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The magnetization dynamics of nano-oscillators may be excited by both magnetic fields and spin-polarized
currents. While the dynamics of single oscillators has been well characterized, the synchronization of several
ones is not fully understood yet. An analytical and numerical study of the nonlinear dynamics of two magneto-
statically coupled spin valves driven by spin-transfer torques is presented under the macrospin approximation.
The oscillators interact via magnetostatic fields and exhibit a robust synchronized magnetization motion. We
describe the magnetization dynamics of the system using the Landau-Lifshitz-Gilbert-Slonczewski equation.
Using a modal decomposition technique, we describe the dynamics, synchronization, and competition of
oscillatory modes as a function of the current density, and the geometrical parameters of the setup. Simulations
of the Landau-Lifshitz-Gilbert-Slonczewski equation show good agreement with an approximate analytic
solution.
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I. INTRODUCTION

Spin-polarized electric currents can exert a torque in mag-
netic materials. This is known as the spin-transfer torque
[1–4], and it can induce magnetic switching [4–6], station-
ary magnetic textures [7–9], and self-sustained oscillations
[4,5,10,11]. The aforementioned oscillations are particularly
interesting because they can be used to generate alternating
signals from a purely dc electric current. The dynamics of
single spin-transfer-driven devices has been largely studied
from the experimental, analytic, and numeric points of view
[3,4,10,12–14], while the collective behavior of several cou-
pled oscillators is less explored. During the past years, the
networks of spin-transfer-torque nano-oscillators (STNOs)
have received a great deal of attention because they are candi-
dates for the implementation of associative memories [15–17],
where the degree of synchronization may be used as a measure
of pattern recognition [17–19]. This synchronization may be
obtained through several means, for example, by electrical
connections or by spin-wave emission, and also by mag-
netostatic interactions [20–23]. The synchronization occurs
when nonidentical oscillators tune their frequency due to their
weak interaction [24]. In the case of oscillators with the same
frequency, the synchronization manifests as a locking of the
oscillation phases [24]. The synchronization phenomenon is
beyond the field of nanomagnetism and is present in several
branches of science including biological, mechanical, and
electronic systems, among others [24].

Some examples of interacting oscillators include vortices
coupled by dipolar fields [20,25] and spin valves interact-
ing via spin pumping [26], electric currents [27], and spin-
Hall [28] effect. Specifically, some works have investigated
the synchronization of spin-torque nano-oscillators coupled
through the magnetostatic interaction. For example, Locatelli

et al. [20] showed that the magnetostatic interaction between
a pair of vortex-based spin-transfer nano-oscillators is an
efficient mechanism to synchronize neighboring oscillators.
In addition, Chen et al. [22] determined the critical current
needed for synchronizing two nano-oscillators when the same
or different currents are applied in both oscillators. Addition-
ally, Zhang et al. [29] found that a two nano-oscillator system
exhibits a locked-phase dynamic for small applied currents,
and an unlocked one for large currents. Despite the advances
made by these authors, it is important to note that, in an array
of oscillators, the relative position between them plays an
essential role because it may favor a parallel or antiparallel
magnetization alignment. In a previous work [30], developing
a linear study, we concluded that it is possible to control
the normal modes of STNOs as well as the critical current
densities necessary to induce oscillations of the magnetization
by changing the relative position of the oscillators. Then, in
order to understand the role that the position of the oscillators
could play in the synchronization phenomenon, it is necessary
to study the nonlinear dynamics of the magnetization.

In this article, we study the nonlinear dynamics of the
uniform magnetization of two spin-transfer-driven thin disks
that interact via magnetostatic fields, for two different relative
positions between them. At the current-induced instability,
the magnetizations of both disks oscillate with the same
frequency. Furthermore, the difference between the oscillation
phases remains constant. This synchronized motion can have
two modes, namely the in-phase and the antiphase ones
[30], where the phase difference is zero and π , respectively.
To elucidate the behavior of the modes for larger currents,
we derive simplified equations for the envelope of the in-
phase (IP) and antiphase (AP) modes from the Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation. Using the an-
alytical and numerical solutions of the simplified model, we
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FIG. 1. (a) Top view and (b) side view of two nano-oscillators
that are both driven by a spin-polarized current density J and coupled
via magnetostatic fields. The magnetization Mk = Msmk of each free
layer (upper disk in each valve) evolves according to the Landau-
Lifshitz-Gilbert-Slonczewski equation.

characterize the competition of the modes and find the stable
equilibria. In particular, we find a transition between the IP
and the AP modes. For a finite range of electric current
values, this transition goes through a mixed-mode with a finite
contribution from both the IP and AP oscillations.

This paper is organized as follows: in Sec. II we describe
the system under study, in Sec. III we present and discuss our
results using analytical and numerical approaches, and finally
in Sec. IV we present our conclusions and remarks.

II. MODEL

Let us introduce a device known as a spin valve, in our case
of cylindrical geometry. It consists of a disk made of a soft
ferromagnetic material, whose magnetization is free to evolve
in time, and that is grown on top of a bilayer composed by a
fixed-magnetization material and a nonmagnetic spacer. When
an electric current runs through the structure, the fixed layer
polarizes the spin of the conduction electrons, then the current
keeps its polarization as it passes through the nonmagnetic
spacer, and later transfers angular momentum to the free
layer, i.e., a spin transfer torque acting on the free layer is
generated.

Then, we consider two identical cylindrical spin valves
that are side by side, as illustrated in Fig. 1(a). The free
layers are separated by a center-to-center distance of D =
2R + S, where S is the shortest distance between the surfaces
of the free layers [see Fig. 1(b)]. The parameter θ is the
angle between the x axis and the line that connects the
centers of both valves. The free layers have magnetizations
Mk = Msmk , where k = {1, 2} is the valve label, Ms is the
saturation magnetization that we assume equal for both mate-
rials, and mk = mx

k x̂ + my
k ŷ + mz

k ẑ. The same magnetic field
H = 4πMshxx̂ (Gaussian system of units) and current density
J = J ẑ are applied to each valve, as shown in Fig. 1. The
magnetization dynamics of this system is governed by the

Landau-Lifshitz-Gilbert-Slonczewski equation [31]

dmk

dt
= − mk × heff,k + αmk × dmk

dt
+ βJmk × (mk × x̂).

(1)

This equation is written within the macrospin approxima-
tion (that is, we consider that the magnetizations of the
free layers are uniform), and with a dimensionless time
t = 4πMsγ t ′, with γ = 1.76 × 107 (Oe s)−1 the modulus of
the gyromagnetic ratio and t ′ the original time in seconds.
The vector heff,k is the effective field normalized by 4πMs.
The dimensionless parameter α is associated with the strength
of the energy dissipation. The transfer of angular momentum
by the current density J is proportional to the parameter
βJ ≡ 2π h̄εJ/[(4πMs)2eL], where ε is the polarization of the
interface, 0 � ε � 1, e is the modulus of the electron charge
(βJ is positive when the current density flows from the fixed
to the free layer), and L is the thickness of each free layer. The
normalized effective field is

heff,k = hxx̂ − hd mz
k ẑ + hI,k, (2)

where the second term of the effective field corresponds
to the self-magnetostatic interaction, and it leads to a hard
z axis, or unfavorable direction for the magnetization. The
coefficient hd is the demagnetization factor which depends on
the parameters R and L [see Appendix A, Eq. (A1)]. The last
term accounts for the magnetostatic interaction between the
nanopillars, and it represents a field that is exerted by pillar k′
into pillar k [30]:

hI,k = (
gxmx

k′ + gxymy
k′
)
x̂ + (

gymy
k′ + gxymx

k′
)
ŷ + gzm

z
k′ ẑ,

gx(θ ) = K1 + K2 cos(2θ ),

gy(θ ) = K1 − K2 cos(2θ ),

gxy(θ ) = K2 sin(2θ ),

gz = K3, (3)

where Kj are functions of the geometrical parameters of the
system R, L, and D. Explicit formulas for Kj are shown in
Eq. (A2), Appendix A.

In the case of single-valve devices, the self-sustained mag-
netization oscillations emerge when the applied current den-
sity injects enough energy to counterbalance the dissipation.
For two nano-oscillators coupled via magnetostatic fields,
there are two critical current densities which correspond to the
ones of the in-phase and antiphase modes of oscillation [30].
If the applied current density exceeds the minimum critical
current density of the system, the magnetizations of the free
layers oscillate. To understand the behavior for larger current
densities, a nonlinear study of the magnetization dynamics is
necessary. We develop this analysis in the next section.

III. RESULTS AND DISCUSSION

We focus on a system of two free layers composed
of permalloy with Ms = 860 emu/cm3. In relation to the
geometrical parameters, we consider R = 50 nm and L =
5 nm. For these parameters hd ≈ 0.816; and K1 ≈ 0.0025,
K2 ≈ 0.0054, and K3 ≈ −0.0050. To describe the magneti-
zation dynamics by solving the LLGS equation, we consider
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hx = 0.1 (|H| = 1 kOe), α = 0.01, and ε = 0.11. We focus
our attention on the magnetization dynamics around the equi-
librium state defined as mx

1 = mx
2 = 1.

In the rest of this section we present and discuss results
from analytic and numerical approaches.

A. Analytical approach

When the current density attains its critical value βJ =
βJ,c, the linear modes of the system correspond to an in-
phase oscillation δmip = A0vipeiωipt + c.c., or an antiphase
one δmap = B0vapeiωapt + c.c., where (ωip, vip) and (ωap, vap)
are the frequencies and eigenvectors of the in-phase and
antiphase modes [30], respectively. Explicit expressions for
the vectors and frequencies are given in Appendix B. The
complex amplitudes A0 and B0 are fixed by the initial con-
ditions and c.c. stands for the complex conjugate. Above the
instability point, i.e., βJ > βJ,c, we propose the following
change of variables:

δm = A(t )vipeiωipt + B(t )vapeiωapt + c.c., (4)

in which the oscillation amplitudes become dynamical vari-
ables, and δm = (my

1, mz
1, my

2, mz
2)T , where the superindex T

refers to the transpose of the quantity inside the brackets. The
frequencies ωip/ap and vectors vip/ap are those obtained for
βJ = βJ,c. The amplitudes of oscillation A(t ) and B(t ) depend
on time and are complex quantities. We insert the ansatz of
Eq. (4) in Eq. (1). Furthermore, we consider that the functions
A(t ), B(t ), and e2i(ωap−ωip)t are slow variables as compared
to the self-sustained oscillations (|Ȧ| � |ωipA|, |Ḃ| � |ωapB|,
and |ωip − ωap| � ωip ∼ ωap). After a temporal average in
the fast time scales, we could eliminate the terms containing
fast oscillations. Then, we obtain the following expressions
for the amplitudes:

Ȧ = (ε1 − η1|A|2 − μ1|B|2)A − ν1e2i(ωap−ωip)t B2A∗, (5a)

Ḃ = (ε2 − η2|B|2 − μ2|A|2)B − ν2e2i(ωip−ωap)t A2B∗, (5b)

where A∗ and B∗ stand for the complex conjugate of A and
B, respectively. The coefficients of Eqs. (5a) and (5b) can be
decomposed into their real and imaginary parts ε j = ε jR +
iε jI , η j = η jR + iη jI , μ j = μ jR + iμ jI , and ν j = ν jR + iν jI ,
where j = 1 or 2. The parameters ε1R and ε2R are interpreted
as the energy injection that makes the amplitudes grow (if they
are positive) or decay (if they are negative). These coefficients
account for the competition between the spin-transfer and
the Gilbert torques. The coefficients η1R and η2R represent
the nonlinear dissipation mechanisms that saturate the am-
plitudes. The coefficients {μ1, μ2} and {ν1, ν2} account for
the interaction between the two eigenmodes without and with
frequency mixing (ωip ∼ ωap), respectively. The imaginary
parts of the above parameters rule the phase dynamics. Note
that {ε j, η j, μ j, ν j} depend on the geometrical parameters of
the system, such as the angle θ and the distance S. Tables with
a direct mapping from the coefficients of the LLGS equation
to the ones of Eqs. (5a) and (5b) are shown in Appendix C.

The magnetization δm has two superimposed oscillations
at frequencies ωip and ωap, and their harmonics. We obtained
equations for the envelope of those oscillations, Eqs. (5a) and
(5b), by means of the rotating-wave-like change of variables

3.52.51.5
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FIG. 2. Amplitude of single-mode oscillations as a function of
the applied current density, for θ = 0 and S = 10 nm. The free layers
are made of Permalloy with R = 50 nm and L = 5 nm. The solid
and dash-dotted lines correspond to the oscillation amplitude of the
antiphase and the in-phase modes, respectively. The square-root form
of the oscillation amplitude and the finite frequency are the hallmarks
of supercritical Andronov-Hopf instabilities.

in Eq. (4), and by applying the orthonormality condition
of Fourier functions. The modes have slightly different fre-
quencies, and then there are interaction terms that obey the
orthogonality condition approximately. Those terms manifest
as time-dependent modal interaction. Using Eqs. (5a) and
(5b), we look for single-mode oscillations with constant am-
plitude, i.e., solutions for |A| = ā and |B| = b̄, where ā and
b̄ are constants, i.e., d|A|/dt = d|B|/dt = 0. We obtain the
following three solutions:

(ā, b̄)s0 = (0, 0), (6a)

(ā, b̄)s1 =
(√

ε1R

η1R
, 0

)
, (6b)

(ā, b̄)s2 =
(

0,

√
ε2R

η2R

)
, (6c)

where (ā, b̄)s0 represents a static solution, while (ā, b̄)s1 and
(ā, b̄)s2 represent single modes of oscillation that emerge
via a supercritical Andronov-Hopf bifurcation [32]. Figure 2
illustrates the amplitude of these oscillatory single modes as
a function of the applied current density for θ = 0, i.e., the
solutions of Eqs. (6b) and (6c). As shown in this figure, the
system has two normal modes, the antiphase and the in-phase
ones. Note that the antiphase mode emerges at a lower current
in comparison with the in-phase mode. Below the critical
density current that indicates growth of the antiphase mode,
the system is static, that is, δm = 0.

In addition to the simple antiphase and in-phase modes
shown in Fig. 2, we search for nontrivial solutions of
Eqs. (5a) and (5b). In particular, we use the following
change of variables that eliminates the explicit tempo-
ral dependence of the terms proportional to ν j in these
equations, namely, A = a e−i(�ωt+ψ )/2 and B = b ei(�ωt+ψ )/2,
where �ω = ωip − ωap. One obtains the new set of
equations

ȧ = (ε1R − η1Ra2 − [μ1R + ν1R cos(2ψ ) − ν1I sin(2ψ )]b2)a,

(7a)

ḃ = (ε2R − η2Rb2 − [μ2R + ν2R cos(2ψ ) + ν2I sin(2ψ )]a2)b,

(7b)
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ψ̇ = −�ω + (ε2I − ε1I ) + (μ1I − η2I )b2 − (μ2I − η1I )a2

+ cos(2ψ )
(
b2ν1I − a2ν2I

) + sin(2ψ )
(
a2ν2R + b2ν1R

)
.

(7c)

Usually, oscillators coupled via weak interactions exhibit
a synchronized phase dynamics, where the coupling does not
significantly alter the oscillation amplitudes [24]. However, in
the present case, even if the magnetostatic coupling is rela-
tively small compared to the magnetic and anisotropy fields,
the oscillation phases are not the only relevant variables.
Indeed, the dynamics of the oscillation amplitudes are relevant
because the nano-oscillators operate at the onset of oscillatory
instabilities (both modes have similar critical currents and
similar frequencies). We may obtain approximate solutions of
the set of Eqs. (7a)–(7c) by the following approximation:

a = ā + a1 sin(2ω0t ) + a2 cos(2ω0t ), (8a)

b = b̄ + b1 sin(2ω0t ) + b2 cos(2ω0t ), (8b)

ψ̇ = ω0, (8c)

which we name mixed-mode state. The above ansatz repre-
sents a global oscillation in which both the in-phase and the
antiphase modes contribute, that is, a, b �= 0. Furthermore,
the mode amplitudes oscillate at 2ω0, with ω0 an unknown
frequency. This temporal dependence arises from the time-
dependent modal interaction in Eqs. (5a) and (5b), and it
originates from the frequency detuning, ωip �= ωap. After
replacing the ansatz of formulas into Eqs. (7a)–(7c), and
using that Fourier modes are linearly independent, one obtains
the solutions for {ā, a1, a2}, {b̄, b1, b2}, and ω0. Appendix
D contains plots of these solutions as a function of βJ ,
which are characterized by a continuous growth of ā (b̄) for
θ = 0 (θ = π/2). This supercritical behavior, in addition to
the emergence of a frequency, allows us to recognize the
supercritical Andronov-Hopf bifurcation of the antiphase (in-
phase) oscillation for θ = 0 (θ = π/2). The direct numerical
simulation of the magnetization equations will confirm this
identification in the next subsection.

The amplitude of the oscillation of the magnetization,
|δm j |, is defined as

|δm j | = 1

T

∫ t0+T

t0

dt
√

my
j (t )2 + mz

j (t )2. (9)

Figure 3(a) illustrates |δm j | with t0 = 0 and T = 105. We
obtain |δm j | for different solutions and θ = 0 by replac-
ing the amplitudes from Eqs. (6b), (6c) and (8a)–(8c) in
Eq. (4). This figure shows that the first mode that emerges
is the antiphase one, characterized by an oscillation phase
difference of π . To better understand the results in this fig-
ure, we study the magnetization behavior of the system in
this regime. Figures 3(b) show the magnetization trajectories
my

1 ≈ −my
2 for βJ = 0.00513 (left), 0.00522 (center), and

0.00535 (right), respectively. Figures 3(c) illustrate the phase
diagram of points (my

1, my
2) from Figs. 3(b), respectively. The

corresponding phase diagram given by Fig. 3(c) is known
as Lissajous figures [24]. We note that, for θ = 0, we have
ωap < ωip, that is, the antiphase mode has lower frequency
and consequently requires less energy to be excited [30].
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FIG. 3. (a) Oscillation amplitude of the magnetization, |δm|,
for θ = 0 and S = 10 nm. The solid, dash-dotted, and dotted lines
correspond to the amplitude of the oscillation of the antiphase,
in-phase, and mixed modes, respectively. (b) Magnetization compo-
nents my

1 and my
2 as functions of time for θ = 0 and S = 10 nm, for

different currents. At the left for the antiphase mode βJ = 0.00513,
at the center for the mixed mode βJ = 0.00522, and at the right for
the in-phase mode βJ = 0.00535. (c) Phase space in terms of the
components my

1(t ) and my
2(t ), and parametrized by the time t . The

figures have the same current densities as in row (b), respectively.

Thus it is natural to observe this mode at the onset of the
Andronov-Hopf instability [see the left panels of Figs. 3(b)
and 3(c)]. Above a critical current, an oscillatory secondary
instability of the system takes place. In this bifurcation, a
small in-phase oscillation emerges around an antiphase orbit.
In this case, the solution corresponds to a superposition of
modes with a mixing of frequencies, namely mixed-mode
state, where the in-phase and the antiphase modes coexist,
and the dynamics is quasiperiodic. The corresponding phase
diagram for this mixed state has a tielike shape as shown in
Fig. 3(c) (center). When the energy injection increases, the
system undergoes a third instability in which the antiphase
contribution of the mixed-mode disappears, and the system
stabilizes the in-phase oscillation [see the right panel of
Figs. 3(b) and 3(c)]. Since the analytic study of the stability
of periodic and quasiperiodic orbits is complicated in general,
we specify the details of this bifurcation using the numerical
results of the next subsection. Since the in-phase oscillation
has a larger frequency and then requires more energy, it is
expected that the stabilization of this state is only possible for
larger electric currents. The mixed-mode solution is then the
transition regime that mediates the existence of the IP and AP
states. Appendix E shows the trajectories of the magnetization
components my

1 and my
2 for a longer time, where we consider
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FIG. 4. Amplitude of single-mode oscillations as a function of
the applied current density, for θ = π/2 and S = 10 nm. The free
layers are made of Permalloy with R = 50 nm and L = 5 nm. The
solid and dash-dotted lines correspond to amplitude of oscillations
for the antiphase and the in-phase modes, respectively.

Eqs. (8a), (8b), and (8c). As shown in this Appendix, the
oscillation amplitudes are not constant.

Figures 4 and 5 illustrate analogous quantities for θ = π/2.
For the latter angle, the magnetostatic interaction inverts the
energy consumption of each oscillation mode, i.e., ωip < ωap.
Thus the zones for θ = π/2 are inverted with respect to
θ = 0.
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FIG. 5. (a) Amplitude of the oscillation of magnetization, |δm|,
for θ = π/2 and S = 10 nm. The solid, dash-dotted, and dotted lines
correspond to amplitude of oscillation of the magnetization of the an-
tiphase, in-phase, and mixed modes, respectively. (b) Magnetizations
my

1 and my
2 as a function of time for θ = π/2 and S = 10 nm, for

different currents. At the left for the in-phase mode βJ = 0.00507,
at the center for the mixed mode βJ = 0.00527, and at the right for
the antiphase mode βJ = 0.00530. (c) Phase space in terms of the
components my

1(t ) and my
2(t ), and parametrized by the time t . The

figures have the same current densities as in row (b), respectively.
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FIG. 6. Nonlinear dynamics of the magnetization for two mag-
netostatically coupled nano-oscillators for θ = 0. (a) Amplitude of
oscillation of magnetization and phase difference as a function of
the current density. The left panel represents the antiphase mode
(antiphase zone), the center panel the quasiperiodic state (mixed-
mode zone), and the right panel the in-phase mode (in-phase zone).
(b) Both magnetizations my

1 and my
2 as a function of time, for βJ =

0.00513 (left), βJ = 0.00520 (center), and βJ = 0.00535 (right).
(c) Phase space in terms of the components my

1(t ) and my
2(t ) for the

same current densities used in (b).

To verify the predictions of the simplified model for the
oscillation modes given by Eqs. (5a) and (5b), we conduct
in the next subsection numerical simulations of the Landau-
Lifshitz-Gilbert-Slonczewski equations (1).

B. Numerical results

The numerical integration of the LLGS equation is con-
ducted using a fifth-order Runge-Kutta method [33] with
constant step size dt = 0.001, small enough to ensure the
conservation of the magnetization norm for each free layer
disk, m2

k = 1. Figure 6 summarizes the trajectories of the
magnetizations, for θ = 0 and S = 10 nm, as a function of
the parameter βJ proportional to the current density. We
focus on the deviation from the stationary equilibrium, δmk =
my

k (t )ŷ + mz
k (t )ẑ. Figure 6(a) illustrates the phase difference,

φ, between the magnetizations, defined as

φ = arccos

(
δm1 · δm2

|δm1||δm2|
)

, (10)

and also the time-averaged oscillation envelope, |δm j |, from
Eq. (9), where the times t0 = 106 and T = 105 are much larger
than the transient time and the oscillation period, respectively.
We used those values for t0 and T throughout all the numerical
part of the study. It is important to point out that we consider
t0 = 0 for the analytical study because in that model the
solution does not have a transient response, i.e., we obtain
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the steady state for an arbitrary t . We define in Eq. (10)
the relative angle φ(t ) between the magnetizations δm1 and
δm2, which is a measure of the degree of synchronization
between the two nano-oscillators. In particular, when φ(t )
is constant in time, it means that the oscillators synchronize
their phases. Figure 6 shows five zones: the first zone (static),
for βJ < 0.00511, corresponds to the static equilibrium mx

1 =
mx

2 = 1. At βJ = 0.00511 occurs a supercritical Andronov-
Hopf bifurcation resulting in a stable limit cycle; this is the
beginning of the second zone (antiphase) which represents an
antiphase oscillation, where my

1(t ) ≈ −my
2(t ) with φ ≈ π . At

βJ = 0.005175, a secondary instability of the system occurs;
in this case it is a supercritical Andronov-Hopf bifurcation,
in which the antiphase mode becomes unstable, resulting in
a new stable limit cycle. This third zone (mixed-mode) repre-
sents a quasiperiodic state where the mixed mode bifurcated
from an antiphase state. At the onset of this supercritical
instability, the oscillatory trajectory is similar to the mode
that became unstable. Finally, at βJ = 0.005255 the in-phase
oscillation is stabilized, and it coexists with the mixed mode
until βJ = 0.005275, where the mixed mode is no longer
observed.

The study of bifurcations of the periodic and quasiperiodic
orbits is not a trivial task; however, from the previous subsec-
tion we know that the bifurcations at βJ = 0.005255 and βJ =
0.005275 are not related to the creation or destruction of the
equilibria but to their stability (because these solutions exist
in a wider region). Furthermore, the in-phase mode is always
stable in the single-amplitude model (i.e., b̄ ≡ 0), and then the
stability change at βJ = 0.005255 must be from an unstable
saddle-point-like to a stable one, where the unstable direction
in the phase space flows towards the mixed-mode equilibrium.
With a similar reasoning [32], we discard the saddle-node
bifurcation at βJ = 0.005275 (the mixed mode exists beyond
that current value), and attribute its destabilization to the
transition towards a saddle point or an unstable spiral. The last
zone (in-phase) corresponds to an in-phase oscillation, where
my

1(t ) ≈ my
2(t ) with φ ≈ 0.

The in-phase and antiphase oscillations represent synchro-
nized states, where the phase difference is locked. On the
other hand, the mixed mode is characterized by a dynamic
phase difference. The bar in Fig. 6(a) is the standard deviation
of the temporal series of φ(t ), and it plays the role of a
dynamical indicator. Note that in the mixed-mode region the
phase difference depends on time. This shows that the magne-
tization of each free layer is governed by two incommensurate
frequencies, ωap and ωip. Thus the free layer magnetizations
can accelerate and decelerate during the oscillation cycles. In
addition, the maximum value of the phase difference increases
with the current because the amplitude of the in-phase mode
grows with the current, and it eventually becomes the dom-
inant contribution to the mixed-mode solution. Figure 6(b)
shows the magnetization components my

1 and my
2 as a function

of time, for several current densities: βJ = 0.00513 (left), that
corresponds to the antiphase mode, βJ = 0.00520 (center),
that generates a mixed mode, and βJ = 0.00535 (right), that
corresponds to the in-phase mode. Figure 6(c) corresponds to
the phase space of the system projected on the variables my

1(t )
and my

2(t ), parametrized by the time t , for the respectively
current densities of Fig. 6(b). As this figure illustrates, the
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FIG. 7. Nonlinear dynamics of the magnetization for two mag-
netostatically coupled nano-oscillators for θ = π/2. (a) Amplitude
of oscillation of magnetization and phase difference as a function of
the current density. The left panel represents the in-phase mode, the
second panel represents bistability between the in-phase mode and
antiphase modes, the third panel the quasiperiodic state (zone III),
and the right panel the antiphase mode. (b) Both magnetizations my

1

and my
2 as a function of time, for βJ = 0.00507 (left), βJ = 0.00520

(center), and βJ = 0.00530 (right). (c) Phase space in terms of the
components my

1(t ) and my
2(t ) for the same current densities used

in (b).

analytic solutions of Eqs. (6) and (8a)–(8c) are in good
agreement with the simulations of the magnetic model with
the static, antiphase, in-phase, and the mixed modes. Note
that the numerical integration of the Landau-Lifshitz-Gilbert-
Slonczewski equation reveals a subcritical transition, also
known as a first-order phase transition, between the mixed
mode and the in-phase mode. The subcriticality reflects as
a bistability between the two aforementioned states in the
lighter region of Fig. 6 between the mixed-mode and in-phase
zones, in which the system selects one equilibrium or the other
depending on the initial condition. We have not been able to
find this bistability with the simple model presented in the
previous subsection, partially because the analytic treatment
of the stability of periodic orbits is, in general, a very hard
task. Our analytic model allowed us to discover the solutions
and their existing regions in the parameter space; however,
finding the current intervals at which each state is stable is
beyond the possibilities of our treatment.

On the other hand, Fig. 7 summarizes the trajectories of the
magnetizations, for θ = π/2 and S = 10 nm, as a function of
the current density βJ . Figure 7(a) illustrates the amplitude of
the oscillation of the magnetization, |δm|, and the difference
of phase φ, as a function of the current density. We observe
five different zones: the first zone (static), for βJ < 0.00503,
represents the stable static equilibrium mx

1 = mx
2 = 1.
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At βJ = 0.00503 occurs a supercritical Andronov-Hopf
[32] bifurcation resulting in a stable limit cycle. In this
second zone (in phase), the stable limit cycle corresponds
to an in-phase oscillation, where my

1 ≈ my
2 with φ ≈ 0. At

βJ = 0.00511 the antiphase state is stabilized. In a similar
reasoning to previous paragraphs, we conclude that the
antiphase state is an unstable node for βJ < 0.00511 and
a stable one at βJ > 0.00511. In this third zone, there are
two stable states (bistability) where one of them corresponds
to an in-phase oscillation and the other to an antiphase
oscillation. At βJ = 0.00517 occurs a new supercritical
Andronov-Hopf bifurcation, in which the in-phase mode
becomes unstable. The new stable orbit corresponds to a
quasiperiodic state bifurcated from the in-phase state. In
this fourth zone, there are two stable dynamic states where
one of them corresponds to a quasiperiodic state (mixed
mode) and the other to an antiphase oscillation. Finally, at
βJ = 0.00525 the mixed mode destabilizes by becoming
a saddle point or an unstable spiral, or by colliding with
an unstable state that is not observable in the simulations.
The last zone (antiphase) corresponds to an antiphase
oscillation, where my

1 ≈ −my
2 with φ ≈ π . Figure 7(b) shows

the magnetizations my
1 and my

2 as a function of time, for
different current densities. βJ = 0.00507 (left) corresponds
to the in-phase mode, βJ = 0.00520 (center) gives a mixed
mode, and βJ = 0.00530 (right) corresponds to the antiphase
mode. Figure 7(c) corresponds to the graph of the system
of parametric equations, my

1(t ) and my
2(t ), where t is the

parameter, for the respective current densities in Fig. 7(b). As
this figure illustrates, the analytic solutions of Eqs. (6) and
Eqs. (8a)–(8c) are in good agreement with the simulations of
the magnetic model for the static, antiphase, in-phase, and the
mixed modes.

So far, we have analyzed two relevant angles, namely
θ = 0 and θ = π/2, each one of them showing different
behavior. There are two intermediate angles, θ1 ≈ 0.64, where
the frequencies of the two modes (in-phase and antiphase) are
identical, and θ2 ≈ 1.08, where the critical current densities
of the two modes are equal [30]. These two angles separate
the two aforementioned cases (θ = 0 and θ = π/2), as it is
shown in Fig. 8. This figure illustrates a simplified phase
diagram in the current-angle parameter space. It is obtained
slowly increasing in time the dc current at a fixed given angle:
the initial current is below critical values, and different initial
conditions are tested. When the current is below its critical
value for all the modes the system is in the static phase,
and as the current increases other phases appear (there are
approximate limits in this diagram). Then, the first mode
that we observe is the one with the lowest critical current.
As the current increases, the mixed mode exists and, finally,
we observe the mode with the biggest critical current. We
observe that, for 0 � θ � θ1 and θ2 � θ � π/2, the results
are qualitatively consistent with the ones shown in Figs. 6 and
7, respectively (notice that Fig. 8 corresponds to an increasing
current direction). Now, if we consider a fixed angle θ � 0.64
we observe the antiphase mode for low currents and the in-
phase one for large currents. The mixed mode exists in an
intermediate region. For θ � 1.08 occurs the opposite, i.e., the
in-phase and antiphase modes are stable in the low and high
current limits, respectively, and the mixed-mode state is also

FIG. 8. Phase diagram in the current-angle parameter space,
done under the assumption that the dc current is increased from a low
value (i.e., below the critical current of any mode). Different initial
conditions are tested. For θ � 0.64, as the current increases, first an
antiphase mode appears, then the mixed mode occurs, and finally the
in-phase mode is observed. For θ � 1.08, as the current increases,
the first mode that appears is the in-phase mode, then we observe
a mixed mode, and finally the antiphase mode. In the intermediary
zone, 0.64 � θ � 1.08, the behavior is not simple to analyze due to
their similar frequencies and critical currents.

in the intermediate region. If we compare results depicted in
Fig. 8 with results in Figs. 6(a) and 7(a), we only observe one
of the branches of the magnetization dynamics, and we do
not observe the bistability zones that appear in the previous
figures. To observe the other branch, the current density
should be decreased from a high value. For angles in the range
0.64 � θ � 1.08 (gray zone in Fig. 8), the mode with the
lowest critical current is the antiphase mode, with the biggest
frequency. This behavior is opposite to what occurs for the
other ranges of angles, where the mode with the lowest critical
current also has the lowest frequency [30]. Additionally, for
θ ≈ 0.64, the frequencies of both modes are very similar
and the mixing between them is strong, while, for θ ≈ 1.08,
the critical current densities of both modes are very similar,
and the bistability zone between the in-phase and antiphase
modes is very narrow. In this range of angles we principally
observe two behaviors depending on the initial conditions: if
the antiphase mode is excited first (for lower currents), for
higher currents we do not observe the mixed mode, but if the
in-phase mode is excited first (for lower currents), then we
observe the mixed mode (for higher currents). The behavior
for this range of angles should be studied in detail in another
work.

To finalize, if we reduce the magnetostatic interaction be-
tween the oscillators by increasing the distance S, we observe
that the zone of stability of the antiphase and the mixed
states decreases for θ � θ1 [see Fig. 6(a) for S = 10 nm and
Fig. 9(a) for S = 50 nm at θ = 0]. In these figures, we ob-
serve that the antiphase zone changes from 0.00511 � βJ �
0.005175 (�βJ = 6.5 × 10−5) to 0.00508 � βJ � 0.00511
(�βJ = 3 × 10−5) when we change S from 10 nm to
50 nm. The corresponding change for the mixed-mode zone
goes from 0.005175 � βJ � 0.00525 (�βJ = 7.5 × 10−5)
to 0.00511 � βJ � 0.00513 (�βJ = 2 × 10−5), respectively.
Consistently, the zone where the in phase is stable be-
comes larger [see Figs. 6(a) and 9(a)]. A similar situation
is obtained for θ � θ2, where the in-phase and mixed-mode
zones decrease when we increase the distance between the
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FIG. 9. Nonlinear dynamics of two magnetostatic coupled nano-
oscillators for θ = 0 and S = 50 nm. The free layers are made of
Permalloy with R = 50 nm and L = 5 nm. The first zone shows the
static equilibrium, for larger currents, there is an antiphase mode, and
then a quasiperiodic state. The rightmost zone is the in-phase mode.

oscillators, while the zone where the antiphase is stable be-
comes larger. The stability zones become narrower and we
could not find the bistability regions present for S = 10 nm.
Then, the phenomenon of synchronization depends on the
magnetostatic interaction.

IV. CONCLUSIONS AND REMARKS

In summary, through nonlinear analytic and numerical sim-
ulations we have studied the magnetization dynamics of spin-
transfer-driven oscillators coupled via magnetostatic fields, as
a function of the current density, the relative position of the
oscillators, and the distance between them. For most values of
the density current, the system exhibits a synchronized motion
of the magnetizations. In this regime, the difference between
the oscillation phases of the free layers remains nearly zero
for an in-phase mode and π for an antiphase mode. Those
modes interact and compete and, depending on the particular
values of the parameters and the initial conditions, the system
chooses one of them. For example, for free layers arranged
collinear to the magnetic field (θ = 0), the antiphase mode
dominates for smaller density currents, and the in-phase one
dominates for the larger density currents. The transition be-
tween the two regimes, as mentioned above, is characterized
by a mixed-mode state, in which both the antiphase and in-
phase modes participate with a finite amplitude of oscillation.
Concerning the distance between the valves, if we increase
the magnetostatic coupling by approaching them, the zone
where the in-phase (antiphase) mode is stable becomes larger
for θ = 0 (θ = π/2). When the free layers are well separated,
the first zones of the stability diagram get narrower. However,
the phase locking still exists, as is expected from a system
exhibiting synchronization. Thus these results could be used

TABLE I. Values of the parameters K1, K2, and K3 for S =
10 nm, S = 50 nm, and S = 100 nm.

S = 10 nm S = 50 nm S = 100 nm

K1 0.002510 0.0006275 0.0002281
K2 0.005441 0.001648 0.0006390
K3 − 0.005021 − 0.001255 − 0.0004562
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FIG. 10. Parameters of Eqs. (8a)–(8c) as a function of the applied
current density. ā, b̄, a1, a2, b1, b2, and ω0, for S = 10 nm and θ = 0
(left panel), and for θ = π/2 (right panel).

as one step in the quest for the design and control of spin-
transfer-driven oscillators in associative memories.
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TABLE II. Values of the parameters of Eqs. (5a) and (5b) as a function of βJ for S = 10 nm, S = 50 nm, and S = 100 nm at θ = 0 and
θ = π/2.

S = 10 nm, θ = 0 S = 50 nm, θ = 0 S = 100 nm, θ = 0

ε1 βJ − 0.00520 βJ − 0.00511 βJ − 0.00509
η1 (0.0428 + 1.02i) − 9.37βJ (0.0430 + 0.885i) − 9.897βJ (0.0430 + 0.845i) − 10.1βJ

μ1 (0.0846 + 1.55i) − 19.5βJ (0.0858 + 1.61i) − 20.1βJ (0.086 + 1.63i) − 20.2βJ

ν1 (0.0420 + 0.678i) − (9.66 + 0.00614i)βJ (0.0428 + 0.776i) − (10.0 + 0.00258i)βJ (0.0430 + 0.802i) − (10.1 + 0.00109i)βJ

ε2 βJ − 0.00512 βJ − 0.00509 βJ − 0.00508
η2 (0.0427 + 0.914i) − 9.75βJ (0.0430 + 0.845i) − 10.1βJ (0.0431 + 0.829i) − 10.12βJ

μ2 (0.0836 + 1.52i) − 18.8βJ (0.0853 + 1.60i) − 19.8βJ (0.0858 + 1.62i) − 20.1βJ

ν2 (0.0407 + 0.761i) − (9.46 − 0.00601i)βJ (0.0423 + 0.803i) − (9.93 − 0.00256i)βJ (0.0428 + 0.813i) − (10.1 − 0.00109i)βJ

S = 10 nm, θ = π/2 S = 50 nm, θ = π/2 S = 100 nm, θ = π/2
ε1 βJ − 0.00506 βJ − 0.00507 βJ − 0.00508
η1 (0.0420 + 0.899i) − 9.64βJ (0.0428 + 0.840i) − 10.02βJ (0.0430 + 0.827i) − 10.1βJ

μ1 (0.0915 + 1.76i) − 22.6βJ (0.0876 + 1.68i) − 20.9βJ (0.0867 + 1.65i) − 20.6βJ

ν1 (0.0465 + 0.774i) − (10.9 + 0.0294i)βJ (0.0440 + 0.810i) − (10.4 + 0.00768i)βJ (0.0434 + 0.816i) − (10.2 + 0.00286i)βJ

ε2 βJ − 0.00503 βJ − 0.00506 βJ − 0.00507
η2 (0.0447 + 0.569i) − 11.3βJ (0.0435 + 0.752i) − 10.47βJ (0.0433 + 0.794i) − 10.3βJ

μ2 (0.08328 + 1.616i) − 19.28βJ (0.0854 + 1.63i) − 20.0βJ (0.0859 + 1.64i) − 20.2βJ

ν2 (0.0422 + 0.936i) − (10.0 − 0.0269i)βJ (0.0428 + 0.856i) − (10.1 − 0.00750i)βJ (0.0430 + 0.834i) − (10.1 − 0.00283i)βJ

APPENDIX A: MAGNETOSTATIC FIELDS

In this section we show the expressions for the magne-
tostatic fields related to the self-magnetostatic field and the
magnetostatic interaction field between the nano-oscillators.
The normalized self-magnetostatic field points along the z
axis with hd

k = −hd mz
k ẑ, where the demagnetization factor hd

depends on the geometrical parameters of the nano-oscillator,
i.e., the thickness L and the radius R, with hd given by [30]

hd = 1 + 3

L/R

∫ ∞

0
J ′

0(q)2 (1 − e−qL/R − qL/R)

q2
dq, (A1)

where J ′
0(q) = −J1(q) is the derivative of J0(q) and Jn is the

Bessel function of the first kind and order n. The demagne-
tizing field is obtained from the functional derivative of the
self-magnetostatic energy, and it is averaged over the disk
volume. For L = 5 nm and R = 50 nm, we have hd ≈ 0.8155.

The normalized magnetostatic interaction field between the
free layers is defined as a function of the K1, K2, and K3

parameters [30] appearing in Eq. (3). These are

K1 = 1

L/D

∫ ∞

0
J2

1 (qR/D)J0(q)
(1 − e−qL/D − qL/D)

q2
dq,

K2 = − 1

L/D

∫ ∞

0
J2

1 (qR/D)J2(q)
(1 − e−qL/D − qL/D)

q2
dq,

K3 = 2

L/D

∫ ∞

0
J2

1 (qR/D)J0(q)
(e−qL/D − 1)

q2
dq, (A2)

where D = 2R + S. Table I shows the values of these param-
eters as a function of S. We observe that, as S increases, these
quantities approach zero.

APPENDIX B: OSCILLATION FREQUENCIES AND
MODES AT THE INSTABILITY POINT

The linear modes of the system of two coupled thin disks
correspond to an in-phase oscillation δmip = A0vipeiωipt + c.c.

and an antiphase one δmap = B0vapeiωapt + c.c.. We have that
(ωip, vip) and (ωap, vap) are the frequencies and eigenvectors
of the in-phase and antiphase modes, respectively.

The explicit expressions of the eigenfrequencies are [30]

ωip = √
hx + gx − gy

√
hx + gx + hd − gz,

ωap = √
hx + gx + gy

√
hx + gx + hd + gz. (B1)

The explicit expressions of the eigenvectors are [30]

vip =

⎛
⎜⎝

m1 + m3 + ωip

−(m2 + m4)
m1 + m3 + ωip

−(m2 + m4)

⎞
⎟⎠, vap =

⎛
⎜⎝

−(m1 − m3 + ωap)
m2 − m4

(m1 − m3 + ωap)
−(m2 − m4)

⎞
⎟⎠,

(B2)

where

m1 + m3 = ω0 + (λ2+μ2)gx − [(λ + μ)2gy+(λ − μ)2gz]/2,

m2 + m4 = −2λμgx + [(λ + μ)2gy − (λ − μ)2gz]/2,

m1 − m3 = ω0 + (λ2+μ2)gx + [(λ + μ)2gy+(λ − μ)2gz]/2,

m2 − m4 = −2λμgx − [(λ + μ)2gy − (λ − μ)2gz]/2,

and

ω0 =
√

hx(hx + hd ),

λ =
√

hx + hd/2 + ω0

2ω0
,

μ =
√

hx + hd/2 − ω0

2ω0
.
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FIG. 11. Magnetization components my
1 and my

2 as a function of
time for maximum time (a) t = 500 and (b) t = 4000, and for βJ =
5.22 × 10−3 and θ = 0.

APPENDIX C: PARTICULAR PARAMETERS OF
EQS. (5a) AND (5b)

Table II contains the values of the parameters ε1, η1, μ1,
ν1, ε2, η2, μ2, and ν2 as a function of βJ for θ = 0 and
θ = π/2 at S = 10, 50, and 100 nm. These values are ob-
tained by mapping Eq. (1) into Eqs. (5a) and (5b).

APPENDIX D: PARAMETERS OF EQS. (8a)–(8c)

In this section we show the parameters of Eqs. (8a)–(8c) as
a function of the applied current density. Figure 10 illustrates
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FIG. 12. Magnetization components my
1 and my

2 as a function of
time for maximum time (a) t = 500 and (b) t = 4000, and for βJ =
5.27 × 10−3 and θ = π/2.

ā, b̄, a1, a2, b1, b2, and ω0, for S = 10 nm and θ = 0 (left
panel), and for θ = π/2 (right panel).

APPENDIX E: MAGNETIZATION COMPONENTS AS
A FUNCTION OF TIME

In this section, we show the trajectory of the magnetization
components my

1 and my
2 for a larger time interval, by using the

solutions of Eqs. (8a), (8b), and (8c). For θ = 0, we consider
βJ = 5.22 × 10−3 (Fig. 11) and for θ = π/2, we use βJ =
5.27 × 10−3 (Fig. 12). It can be observed that the oscillation
amplitudes of the magnetizations are not constant.
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