simplifies addressing the homoclinic
orbits. However, this restriction is not essential and can be
removed to accommodate closed systems as well.

APPENDIX B: SYMBOLIC DYNAMICS

Symbolic dynamics [40–43] is a powerful construct that
characterizes the topology of orbits in chaotic systems. In
essence, it encodes the trajectories of various initial conditions
under the mapping into infinite strings of alphabets, assigned
using their phase-space itineraries with respect to a generating
Markov partition [58,59]. Constructions of exact generating
partitions for general mixed systems, if possible, still remain
challenging. However, finite approximations can be obtained
via efficient techniques introduced in [60–64].

Assume that the system is highly chaotic and the ho-
moclinic tangle forms a complete Smale horseshoe [37,38],
as the one depicted in Fig. 15. The generating partition
is then the collection of two regions [V0,V1] (marked as
hatched regions in the upper panel of the figure), where V0

is the closed region bounded by USUS[x, g−2, b(0), g0] =
U [x, g−2] + S[g−2, b(0)] + U [b(0), g0] + S[g0, x], and V1 is
the closed region bounded by USUS[h−1, g−1, h0, a(0)]. Note
that the curvy-trapezoid region between V0 and V1 is also
labeled in the figure as V ′, which is bounded by loop
USUS[g−2, h−1, a(0), b(0)]. The deformation of these regions

x

h0
g0

g-1h-1g-2

a(0)b(0)

V0 V1

x

h0
g0

g-1

h1

g1

H0

H1

a’(0)

b’ (0)

V’

H’

FIG. 15. Smale horseshoe formed by S(x) (red dashed curve) and
U (x) (black solid curve). The vertical strips V0 and V1 in the upper
panel (hatched regions) are the generating partitions of the symbolic
dynamics, and are mapped into the horizontal strips H0 and H1 in the
lower panel (hatched regions), respectively, under one iteration. The
fixed point x has symbolic string 0.0, and the primary homoclinic
points h0 and g0 have symbolic strings 01.10 and 01.0, respectively.

under the dynamics can be visualized in a simple way: under
one iteration of M, the curvy-trapezoid region bounded by
USUS[x, g−1, h0, g0] (the union of V0, V ′, and V1) from the
upper panel of Fig. 15 is compressed along its stable boundary
and stretched along its unstable boundary while preserving
the total area, folded into a U-shaped region bounded by
USUS[x, g0, h1, g1] in the lower panel, which is the union
of H0, H1, and H ′. During this process, the vertical strips
V0 and V1 are mapped into the horizontal strips H0 and H1,
respectively, marked by the hatched regions in the lower
panel of Fig. 15. In the meantime, V ′ is mapped into the
U-shaped region H ′ bounded by USUS[g−1, h0, a′(0), b′(0)]
and will escape the complex region under further iterations.
The inverse mapping of M−1 has similar but reversed effects,
with M−1(Hi ) = Vi (i = 0, 1).

Under the symbolic dynamics, each point z0 inside the
complex that never escapes under forward and inverse map-
pings can be put into a one-to-one correspondence with a
bi-infinite symbolic string

z0 ⇒ · · · s−2s−1.s0s1s2 · · · , (B1)

where each digit sn indicates the region that Mn(z0) lies in:
Mn(z0) = zn ∈ Vsn , where sn ∈ {0, 1}. The position of the dec-
imal point indicates the present location of z0 since z0 ∈ Vs0 .
The symbolic string gives an “itinerary” of z0 under successive
forward and inverse iterations, in terms of the regions V0
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and V1 in which each iteration lies. The mapping M then
corresponds to a Bernoulli shift on symbolic strings composed
by “0”s and “1”s,

Mn(z0) ⇒ · · · sn−2sn−1.snsn+1sn+2 · · · , (B2)

therefore encoding the dynamics with simple strings of inte-
gers. Assume a complete horseshoe structure here in which all
possible combinations of substrings exist; i.e., no “pruning”
[51,52] is needed.

The area-preserving Hénon map [39] is used as a confirma-
tion of the theory and its approximations:

pn+1 = qn, qn+1 = a − q2
n − pn. (B3)

With parameter a = 10, it gives rise to a complete horseshoe-
shaped homoclinic tangle; see Fig. 15. As it satisfies both
the complete horseshoe and open system assumptions, the
theory is directly applicable. Nevertheless, the results derived
mostly carry over into more complicated systems possessing
incomplete horseshoes [53], or systems with more than binary
symbolic codes, though more work is needed to address such
complications.

The fixed point x has the symbolic string x ⇒ · · · 0.0 · · · =
0.0, where the overhead bar denotes infinite repetitions of “0”s
since it stays in (on the boundary of) V0 forever. Consequently,
other than the orbit containing the point 01.0, any homoclinic
point h of x must have a symbolic string of the form

h ⇒ 01s−m · · · s−1.s0s1 · · · sn10, (B4)

along with all possible shifts of the decimal point. The 0
on both ends means the orbit approaches the fixed point
asymptotically. The orbit {h} can then be represented by the
same symbolic string:

{h} ⇒ 01s−m · · · s−1s0s1 · · · sn10, (B5)

with the decimal point removed, as compared to Eq. (B4).
The finite symbolic segment “1s−m · · · s−1s0s1 · · · sn1” is often
referred to as the core of the symbolic code of h, with its
length referred to as the core length. To be discussed in
Appendix C, the core length is a measure of the length of the
phase-space excursion of {h}.

The identification of symbolic strings associated with arbi-
trary homoclinic points, as well as the ordering of homoclinic
points on the fundamental segments S′

n or Un, are nontrivial
tasks in general. Pioneering works along this line can be found
in Ref. [45], where the symbolic assignment and relative
ordering of homoclinic points on S′

0 were explicitly given for
the Hénon map. Refer to Fig. 3 of [45] for a nice pictorial
demonstration. However, [45] starts from the anti-integrable
limit [65,66] and derives the results as continuations of
the limit. In Appendix C, we introduce a different analytic
scheme, which makes use of the hierarchical structure of the
homoclinic tangle (see Sec. IV) to provide the ordering of
homoclinic points on S′

−1 in terms of their symbolic codes.
Based on the symbolic codes of the two primary homoclinic
points on S′

−1, which are h−1 ⇒ 0.110 and g−2 ⇒ 0.010,
it recursively builds up the codes of the more complicated
homoclinic orbits by adding certain symbolic strings of finite
lengths to the primaries, according to their positions in the
hierarchic structure. The results are equivalent to those of [45]
upon changing the alphabets “0” → “+” and “1” → “−”.

This approach naturally facilitates an important accumulation
relation (introduced in Sec. IV B) and thus better integrates
into the scheme of the present work.

APPENDIX C: SYSTEMATIC ASSIGNMENTS
OF SYMBOLIC CODES

Although the symbolic codes of some simple homoclinic
orbits, such as the primary ones, can be easily determined by
following the numerical orbits, such tasks become prohibitive
for the exponentially proliferating ensemble of more compli-
cated, nonprimary orbits. In addition, a computational method
does not reveal the patterns and structural relations buried
in substrings of the symbolic codes. In fact, as shown by
[45], symbolic codes provide a natural ordering of homoclinic
points along the fundamental segments, which is otherwise
unattainable from numerical methods. Although this problem
is essentially solved by [45] for the Hénon maps in the
complete horseshoe region, their approach starts from the
anti-integrable limit [65,66], and identifies each homoclinic
orbit near the limit as continuations from the anti-integrable
limit. Although exact and efficient, it does not make use of the
accumulation relations (Sec. IV B), which are the theoretical
foundations of the present paper. This Appendix introduces a
different approach. Taking advantage of the hierarchical struc-
ture of the homoclinic orbits (see Sec. IV), a recursive scheme
is introduced that systematically determines the symbolic
codes of the families of winding-(n + 1) homoclinic orbits
based on the symbolic code of the winding-n orbit on which
they accumulate. It results in an ordering of homoclinic points
on the fundamental segment S′

−1 in terms of their symbolic
codes, which is equivalent to Lemma 7 of [45] upon switching
the alphabets “0” → “+” and “1” → “−”. This provides
a foundation for the exact relations and approximations of
Sec. V.

Every homoclinic orbit has one and only one representative
point on S′

−1 and labeling the entire set of orbits can be
reduced to labeling the homoclinic points on S′

−1. Starting
from T−1,−1, in which S′

−1 is not intersected by any unstable
fundamental segment, the only homoclinic points are the
primaries h−1 ⇒ 0.110 and g−2 ⇒ 0.010, both of which are
winding-1. Proceeding to the intersections of S′

−1 with T−1,0,
there are two winding-2 points, a(0) and b(0), as shown by
Fig. 16, which are the leading terms of the two winding-2
families [a(n)] and [b(n)] from the future T−1,n that accumulate
on g−2. Their symbolic codes are a(0) ⇒ 01.110 and b(0) ⇒
01.010, which emerge quickly by following their excursions.
The hierarchical relationship at this stage can be denoted
alternatively as

(a(0) ⇒ 01.110)
1

↪→
S

(g−2 ⇒ 0.010),

(b(0) ⇒ 01.010)
1

↪→
S

(g−2 ⇒ 0.010), (C1)

where the notations “
1

↪→
S

” are defined in Eq. (11). Notice that

the hierarchical relations imply the symbolic code assign-
ments: the codes of a(0) and b(0) can be obtained by adding
the substrings “11” and “10”, respectively, to the left end of
the core of g−2, while maintaining the position of the decimal
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x

h0

g0

g-1h-1g-2

a(0)b(0)

FIG. 16. Homoclinic points in T−1,0. The symbolic codes are
h−1 ⇒ 0.110, g−2 ⇒ 0.010, a(0) ⇒ 01.110, and b(0) ⇒ 01.010. The

hierarchical relations are a(0), b(0) 1
↪→

S
g−2. Notice that the hierarchical

relations are indicative for the assignments of symbolic codes: the
codes of a(0) and b(0) can be obtained by adding the substrings “11”
and “10”, respectively, to the left end of the core of g−2, while
maintaining the position of the decimal point relative to the right end
of the core.

point relative to the right end of the core. Also, the transit
times of a(0) and b(0) are both unity, and their core lengths are
both 3. It turns out in general that

core length = transit time + 2, (C2)

which holds true for all nonprimary homoclinic points. An-
other important observation is that a(0) and b(0) with core
lengths 3 emerged from S′

−1 ∩ U0 in trellis T−1,0. This leads
to the simple fact that any nonprimary homoclinic point that
emerges from S′

−1 ∩ Un in T−1,n must have core length n + 3.
There are four new intersections generated by T−1,1, i.e.,

S′
−1 ∩ U1. Figure 17 shows the four new winding-2 points

labeled a(1), b(1), c(1), and d (1). An important distinction
between them is that a(1) and b(1) are the second realizations of
their respective families [a(n)] and [b(n)] (n � 0) that accumu-
late on g−2, whereas c(1) and d (1) are the first terms of their

x

h0
g0

g-1

h1

g1

h-1g-2

a(0)b(0)

a(1)

b(1)

c(1)

d(1)

FIG. 17. Homoclinic points in T−1,1. The symbolic codes
are a(1) ⇒ 011.010, b(1) ⇒ 010.010, c(1) ⇒ 011.110, and d (1) ⇒
010.110. The hierarchical relations are a(1), b(1) 2

↪→
S

g−2 and

c(1), d (1) 1
↪→

S
h−1.

respective families, [c(n)] and d (n) (n � 1), that accumulate
on h−1. Therefore, following the pattern of Eq. (C1), the
symbolic codes of c(1) and d (1) should be obtained by adding
the substrings “11” and “10”, respectively, to the left end of
the core of h−1 (which is “11”), while keeping the position
of the decimal point relative to the right end of the core. This
leads to the assignments c(1) ⇒ 011.110 and d (1) ⇒ 010.110
according to the hierarchical relations

(c(1) ⇒ 011.110)
1

↪→
S

(h−1 ⇒ 0.110),

(d (1) ⇒ 010.110)
1

↪→
S

(h−1 ⇒ 0.110). (C3)

As for the symbolic codes of a(1) and b(1), since they are
the second terms in their respective accumulating families, the
substrings “110” and “100”, instead of “11” and “10”, should
be added to the left end of the core of g−2, respectively, while
keeping the position of the decimal point relative to the right
end of the core unchanged:

(a(1) ⇒ 011.010)
2

↪→
S

(g−2 ⇒ 0.010),

(b(1) ⇒ 010.010)
2

↪→
S

(g−2 ⇒ 0.010). (C4)

Calculating the orbits numerically, one readily verifies that
Eqs. (C3) and (C4) indeed give the correct desired symbolic
codes for the orbits.

Generalization of the above relations gives the general rule
for the assignment of symbolic codes. Given an arbitrary
winding-m homoclinic point y, and two winding-(m + 1)
homoclinic points z and w from the two winding-(m + 1)

families accumulating on y, such that z
k

↪→
S

y and w
k

↪→
S

y (k �
1) and S[y,w] ⊂ S[y, z], then the symbolic codes of z and
w can be obtained by adding the substrings “110k−1” and
“100k−1”, respectively, to the left end of the core of y, keeping
the position of the decimal point relative to the right end of
the core. The notation “0k−1” denotes a string composed of
(k − 1) consecutive “0”s. Or equivalently, let the symbolic
code of the orbit {y} be {y} ⇒ 0s̃0, where the string s̃ denotes
the core; then the symbolic codes of orbits {z} and {w} are
determined as

{z} ⇒ 0110k−1s̃0,

{w} ⇒ 0100k−1s̃0, (C5)

and the position of the decimal points in the symbolic codes
of z and w are identical to that of y, when counted from the
right ends of their cores.

Concrete examples of the preceding assignment rules
are labeled in Fig. 7. Choose the winding-2 point a(0) ⇒
01.110 as the base, and notice the accumulating points

e(k), f (k) k
↪→

S
a(0), where the k = 1 case is explicitly shown in

the figure. According to the preceding assignment rules, the
symbolic codes of e(k) and f (k) are constructed as f (k) ⇒
0110k−11.110 and e(k) ⇒ 0100k−11.110, which was verified
numerically.

The proof of Eq. (C5) involves mapping the base point y
simultaneously with z and w forward and inversely, to study
the deformation of S[y, z/w] under forward iterations, and the
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deformation of U [y, z/w] under inverse iterations. Notice that
the stable segments S[y, z/w] belong to either S[g−2, b(0)] or
S[h−1, a(0)], which will become even shorter under forward
iterations. Therefore, forward iterations of y and z/w are
guaranteed to locate on the same side of S′

−1, thus in the same
generating partition (V0 or V1). For the inverse mappings, the
unstable segments U [y, z/w] are constrained to deform in a
specific way such that the images of y and z/w must locate
in the same partition along the code segment “0k−1s̃” first.
After that, the backward images of z immediately visit V1

twice, then stay in V0 as they approach x; on the contrary, the
backward images of w visit V0 and V1 consecutively, and then
stay in V0 as they approach x. The slight difference in their
behaviors gives rise to the “011” and “010” in their respective
symbolic codes in Eq. (C5). The detailed derivation is quite
lengthy and skipped here for brevity.

With Eq. (C5), the complete set of symbolic codes is
generated based on just the symbolic codes of the two primary
orbits. For a finite trellis T−1,N (presumably with large N),
the maximum transition time of homoclinic orbits is N + 1;
i.e., those arise from S′

−1 ∩ UN . According to Eq. (C2), the
corresponding maximum core length is N + 3. Therefore,
starting from {h−1} ⇒ 0110 and {g−2} ⇒ 010, by intersecting
S′

−1 with successive Ui where 0 � i � N and recursive use of
Eq. (C5) up to core length N + 3, the symbolic codes of all ho-
moclinic orbits present in T−1,N are generated according to the
relative positions of their representative points on S′

−1. This
process is equivalent to the >s ordering in Lemma 7 of [45].

A similar prescription could have been generated for
the accumulating homoclinic families along the unstable
manifold under inverse mappings. Given any winding-n
homoclinic point y′, and two winding-(n + 1) homoclinic

points z′ and w′ such that z′ k
↪→
U

y′, w′ k
↪→
U

y′ (k � 1) and

U [y′,w′] ⊂ U [y′, z′], the symbolic codes of z′ and w′ can be
constructed by adding the substrings “0k−111” and “0k−101”,
respectively, to the right end of the core of the symbolic code
of y′, while keeping the position of the decimal point relative
to the left end of the core unchanged. Or equivalently, if we
let the symbolic code of the orbit be {y′} ⇒ 0s̃′0 where s̃′
denotes the core, then the symbolic codes of orbits {z′} and
{w′} are constructed as

{z′} ⇒ 0s̃′0k−1110,

{w′} ⇒ 0s̃′0k−1010, (C6)

which is in complete analogy to Eq. (C5), and equivalent
to the >u ordering in Lemma 7 of [45]. For example, in

Fig. 3 we have g0 ⇒ 01.0, and v(−k),w(−k) k
↪→
U

g0, where

the k = 1, 2 cases are explicitly shown in the figure. Then
according to the preceding rules, the symbolic codes of v(−k)

and w(−k) are constructed from the symbolic code of g0 as
v(−k) ⇒ 01.0k−1110 and w(−k) ⇒ 01.0k−1010, respectively.

APPENDIX D: ASYMPTOTIC ACCUMULATION
EXPONENT

The foundation of Sec. IV B is established by Lemma 2 in
Appendix B 3 of [49], and a brief overview of their results
is given here. The setting of the lemma is demonstrated

x

S(x)

U(x)

C

zu

C0

C1
C2
C3...

z(0)

z(1)

z(2)

z(3)

r(0)

r(1)

r(2)

r(3)

FIG. 18. (Schematic) Iterates of a curve intersecting the stable
manifold approach the unstable manifold. Future iterations of the
curve C0 create a family of curves [Cn], which intersect C at a family
of points [z(n)]. [z(n)] accumulates on zu under the exponent μx , as
given by Eq. (D1).

schematically by Fig. 18. Let zu be an arbitrary point on U (x),
and C an arbitrary differentiable curve passing transversely
through U (x) at zu. Consider another arbitrary differentiable
curve, C0, which passes through S(x) transversely at r (0), and
intersects C at z(0). Then, its future iterations Cn = Mn(C0)
(n � 1) pass through S(x) transversely at r (n), and intersect
C at z(n), which form a family of points [z(n)] that accumulate
asymptotically on the base point zu:

lim
n→∞ z(n) = zu,

lim
n→∞ |z(n) − zu|enμx = C(zu, z(0) ), (D1)

where || is the standard Euclidean vector norm, μx is the
stability exponent of x, and C(zu, z(0) ) is a positive constant
depending on the base point zu and the leading term z(0) in the
asymptotic family. Notice that Eq. (D1) is just a reexpression
of Eqs. (B5) and (B6) of [49]. What is surprising here is that
even though the manifolds explore the vast majority of phase
space with clearly nonuniform expansion rates, the asymptotic
exponent in the above equation is still that of the hyperbolic
fixed point.

APPENDIX E: AREA CORRESPONDENCE RELATIONS

Given any homoclinic point y ∈ (S′
−1 ∩ Um), there is an

explicit relation that links A◦(y) = A◦
SUSU [y,PS (y),PSPU (y),PU (y)]

with specific linear combinations of cell areas from the type-I
and type-II partition trees of T−1,m. The transition time of y is
m + 1, so its core length is m + 3. Let s̃ = s1s2 · · · sm+2sm+3

(si ∈ {0, 1}, s1 = sm+3 = 1) be the core of the symbolic
code of y; then the linear combination of cell areas depends
solely on s̃. The correspondence relation is established in the
following step.

(1) Define �B �→A to be a mapping from the cells of the
type-II partition trees to the cells of the type-I partition trees,
such that for any finite Greek alphabet string ω̃ composed of
α, γ , and β (ω̃ could also be an empty string) we have

�B �→A(Bω̃ ) = Aω̃, �B �→A(Aω̃ ) = ∅, �B �→A(∅) = ∅,

(E1)
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where ∅ denotes a null cell that gives zero contribution to the
action calculations.

(2) Define �β �→α to be a mapping between the cells of the
partition trees, such that for any finite Greek alphabet string ω̃

composed of α and γ (but not β; note also that ω̃ could be an
empty string), we have

�β �→α (Aω̃β ) = Aω̃α,

�β �→α (Bω̃β ) = Bω̃α,

�β �→α (Aω̃α ) = �β �→α (Bω̃α ) = ∅, (E2)

�β �→α (A) = �β �→α (B) = ∅,

�β �→α (∅) = ∅.

(3) Define � to be a mapping from the core s̃ =
s1s2 · · · sm+2sm+3 (s1 = sm+3 = 1) of the symbolic code of any
nonprimary homoclinic point y ∈ (S′

−1 ∩ Um) to the cells of
the partition trees, such that depending on the detailed forms
of s̃, the mapping � takes the forms

�(s̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(101) = A,

�(111) = B,

� (10 · · · 0 · · · 1 · · · 01) = A···γ ···α···α,

↓ ↓ ↓ ↓
α · · · α · · · γ · · · A

� (10 · · · 0 · · · 1 · · · 11) = B···γ ···α···α,

↓ ↓ ↓ ↓
α · · · α · · · γ · · · B

� (11 · · · 0 · · · 1 · · · 01) = A···γ ···α···β,

↓ ↓ ↓ ↓
β · · · α · · · γ · · · A

� (11 · · · 0 · · · 1 · · · 11) = B···γ ···α···β,

↓ ↓ ↓ ↓
β · · · α · · · γ · · · B

(E3)

in which the s̃ = 101 and s̃ = 111 cases yield cells A and B,
respectively, and all the rest of the cases with core lengths
�4 (or equivalently m � 1) are categorized into four cases,
{s2 = 0, sm+2 = 0}, {s2 = 0, sm+2 = 1}, {s2 = 1, sm+2 = 0},
and {s2 = 1, sm+2 = 1}, which correspond to the third, fourth,
fifth, and sixth lines of Eq. (E3), respectively. Notice in those
four cases, the letters A and B of the cell names are given
by the last two digits sm+2sm+3 of s̃ with grammar “01 �→ A”
and “11 �→ B”. The Greek alphabet string of the cell names
are given by the first m + 1 digits of s̃ in a reversed order:
s1s2 gives the last alphabet in the Greek string, with grammar
“10 �→ α” and “11 �→ β”, and sm+1sm · · · s4s3 (reversed string
of s3s4 · · · smsm+1) gives the first m − 1 alphabets in the Greek
string, with grammar “0 �→ α” and “1 �→ γ ”.

(4) Finally, A◦(y) can be calculated as

A◦(y) = (−1)nγ (�(s̃)) · [�(s̃) + �β �→α (�(s̃))

+�B �→A(�(s̃)) + �B �→A(�β �→α (�(s̃)))], (E4)

where nγ (�(s̃)) is a function that returns the total number of
γ in the Greek alphabet string of the cell �(s̃). For example,
nγ (Aαβ ) = 0 and nγ (Bγ β ) = 1. Again, we emphasize that
Eq. (E4) only applies to nonprimary homoclinic points y
located on S′

−1.
Equation (E4) gives a systematic way of identifying the

A◦(y) term in the homoclinic action decomposition [Eq. (35)]
in terms of a linear combination of cell areas from the type-I
and type-II partition trees. In practice, some of the terms in
Eq. (E4) will vanish due to the presence of null areas (∅) in

Eqs. (E1) and (E2). Depending on y, Eq. (E4) may take four
possible forms, as listed here:

(1) A single type-I cell area: A (for y = b(0) only) or Aω̃α ,
where ω̃ denotes some Greek alphabet string composed by α

and γ . Examples are
(i) In Fig. 16, let y = b(0) ∈ (S′

−1 ∩ U0), then

A◦(y) = A,

which is a type-I cell of T−1,0.
(ii) In Fig. 4, let y = b(1) ∈ (S′

−1 ∩ U1), then

A◦(y) = Aα,

which is a type-I cell of T−1,1.
(iii) In Fig. 7, let y = r (1) ∈ (S′

−1 ∩ U2), then

A◦(y) = −Aγα,

which is a type-I cell area of T−1,2.
(2) Two type-I areas: Aω̃β + Aω̃α . Examples are

(i) In Fig. 4, let y = a(1) ∈ (S′
−1 ∩ U1), then

A◦(y) = Aβ + Aα,

which is the sum of two type-I areas of T−1,1.
(ii) In Fig. 7, let y = s(1) ∈ (S′

−1 ∩ U2), then

A◦(y) = −(Aγ β + Aγα ),

which is the sum of two type-I areas of T−1,2.
(3) A type-I area and a type-II area: A + B (for y = a(0)

only) or Aω̃α + Bω̃α . Examples are
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(i) In Fig. 16, let y = a(0) ∈ (S′
−1 ∩ U0). Recall that

only for the special case of y = a(0), we alter Eq. (35) into
Eq. (39), whose area term gives

A◦
SUSU [a(0),h−1,x,g0] = A + B,

which is the sum of a type-I and a type-II area of T−1,0.
(ii) In Fig. 4, let y = d (1) ∈ (S′

−1 ∩ U1), then

A◦(y) = Aα + Bα,

which is the sum of a type-I and a type-II area.
(iii) In Fig. 7, let y = e(1) ∈ (S′

−1 ∩ U2), then

A◦(y) = −(Aγα + Bγα ),

which is the sum of a type-I and a type-II area of T−1,2.

(4) Two type-I areas plus two type-II areas: Aω̃α + Aω̃β +
Bω̃α + Bω̃β . Examples are

(i) In Fig. 4, let y = c(1) ∈ (S′
−1 ∩ U1), then

A◦(y) = Aα + Aβ + Bα + Bβ,

which is the sum of two type-I and two type-II areas of
T−1,1.

(ii) In Fig. 7, let y = f (1) ∈ (S′
−1 ∩ U2), then

A◦(y) = −(Aγα + Aγ β + Bγα + Bγ β ),

which is the sum of two type-I and two type-II areas of
T−1,2.
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