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We study and compare three characteristic times of the standard map: the Lyapunov time tL , the Poincaré
recurrence time tr , and the stickiness (or escape) time tst . The Lyapunov time is the inverse of the Lyapunov
characteristic number (L) and in general is quite small. We find empirical relations for the L as a function
of the nonlinearity parameter K and of the chaotic area A. We also find empirical relations for the Poincaré
recurrence time tr as a function of the nonlinearity parameter K , of the chaotic area A, and of the size of the box
of initial conditions ε. As a consequence, we find relations between tr and L. We compare the distributions of the
stickiness time and the Poincaré recurrence time. The stickiness time inside the sticky regions at the boundary
of the islands of stability is orders of magnitude smaller than the Poincaré recurrence time tr and this affects
the diffusion exponent μ, which converges always to the value μ = 1. This is shown in an extreme stickiness
case. The diffusion is anomalous (ballistic motion) inside the accelerator mode islands of stability with μ = 2
but it is normal everywhere outside the islands with μ = 1. In a particular case of extreme stickiness, we find the
hierarchy of islands around islands.
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I. INTRODUCTION

Chaos in Hamiltonian systems and two-dimensional (2D)
mappings is in general incomplete and nonergodic due to
the existence of islands of stability with Kolmogorov-Arnold-
Moser (KAM) invariant tori inside them. The set of islands
is fractal, and the region close to and outside the islands’
boundary is sticky and plays a crucial role in the system’s
kinetics.

The combination of the “normal” random walk of trajecto-
ries inside the large chaotic sea far away from the islands of
stability with flights and trappings of “sticky” trajectories near
the boundaries of the islands, creates a new kind of kinetics,
called “strange kinetics.” The term “strange kinetics” was
introduced in [1] to describe a class of processes that lead to
anomalous transport. In order to study such complicated phase
spaces, it is important to calculate the characteristic times
of the mappings or Hamiltonian systems, i.e., the Lyapunov
time, the Poincaré recurrence time, and the stickiness time,
and find the relations between each other. These character-
istic times give important information about the complexity
of the system and they can be related to other interesting
measures like the fractal (or Hausdorff) dimension and the
diffusion exponent.

Another important issue is the dependence of these char-
acteristic times on the initial conditions. If we choose, for
example, a set of initial conditions situated in the extreme
sticky region around islands of stability, the orbits will present
the same behavior as an orbit inside the island for long enough
time (depending on the distance from the last KAM curve)
but later on they will behave as chaotic orbits manifesting
normal diffusion. Thus, these characteristic times can help one
to study the complexity of the orbital structure.

In order to make our study, we use a well known 2D
mapping, namely, the standard (or Chirikov) map:

x′ = x + y′ (mod 1),

y′ = y + K

2π
sin(2πx) (mod 1). (1)

This is a typical simple example of a 2D map that has been
studied extensively up to now. However, there are still certain
questions that have not been clarified completely. These refer
mainly to the characteristic times of the standard map, namely,
the Lyapunov time, the Poincaré recurrence time, and the
stickiness time. In this paper we discuss these times and their
relations.

In the literature we find some interesting applications of
the characteristic times in mappings and Hamiltonians. For
example, in celestial mechanics it has been shown that there is
a power-law dependence of the recurrence times on Lyapunov
times and a power-law decay in the tails of the recurrence
distributions. Some characteristic examples are given for the
case of the three body problem [2] or for the case of asteroids’
orbits [3]. Moreover, studies in dielectric cavities show differ-
ent behavior of the survival probability time distributions in
integrable and in mixed or chaotic cases (see [4]). The laws
given for these quantities agree with the laws given for the
distribution of the Poincaré recurrence times in the case of the
2D mapping described in this paper.

The paper is organized as follows: In Sec. II we give
analytical relations for the Lyapunov characteristic number as
a function of the perturbation parameter K and of the available
chaotic area A. Moreover, we discuss its dependence on the
initial conditions. We also give relations for the dynamical en-
tropy of the system as a function of the perturbation parameter
K . In Sec. III we study the behavior and the distribution of the
Poincaré recurrence times below and above the critical value
Kc as well as the law giving its relation with the Lyapunov
characteristic number and the corresponding available chaotic
area in the phase space. We also connect the mean Poincaré
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recurrence time with the fractal dimension dw of the mapping.
In Sec. IV we discuss the stickiness (or escape) time. In Sec. V
we study the dependence of the type of diffusion (normal or
anomalous) on the initial conditions of the orbit and the role
of stickiness. In Sec. VI we make a comparison between the
characteristic times in extreme stickiness cases. In Sec. VII
we analyze the case of self-similarity of islands and finally in
Sec. VIII we summarize our conclusions.

II. LYAPUNOV TIME

In [5] the authors give the definition of the stretching
number α and argue that the spectrum of this number for a
specific nonlinearity parameter K is invariant for the case of
the standard map. The stretching number is defined as follows:

α = ln

(
ds′

ds

)
, (2)

where ds =
√

dx2 + dy2 is an infinitesimal initial separation
between two orbits and ds′ =

√
dx′2 + dy′2 is the separa-

tion after one iteration of the map. In general, for a two-
dimensional area preserving mapping,

x′ = f (x, y, K ), y′ = g(x, y, K ), (3)

where K is the nonlinearity parameter, the stretching number
takes the form

α = 1

2
ln

⎡
⎢⎣

(
∂ f
∂x + ∂ f

∂y yx

)2
+

(
∂g
∂x + ∂g

∂y yx

)2

1 + y2
x

⎤
⎥⎦, (4)

where yx = dy/dx. In the case of the standard map, Eq. (4)
becomes

α = 1

2
ln

(
[yx+K cos(2πx)]2+{yx+[1+K cos(2πx)]}2

2

)
.

(5)

The finite time Lyapunov characteristic number [χ (t )]
in the chaotic region is defined by the relation χ (t ) =
(1/t ) ln [ds(t )/ds(0)], where ds(0) is an infinitesimal initial
separation between two orbits and ds(t ) is their separation at
time t . χ (t ) can be obtained also from the mean value of the
stretching number α over a time span t :

χ (t ) = 〈α〉 =
∑t

i=1 αi

t
. (6)

The Lyapunov characteristic number L is the limit of χ (t )
for t → ∞ and ds(0) → 0. In practice, the final value of L
does not depend on the choice of the initial value of ds(0)
and ds → 0 because the stretching number α is computed by
the variational equations (4). We must point out here that the
time t in the case of a 2D mapping is given by the number
of iterations. By integrating chaotic orbits for long enough
time to secure convergence, we can finally extract the L as
a function of (a) the nonlinearity parameter K , (b) the initial
condition of x, and (c) the slope yx of ds(t ):

L = L(K, x, yx ). (7)

The Lyapunov time is the inverse of the Lyapunov character-
istic number

tL = 1/L. (8)

For values of K below the well known critical value
K = Kc ≈ 0.97, the chaotic zones of the phase space do not
communicate with each other.1 Therefore, the calculation of
L is made locally and is different for each different chaotic
region. For a given chaotic region χ (t ) converges to the same
value of L independently of the initial conditions inside this
region.

In Fig. 1(a) we plot the phase space for K = 0.95. The dif-
ferent chaotic regions (presented with different shades of gray
and different colors in the online version) do not communicate
with each other and have different Ls as we see in Fig. 1(b)
[the greater values of Ls correspond to the bigger chaotic
regions, the colors of the curves are related to the colors of the
chaotic areas in Fig. 1(a) in the online version]. The values
of the Ls are correlated with the sizes of the corresponding
chaotic area. χ needs a very long time in order to converge
to each final value of L when K is near the critical value
Kc ≈ 0.97. The black curves in Fig. 1(a) correspond to the
unstable manifolds of the simplest periodic orbits of each
region. A possible explanation of the correlation of the L with
the chaotic area is the fact that the local stretching number α

depends on the local slope of the deviation vector yx = dy/dx
[see Eq. (5)]. The phenomenon of stickiness of the chaotic
orbits along the unstable manifolds of each chaotic area (see
[7,8]) connects the local yx of each chaotic orbit with the
angles of the eigenvectors of the unstable periodic orbits of
each chaotic subregion. The angles of the eigenvectors of the
unstable periodic orbits of the larger chaotic area (red) have
greater values than the ones of the intermediate chaotic area
(blue) and the angles of the eigencvectors of the blue area have
greater values than the ones of the green area, etc. In general,
the mean slope of the unstable manifolds for each periodic
orbit with the same multiplicity in all these areas is correlated
with the size of the corresponding area. In Fig. 1(c) the value
of L is plotted as a function of the percentage of the covered
chaotic area A (black dots) in a log-log scale. The percentage
of the available chaotic area A has been calculated using a box-
counting method. More precisely, we have divided the phase
space in a 103 × 103 grid and we have counted the boxes
visited by a chaotic orbit. We have secured the convergence
of the percentage of the chaotic area for this specific splitting
of the phase space and confirmed that there is no dependence
on the initial conditions. The (red) line corresponds to the
analytic formula

L ≈ c
√

A (9)

with c ≈ 0.16. We have derived the coefficients of the
(red) line of Fig. 1(c) and their standard errors, using the
least square fitting method: log10(L) = α + β log10(A), where

1For K > Kc, the chaotic zones communicate. Then, one can use
the formula tL (K ) = 1

L(K )−L(Kc ) . The value of L(Kc ) is ≈0.1 [the same
value is derived by Shevchenko in [6]] and for K > 1 the formula (8)
is sufficiently accurate.
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FIG. 1. (a) The phase space of the standard map for the case K = 0.95. The different chaotic regions [different shades of gray (red, blue,
green, and magenta in the online version)] do not communicate with each other. Black curves give the unstable manifolds of the simplest
unstable periodic orbits in each region. (b) The evolution of χ (t ) for each chaotic region derived from Eq. (6) (the greater values of χ

correspond to the bigger chaotic areas, the colors of the curves are related to the colors of the chaotic areas for the online version). (c) L as a
function of the percentage of the available chaotic area A (in a log-log scale) is fitted approximately by the equation L = c

√
A, with c ≈ 0.16

for K = 0.95.

α = −0.78 ± 0.075 and β = 0.52 ± 0.048, for K = 0.95.
Equation (9) seems to describe well the numerical points.
We have verified that this is a general formula presenting a
correlation between L and the available chaotic area A, with
different values of c for every K , when K < Kc, i.e., when the
chaotic regions of the phase space do not communicate with
each other.

When K > Kc, there is a unique chaotic sea that covers
most of the phase space. For these cases we want to derive an
analytical relation of L as a function of the nonlinearity param-
eter K . For large values of K the slope yx in Eq. (5) becomes
equal to 1 as the tangent of the angle of the eigenvector of the
simple unstable periodic orbit (x = 0, y = 0) of multiplicity
1, converges quickly to 1 as a function of K (see Fig. 2). This
means that the eigendirection of the unstable manifold of the
periodic orbit of the origin (x = 0, y = 0) becomes parallel
to the diagonal of the phase space and its angle converges
towards an angle of 45◦ as K → ∞. The same is true for all

FIG. 2. The tangent of the angle φ of the eigenvector tan(φ) of
the unstable periodic orbit of simple multiplicity at the origin (x = 0,
y = 0) as a function of K .

the manifolds of the unstable periodic orbits in the chaotic
sea as they are forced to move parallel to each other. (The
slope yx of the deviation vector of the chaotic orbits becomes
equal to the slope of the unstable manifolds, locally, due to the
phenomenon of stickiness along the manifolds [7].)

In Fig. 3(a) we plot the stretching number α as a function
of x, for K = 1000, using Eq. (5) and setting yx = 1 (black
solid curve). The red solid line corresponds to the mean value
〈α〉 while the blue dashed line gives the maximum value
of α when cos(2πx) = 1. The minima of the function α(x)
correspond to initial conditions of stable or unstable periodic
orbits with the minimum Hénon stability index (see [9]) for
the specific K .

In Fig. 3(b) we plot the numerical value of L (black curve),
in a semilogarithmic scale, calculated from Eq. (6) for a
sufficient large number of iterations in order to secure the
convergence of the χ (t ) to the value of L, as a function of K .
The blue smooth curve is a fitting curve which corresponds to
the approximate analytical formula L = ln(0.7 + 0.42K ) and
fits well the numerical curve for relatively small values of K
(but K > Kc). For large values of K , the value of yx in Eq. (5)
converges to 1 and the maximum value of the stretching
number α [for cos(2πx) = 1] is given by the formula αmax =
ln K . The red dashed line in Fig. 3(b) corresponds to the ap-
proximate analytical formula L = ln(K ) − 0.7 ≈ ln(K/2) and
coincides very well with the numerical curve for large values
of K . Therefore, the analytical relations of L as functions of K
(for K > Kc) are

L = ln(0.7 + 0.42K ) for small K,

L = ln (K ) − 0.7 ≈ ln(K/2) for large K. (10)

Now, we want to determine the relation between L and the
percentage of the available chaotic area A, for K > Kc. For this
purpose we calculate the L and the available chaotic area A
for values of the perturbation parameter: 1 < K < 7 (after the
value K = 7 the percentage of the chaotic area is very close to
100%). In Fig. 4 we plot the N as a function of the available
chaotic area A (black curve) in a log-log scale. Each point
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FIG. 3. (a) The stretching number α as a function of x for K = 1000 (solid black curve) derived by Eq. (5) setting yx = 1. The red solid
line corresponds to the mean value 〈α〉 and the blue dashed line to the maximum value of α for cos(2πx) = 1 and yx = 1 (which is valid for
K → ∞). (b) The numerical value of L as a function of K , in a semilogarithmic scale, calculated from Eq. (6) for the chaotic region of the
phase space (black curve). The function L = ln(0.7 + 0.42K ) (blue smooth curve) is a good fit for relatively small values of K . The function
L = ln(K ) − 0.7 (red dashed line) coincides very well with the numerical curve for large K .

corresponds to the same value of K . An approximate power-
law fit of this curve (red line) has the following form:

L = cA4, (11)

where c = 0.85. We have derived the coefficients of the
(red) line of Fig. 4 and their standard errors, using the least
square fitting method: log10(L) = α + β log10(A), where α =
−0.078 ± 0.004 and β = 3.89 ± 0.055. The deviations of the
numerical (black) curve from the analytical (red) curve are
due to the values of the area A which have some abrupt
changes as K increases. This is due to the breaking of the
last KAM curves surrounding islands of stability, increasing
abruptly the available chaotic area in specific resonances
(see [10]).

FIG. 4. L as a function of the percentage of the available chaotic
area A of the phase space for 1 < K < 7 (black curve) in a log-log
scale. Each point corresponds to a specific value of K . The red line
is the best fit given by the approximate relation L = 0.85A4.

The quantities of the chaotic area of the phase space A
and the corresponding Lyapunov characteristic number L are
also related with each other through the dynamical entropy h,
which describes the rate of divergence for close trajectories
and is called the Krylov-Kolmogorov-Sinai entropy, or, in
short, the KS entropy. For the case of a 2D mapping, Benettin
et al. in [11] proposed the relation h = (L)(A). This formula is
approximate and applied in [11] in the Hénon-Heiles system.
Using Eq. (10) we can connect the dynamical entropy h with
the nonlinearity parameter K , for large vales of K , where
A → 1, and h → L:

h ≈ ln(K/2) for large K. (12)

This relation is derived by Chirikov [Eq. (5.41) in [12]], using
the eigenvalues λ of the orbit.

In order to derive a similar formula for small values of K ,
where the chaotic area A is different from unity we have to use
the corresponding relation between L and A [Eq. (11)]. Then,
the derived dynamical entropy h is given by the formula

h ∝ L1.24 = [ln(0.7 + 0.42 K]1.24 for small K. (13)

We point out here that the time of convergence of χ (t ) to
its final value of L depends strongly on the initial conditions
and can be very long in cases of extremely sticky regions
around islands of stability. An example is given in Fig. 5
where the evolution of χ (t ) is calculated for two different
initial conditions inside the chaotic area of the phase space for
K = 6.908 745. (This case is studied in detail in Sec. VI.) In
Fig. 5(a) we plot the time evolution of χ (t ) for an initial condi-
tion inside the large chaotic sea and far away from the islands
of stability. χ (t ) has well converged after 107 iterations. On
the other hand, in Fig. 5(b) where the initial condition is inside
the extreme sticky zone around an accelerator mode island
[blue dot in Fig. 15(e)] χ (t ) has not well converged even after
5 × 107 iterations. In this latter case, there exists an initial
transient period where χ (t ) is close to zero corresponding to
the stickiness around the accelerator mode island. Then, we
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FIG. 5. (a) Typical dependence of χ (t ) as a function of the number of iterations for an initial condition inside the large chaotic sea. (b) The
χ (t ) as a function of the number of iterations for an initial condition inside an extreme sticky region [blue dot in Fig. 15(e)].

observe a very slow convergence toward the corresponding L
of the chaotic region.

From Fig. 3(b) we conclude that the Lyapunov time tL
(which is the inverse of the L) is very small (smaller than 1),
and is a decreasing function of the nonlinearity parameter K .

III. POINCARÉ RECURRENCE TIME

As we have already mentioned in the Introduction, the
standard map has a mixed phase space both with chaotic
and regular motions. Measuring the Poincaré recurrence times
can give us information about the fractal (Hausdorff or box)
dimension of the invariant subset (see [13] for a review).

The dynamics near the boundary of an island of stability
is complicated due to phenomena of stickiness. This cir-
cumstance influences almost all important probability dis-
tributions such as the distribution of distances, exit times,
recurrences, moments, etc. The main feature of all such dis-
tributions is that they do not correspond to either Gaussian
or Poissonian (or similar) processes. This manifests itself by
the presence of powerlike tails in the asymptotic limit of
distributions for long-time and small-space scales (see the
discussion below).

We study first the Poincaré recurrence times for a value
of K below the critical value Kc. When the different chaotic
regions do not communicate with each other, the recurrence
times are correlated with the separated available chaotic area.
In Fig. 6(a) we plot the phase space for K = 0.8 and we mark
with different shades of gray (colors in the online version)
four different chaotic domains that do not communicate with
each other. We calculate the mean Poincaré recurrence time
for each chaotic domain for a number of 105 initial conditions
inside a square of size ε as a function of ε [Fig. 6(b)] for
the different chaotic domains of Fig. 6(a), in a logarithmic
scale. For ε → 0, the recurrence times become astronomically
large, which reflects the original thought by Poincaré [14].
The red squares correspond to the bigger chaotic region, the
blue triangles to the intermediate chaotic region, and the green
stars to the smaller chaotic region. The black dots correspond
to initial conditions inside an island of stability. All the curves

corresponding to the chaotic regions have the same slope, but
the values of the mean recurrence times are correlated with the
area of these domains because for bigger chaotic domains, the
orbit has to cover statistically a larger area before returning in
the same initial square. Actually, this refers to the well known
Kac’s theorem [15], which states that the mean recurrence
time into a given phase space area is equal to the ratio between
the total measure of the phase space and that of the considered
domain.

In Fig. 6(c) we plot the absolute values of the slopes of
the curves of Fig. 6(b) as functions of the logarithm of the
size of the initial square ε. These values converge to the
fractal dimension dw, for ε → 0 (see [13]). Actually, the
slope for the case of chaotic regions gives a fractal dimen-
sion dw = 2 which is identical with the dimension of the
mapping, while the regular orbit gives a fractal dimension
dw = 1, as the KAM curves inside the islands of stability
are objects of dimension 1. Buric et al. [16] find that the
spectrum of Poincaré recurrence times F (t ) [where F (t ) =
N (trec ± dtrec)/Ntotal, with N (trec ± dtrec) the number of initial
conditions in a specific box of dimension ε having Poincaré
recurrence times inside the interval trec ± dtrec and Ntotal is
the total number of initial conditions inside the box] for the
standard map exhibits two distinct limits: a weak-coupling
limit with an inverse power-law decay and a chaotic strong-
coupling limit with an exponential decay. An inverse power
law was given first by Chirikov and Shepelyansky [17], while
the distinction between exponential and powerlike distribu-
tions was first made by Zaslavsky et al. [18]. Long tails in
distributions were first introduced in the context of modern
statistical physics, by Montroll and Shlesinger [19]. On the
other hand, the deviation from the exponential decay in the
case of weak chaos (or stickiness phenomena) is emphasized
in a number of papers (e.g., [20,21]). Buric et al. [16] give
a relation for the spectrum F (t ) for domains where chaotic
regions coexist with integrable structures, with a superposition
of an exponential and a power-law decay of the form

F (t ) � (1 − p) exp

(
−t

1 − p

1 − P

)
+ p

2

(
P

pt

)2

, (14)
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FIG. 6. (a) The phase space of the standard map for K = 0.8. The different shades of gray (colors in the online version) correspond to
different chaotic domains that do not communicate with each other. (b) The logarithm of the Poincaré recurrence time 〈tr〉 as a function of
the logarithm of the size of the box ε for the different chaotic areas of (a). The red squares correspond to the bigger chaotic region, the blue
triangles to the intermediate chaotic region, and the green stars to the smaller chaotic region. The black dots correspond to initial conditions
inside an island of stability. (c) The fractal dimensions dw [equal to the absolute value of the slope of the curves in (b)] as functions of the
logarithm of the size of the box ε.

where p, P are suitable constants fitting each curve. We give
here a slightly more general relation where the power of the
inverse power law can be different from 2:

F (t ) � (1 − p) exp

(
−t

1 − p

1 − P

)
+ p

2

(
P

pt

)a

. (15)

Such a law is found numerically to occur in area-preserving
maps at the boundary of the mixing and integrable compo-
nents, i.e., in areas of stickiness around islands of stability,
but also in chaotic regions that are limited by closed KAM
curves and do not communicate with each other. Such cases
of isolated chaotic regions can be found for values of K below
the critical value Kc ≈ 0.97.

In Fig. 7 we plot the distribution of the Poincaré recurrence
times F (t ) of an ensemble of 106 initial conditions inside
a small area of dimension ε = 10−3 in different domains of
the phase space. Figure 7(a) corresponds to a case of strong
chaos, i.e., the initial conditions are taken inside the main
chaotic domain for K = 6.0. Here, the orbits can cover the
whole available chaotic part of the phase space. The spectrum
is given in a semilogarithmic plot and presents an exponential
behavior (solid black line). The same is true in Fig. 7(b)
for the case of the bigger chaotic region (red in the online
version) of Fig. 6(a) where K = 0.8 and the exponential fitting
(solid black line) is suitable apart from a small part of the
curve corresponding to small recurrence times. Moreover, the
distribution F (t ) drops off at a small value of tr (it does not
appear in the figure). In fact, the recurrence time tr cannot
be smaller than a minimum value (see [22]). The minimum
recurrence time has been found in particular cases [23,24].
Near the minimum recurrence time (trmin ) the formula (15) is
not valid and the curve F (t ) goes to zero as tr goes below trmin

in Fig. 7.
On the other hand, for the intermediate (blue in the online

version) and the smaller (green in the online version) chaotic
regions of Fig. 6(a), the spectrum of the Poincaré recurrence
times deviates from the exponential fitting and presents long
power-law tails [Figs. 7(c) and 7(d)]. The fitting in this case
can be best approximated by the relation (15) with a = 3.7

in Fig. 7(c) and a = 1.8 in Fig. 7(d) (solid black curves).
In general, the smaller the area of the chaotic region is,
the greater is the deviation from the exponential decay. The
same relation describes the distribution of Poincaré recur-
rence times for K > Kc, for initial conditions in regions very
close to islands of stability due to phenomena of stickiness.
We give an example in Sec. VI [Figs. 14(b) and 14(d)]. Similar

FIG. 7. (a) The distribution of the Poincaré recurrence times
(spectrum) F (t ) for the main chaotic domain for K = 6.0 presents an
exponential decay, (b) the spectrum F (t ) for the bigger (red in online
version) chaotic region of Fig. 6(a) (K = 0.8) is close to exponential,
(c) the spectrum F (t ) for the intermediate (blue in online version)
chaotic region of Fig. 6(a) deviates from the exponential decay and
can be approximately fitted by the formula (15), (d) the spectrum
F (t ) for the smaller (green in online version) chaotic region of
Fig. 6(a) fitted by the formula (15).
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FIG. 8. The percentage of the available chaotic area A (multi-
plied by a factor 104) for three discrete chaotic regions as a function
of the mean Poincaré recurrence time 〈tr〉, for a box size ε = 10−2

and for K = 0.8 (red dots), K = 0.9 (blue triangles), and K = 0.95
(black squares). The points are fitted by the black dotted line which
is close to the diagonal.

results were found by Rossi et al. in [25] and recently by
Lozej and Robnik in [26] who have detected long tails in the
distributions of the return times for the chaotic component in
mixed dynamical, due to phenomena of stickiness.

In the previous section, we have shown that L is well
correlated with the available chaotic area A covered by a
chaotic orbit. In this section we show that the mean Poincaré
recurrence times 〈tr〉 are correlated as well with the available
chaotic area. When K < Kc where the different chaotic re-
gions do not communicate with each other, the mean Poincaré
recurrence time 〈tr〉 is related to the percentage of the chaotic
area and the size of the box ε of the initial conditions by the
following relation:

〈tr〉 = bAε−2, (16)

where the coefficient b is close to 1. In Fig. 8 we plot the
percentage of the available chaotic area A multiplied by a
factor of 104 for three discrete chaotic regions as a function
of the mean Poincaré recurrence time 〈tr〉, for a box size ε =
10−2, and for K = 0.8 (red dots), K = 0.9 (blue triangles),
and K = 0.95 (black squares). The black dotted line is a fitting
close to the diagonal. The standard errors of the dotted line
are derived using the least square fitting method: A 104 =
α + β〈tr〉, where α = 20.12 ± 16.92 and β = 1.04 ± 0.013.
It is obvious that the curves satisfy Eq. (16) quite well.

Using Eqs. (9) and (16), we derive an approximate relation
between L and the mean Poincaré recurrence time 〈tr〉:

L = gε
√

〈tr〉, (17)

where g = g(K ) is a coefficient depending on the nonlinearity
parameter K . An example for three different chaotic regions
in the case K = 0.8 is shown in Fig. 9, in a log-log scale,
where gε = 0.003. We have derived the coefficients of the
(red) line of Fig. 9 and their standard errors, using the least

FIG. 9. The mean Poincaré recurrence time 〈tr〉 is correlated with
L of the different chaotic regions, for K = 0.8.

square fitting method: log10(L) = α + β log10(〈tr〉), where
α = −2.44 ± 0.186 and β = 0.4678 ± 0.0784.

When K > Kc, although there is one united chaotic domain
in the phase space of the standard map, in general there exist
islands of stability that tend to be smaller and smaller as
K increases. Therefore, the percentage of the total available
chaotic area A is increasing with increasing K and the mean
Poincaré recurrence time 〈tr〉 of the chaotic region is corre-
lated with A.

In Fig. 10(a) we observe a striking correlation between 〈tr〉
and A. The red dotted curve corresponds to the percentage of
the available chaotic area A as a function of K , while the blue
solid curve corresponds to the mean Poincaré recurrence time
〈tr〉 of the chaotic domain as a function of K for a box of size
ε = 10−2. The two curves present the same fractal shape and
they are correlated even in extremely small scales. In order
to compare the two quantities, we have divided the values of
the mean Poincaré recurrence time 〈tr〉 by a factor of 104.
Therefore, we verify that Eq. (16) is still valid for K > Kc,
with b = 1, i.e.,

〈tr〉(K ) = A(K )ε−2. (18)

According to Eq. (18), the functional dependence of 〈tr〉 on
K only enters through the percentage of the available chaotic
area A, as the size ε of the selected box is independent of
K . Similar figures to Fig. 10(a) were given in the bibliog-
raphy in [6] and in [10] for the percentage of the available
chaotic area A as a function of the nonlinearity parameter K .
However, here, we want to emphasize the correlation between
the percentage of the chaotic area A and the mean Poincaré
recurrence time 〈tr〉 as functions of K .

The percentage of the chaotic area A tends asymptotically
to 1 as K increases, so for large enough values of K , the mean
Poincaré recurrence time 〈tr〉 is simply the inverse of the area
of the selected box, i.e., 〈tr〉 = 1/ε2, in a good approximation.
This relation can be written in general as

〈tr〉 = 1

εdw
, (19)
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FIG. 10. (a) The red dotted curve corresponds to the percentage of the chaotic area of the phase space A as a function of the parameter K .
The blue solid curve corresponds to the mean Poincaré recurrence time 〈tr〉 inside the chaotic area in a box of dimension ε = 10−2 divided
by 104. The correlation between the two curves is extremely good. (b) The percentage of the chaotic area A multiplied by a factor of 104 as a
function of the mean Poincaré recurrence time 〈tr〉 is very close to the diagonal.

where dw is the fractal dimension. For a 2D mapping,
dw = 2 and is identical with the topological dimension. The
same relation has been derived for some nonhyperbolic one-
dimensional mappings (see [27,28]), where the authors have
found the relation 〈tr〉 = 1/ε, as the topological dimension of
the corresponding mappings is 1.

We have checked the validity of Eq. (18) for a different
size of the box, i.e., ε = 10−3 and we have found that the two
curves of Fig. 10(a) coincide again if we divide 〈tr〉 by a factor
of 106. In Fig. 10(b) we plot the percentage of the chaotic
area A multiplied by a factor of 104 as a function of the mean
Poincaré recurrence time 〈tr〉, for a box size ε = 10−2. The
curve is very close to the diagonal which means that the two
quantities are equal in a very good approximation.

On the other hand, using Eqs. (11) and (16), we derive the
relation between L and 〈tr〉 for K > Kc:

L = q〈tr〉4, (20)

where the coefficient q = q(ε) depends on the size of the
box ε, selected for calculating the mean Poincaré recurrence
time 〈tr〉. The function L = f (〈tr〉) is shown in Fig. 11, in a
log-log scale where we see that the relation (20) is valid up to
a perturbation parameter K ≈ 7. However, for larger values
of K the percentage of the chaotic area A goes very close
to 1 and as a consequence the corresponding mean Poincaré
recurrence time 〈tr〉 converges as well to a constant value
close to 10 000 (which is 1/ε2 in our case), without further
significant increase with increasing K .

Extreme stickiness phenomena close to islands of stabil-
ity can influence the mean Poincaré recurrence time. Such
a case is presented in Fig. 12. The Poincaré recurrence time is
calculated for K = 6.608 for several initial conditions. In this
case, extreme stickiness phenomena occur near the border of
the accelerator mode islands.

In Fig. 12(a) we plot the logarithm of the Poincaré re-
currence time 〈tr〉 as a function of the logarithm of the size
of the box ε for K = 6.608. Black dots correspond to initial
conditions inside the accelerator mode island, where the fitted
line is derived with the least square method and has a slope
−1.01 ± 0.004. Magenta squares correspond to the extreme

sticky region close and outside the accelerator mode island
where the fitted line has a slope −1.9 ± 0.05, for large values
of ε and −0.89 ± 0.05 for small values of ε. Red stars
correspond to the outer sticky region and the fitted line has a
slope −1.92 ± 0.012. Finally, blue triangles correspond to the
chaotic region far away from the islands of stability and the
fitted line has a slope −1.999 ± 0.0005. In Fig. 12(b) we plot
the fractal dimensions dw [equal to the absolute value of the
slope of the curves of Fig. 12(a)] as functions of the logarithm
of the size of the box ε. The fractal dimension is related to the
diffusion exponent μ by the relation (see [29])

dw = 2/μ (21)

(see Sec. V for the definition of the diffusion exponent μ).
In Fig. 12(b) we observe that inside the accelerator mode

islands the diffusion coefficient is μ = 2 (corresponding to

FIG. 11. The function L = f (〈tr〉) for values of nonlinearity
parameter in the range Kc < K < 7 (black curve) in a log-log scale.
The power-law fitting L ∝ 〈tr〉4 [red (light gray) line] is a good
approximation. For larger values of K this power law is no longer
valid because 〈tr〉 tends to an almost constant value.
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FIG. 12. (a) The logarithm of the Poincaré recurrence time 〈tr〉 as a function of the logarithm of the size of the box ε for K = 6.608.
Black dots correspond to the accelerator mode island, magenta squares to the extreme sticky region outside the accelerator mode island, red
stars to the outer sticky region and blue triangles to the chaotic region far away from the islands of stability. Fitted lines are superimposed
derived by the least square fitting method (see text). (b) The fractal dimensions dw [equal to the absolute values of the slope of the curves in
(a)] as functions of the logarithm of the size of the box ε. The fractal dimension dw is related to the diffusion exponent μ through the relation
dw = 2/μ (see text).

anomalous diffusion and ballistic motion) and the correspond-
ing fractal dimension is dw = 1. On the other hand, in the
chaotic region μ = 1 (corresponding to normal diffusion) and
dw = 2. In the outer sticky region, the diffusion coefficient has
some variations around μ = 1, but for smaller ε it converges
to μ = 1 (hence dw ≈ 2).

When the initial conditions are located inside the extreme
sticky region of the accelerator mode islands, the orbits
present the same behavior with the KAM curves inside the
islands of stability, i.e., ballistic motion with diffusion expo-
nent μ = 2 and fractal dimension dw = 1 for a rather big size
of the box ε, but for a smaller size of the box the diffusion
converges into normal diffusion with μ = 1 and dw = 2. This
happens because in the latter case the orbit has entered inside
the large chaotic sea, where normal diffusion dominates (for
more details see Sec. V).

IV. STICKINESS TIME

The study of stickiness has expanded considerably in
recent years. The first example of stickiness was provided
by Contopoulos [30]. The name “stickiness” was introduced
by Shirts and Reinhardt [31] and after that many people
worked on stickiness. Many related references are included
in the paper of Contopoulos and Harsoula [8]. In that paper,
we discussed the various factors that affect the timescale of
stickiness.

The “stickiness time,” also called “escape time,” is the time
required for the orbits to go far from their initial conditions
into the large chaotic sea. An orbit with initial conditions
outside and close to the last KAM curve of an island of
stability is trapped for a long time around this island due to the
appearance of cantori, i.e., cantor sets of points surrounding
the islands of stability. Chaotic orbits are forced to move close
and along the unstable manifolds of the unstable periodic
orbits of this domain, and as these manifolds have many
foldings before exiting from the holes of the cantori, the

chaotic orbits spend a lot of time around these islands before
escaping into the large chaotic sea far away from the islands
(see for details [7,8] and references within). After such a time
(of stickiness) the distribution of the points of these orbits
tends to become roughly uniform, with time, in the chaotic
domain outside the islands of stability.

However, the stickiness time is different for different initial
conditions. If an orbit starts closer to the boundary of an island
(its last KAM curve), the stickiness time is longer and tends
to infinity as the initial condition tends to reach this boundary
(see [8]).

The stickiness times are much smaller than the recurrence
times corresponding to the same region of initial conditions.
In a particular example with K = 6.608 (Fig. 16 of [32]), we
considered three orbits starting close to an island of stability.
The orbit A has stickiness time ts(A) = 5 × 105 iterations. The
orbits B and C that are further away from the boundary of
the island have stickiness times ts(B) = 1.8 × 105 and ts(C) =
1.2 × 105, respectively. The corresponding recurrence times
are tr (A) = 4 × 109, tr (B) = 5 × 108, and tr (C) = 3.1 × 107,
respectively. Therefore, the ratios of the recurrence times to
the stickiness times are tr/ts(A) = 8 × 103, tr/ts(B) = 3.2 ×
103, and tr/ts(C) = 2.6 × 103. The ratio tr/ts is in general
larger as we approach the boundary of the island. A partic-
ular case of extremely long stickiness time is studied in the
Sec. VI, where we compare the distribution of the stickiness
times and of the Poincaré recurrence times.

V. STICKINESS AND DIFFUSION

The stickiness phenomenon affects the diffusion of the
orbits along the y axis. The general diffusion is described by
the formula

〈(y − y0)2〉 = D(K )nμ, (22)

where the y component is calculated without the modulo 1 in
Eq. (1), y0 is its initial value, n is the number of iterations,
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FIG. 13. (a) The diffusion exponent μ (the slope of the time evolution of 〈y − y0〉2 in logarithmic scale) calculated for two initial conditions:
(1) in the vicinity of the sticky region [red dot in Fig. 15(c)], called “case 1” and (2) in the vicinity of the sticky region [blue dot in Fig. 15(e)],
called “case 2.” The diffusion is anomalous (μ = 2) during the stickiness time around the accelerator mode islands. Then, in both cases the
diffusion exponent μ drops and remains close to μ = 0 for a long time span and finally it converges to normal diffusion with μ = 1. (b) The
evolution of the orbit corresponding to the case 1. While the orbit executes ballistic motion the x component stays localized and spreads in the
whole phase space at the end of this motion.

and 〈. . .〉 denotes the mean value of an ensemble of initial
conditions inside a small area of the phase space. Typical
values of the effective diffusion D(K ) are given in [32] and
references within and μ is the diffusion exponent as it was
introduced in [21]. The diffusion exponent μ is defined in the
long run limit n → ∞. For initial conditions in the chaotic
domain, far away from the islands of stability, the diffusion
is normal with μ = 1 ([18,33–35]). In this case, the diffusion
coefficient D is a constant that depends only on K . Inside the
normal mode islands the diffusion exponent is equal to zero
(μ = 0) and inside the accelerator mode islands the diffusion
exponent is μ = 2. In the sticky zone around a normal island
of stability the diffusion exponent is close to μ = 0 for some
time and then it converges to μ = 1 (see Fig. 4 of [32]). On
the other hand, the diffusion exponent around an accelerator
mode island stays close to μ = 2 for some time and after a
flat interval it finally converges to μ = 1 [Figs. 5(b), 5(c) and
12(b) of [32]].

In the past, many people claimed that the diffusion expo-
nent of the chaotic part of the phase space, in the case where
accelerator mode islands exist, is between 1 and 2. In fact,
Venegeroles in [36] quotes a number of papers for Hamil-
tonian systems with bounded phase space where the authors
have calculated the diffusion exponent μ and concluded that
the average value of μ outside the accelerator islands is close
to μ = 1.5. However, all these calculations were made for
times of order of 106. On the other hand, we have shown in
[32] that for longer times the diffusion exponent μ, for initial
conditions outside the accelerator mode islands, always tends
to 1. In our examples we have found that orbits starting close
to an accelerator mode island are dragged by these islands for
times of the order of 106, but later on they detach themselves
from the accelerator islands and they enter the large chaotic
sea tending to a diffusion exponent μ = 1.

Similar results were found by Das and Gupte in [37] who
calculated the distributions of the diffusion exponents μ in
a three-dimensional mapping (extending their calculations up
to 1010 iterations). They found only two main values of μ for

the whole phase space, namely, μ = 1 (normal diffusion) and
μ = 2 (ballistic motion).

In this paper we give two examples of orbits in a case
of extreme stickiness considered by Zaslavsky et al. [18],
namely, for K = 6.908 745 where a hierarchy of islands is
presented in the phase space (see Fig. 15 in Sec. VII). In
this case, we calculated the diffusion exponent μ for two
different groups of orbits, one at the level of Fig. 15(c) (initial
conditions around the red dot) and the other at a deeper
level of stickiness [initial conditions around the blue dot of
Fig. 15(e)]. The first group of orbits corresponds to “case 1”
of Fig. 13(a). It gives an average diffusion exponent μ = 2
for a little less than 105 iterations, then it shows a flat interval
close to μ ≈ 0 up to 108 iterations and afterward the diffusion
exponent converges to the value μ = 1 manifesting normal
diffusion. The second group of orbits corresponds to “case 2”
and gives an average diffusion exponent μ = 2 for about 106

iterations, then μ ≈ 0 up to 1010 iterations, and beyond 1010

iterations μ tends to the value μ = 1.
An explanation of this behavior of μ is provided in

Fig. 13(b). Orbits close to the boundary of an accelerator
mode island are dragged close to this island by a ballistic
motion, and |y − y0| increases almost linearly, thus μ = 2,
for a time span equal to the stickiness time. While the orbits
execute ballistic motion, the x component stays localized in
the phase space. At the end of the ballistic motion, the orbits
detach themselves from the boundary of the island and the x
component is spread in the whole phase space, while the y
component does not vary considerably for a rather long time
span (which corresponds to μ = 0). Finally, the orbits enter
inside the large chaotic sea and the y component has a mild
increase corresponding to normal diffusion with μ = 1.

VI. COMPARISON OF THE CHARACTERISTIC TIMES
IN AN EXTREME STICKINESS CASE

As described in the previous section, sticky orbits with
initial conditions close to the islands of stability stay there for
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times compared to the stickiness (or escape) time and then
they enter inside the large chaotic sea. But, after a Poincaré
recurrence time they reenter inside the sticky region. This
reentry will happen for infinitely many times and one may
claim that the diffusion exponent μ should converge to a value
between 1 and 2. But this does not really happen for two
reasons:

(a) The Poincaré recurrence times are much longer than
the stickiness times by orders of magnitude inside every
region of stickiness. This is obvious in Fig. 14 where we plot
the distributions of the stickiness (or escape) times and the
Poincaré recurrence times for K = 6.908 745. Figures 14(a)
and 14(b) correspond to the “case 1’, where 105 initial
conditions are chosen in a small square of size (dx dy) =
(10−5 10−5) around the red dot of Fig. 15(c) which has
(x, y) = (0.7025, 0.0005). We have calculated the stickiness
(or escape) times of these initial conditions, i.e., the time
needed for the orbits to escape out of the borders of Fig. 15(a).
We present the distribution of these stickiness times in
Fig. 14(a). Then, we calculate the recurrence times, i.e., the
time needed in order to reenter in a square of size (dx dy) =
(10−3 10−3) around the red dot of Fig. 15(c) and present their

distributions in Fig. 14(b). Figures 14(c) and 14(d) correspond
to the “case 2” where 105 initial conditions are chosen in a
small square of size (dx dy) = (10−6 10−6) around the blue
dot of Fig. 15(e) which has (x, y) = (0.703255, 0.000318).
We have then calculated the distribution of their stickiness
(or escape) times in Fig. 14(c) and the distribution of their
recurrence times in Fig. 14(d). We see that the Poincaré recur-
rence times trec are some orders of magnitude greater than the
stickiness times tst . In fact, for the case 1, the recurrence times
are about two orders of magnitude longer than the stickiness
times, while for the case 2 the difference is about three orders
of magnitude. Therefore, the orbits stay for a much longer
time span inside the chaotic region than inside the sticky
region. The black curves in Figs. 14(b) and 14(d) are fittings
of the distributions derived by Eq. (14).

We have to point out here that such extreme sticky phe-
nomena are repeated for all the values of the perturbation pa-
rameter K , where the diffusion coefficient D presents maxima
(see Fig. 1 of [32]).

(b) The times of recurrence of individual orbits in the
sticky regions are different from each other (even if their
initial conditions are all found inside a very small box in the

FIG. 14. (a) The distribution of the stickiness (or escape) times tst in the vicinity of the red dot of Fig. 15(c) (case 1). (b) The corresponding
distribution of the Poincaré recurrence times trec. The smooth black curve is a fitting using Eq. (14). (c) The distribution of the stickiness (or
escape) times tst in the vicinity of the blue dot of Fig. 15(e) (case 2). (b) The corresponding distribution of the Poincaré recurrence times trec.
The smooth black curve is a fitting using Eq. (14).
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FIG. 15. The phase space of the standard map for K = 6.908 745. We plot the hierarchy of the islands of multiplicities 3-8-8-8-8-6 in
(a)-(b)-(c)-(d)-(e)-(f), respectively.

beginning of the calculations). This is a consequence of the
fact that the Lyapunov times tL of chaotic orbits are very small,
of order 1 or smaller [see Figs. 3(b) and 3(c), from where it
appears that in general L is larger than 1], thus, the deviation
of nearby orbits starts very early. Therefore, the average value
of the diffusion exponent μ will not deviate considerably from
μ = 1. A consequence of this diffusion is that the density of
the points of an initially sticky orbit, outside the islands of
stability tends to become uniform after a long enough time
(see [8]).

VII. SELF-SIMILARITY OF ISLANDS

Stickiness appears around all the islands that exist on the
surface of section corresponding to a given value of the pertur-
bation parameter K . It is well known that there is a hierarchy
of islands that surround periodic orbits generated from the
main island of the system by successive bifurcations. As K
increases, the central stable periodic orbit generates an infinity
of higher order periodic orbits until it becomes unstable. A
large fraction of these higher order orbits are stable and for
larger values of K they generate second order periodic orbits.
These orbits generate third order periodic orbits and so on.
A particular hierarchy of bifurcations is the period doubling
sequence (see, e.g., [9] for a review).

All the stable periodic orbits are surrounded by islands of
stability terminating at their respective last KAM curves. The
secondary islands, after their generation, are located inside

the parent islands, but as K increases they move out of the
last KAM curve of the parent island. An example is shown in
Fig. 2.107 of [9], where we see that a change of a parameter
K from 4.79 to 4.80 has as a consequence that five secondary
islands surrounding the central island move from inside the
limits of the central island to the chaotic domain outside
the last KAM curve of the central island. This procedure is
repeated again and again as K increases and thus we have an
infinite hierarchy of islands of successive orders.

Zaslavsky [18] found a hierarchy of higher order islands
of multiplicities 3,8,8,8,... in the case of the standard map
with K = 6.908 745. For this value of K there is a stable
periodic orbit of multiplicity 2 with 3 islands of stablility
around it [Fig. 15(a)]. One of these three islands (on the right)
appears in more detail in Fig. 15(b). In this figure we see eight
large islands of stability outside the last KAM curve of the
central island. In Fig. 15(c) one of these eight islands is seen
in more detail with another eight islands of stability around
it. The same is found in Figs. 15(d)–15(f) where we show
the islands of stability outside the corresponding last KAM
curve in more detail at each level. Zaslavsky emphasized the
similarity between the eight islands of stability of successive
levels. This is linked to the existence of a self-similar structure
of cantori near an island’s boundary that he called boundary
island chain (BIC). He argues that there exists such a value of
K for which the self-similarity is exact to all orders and the
number of the self-similar islands can finally determine the
diffusion exponent μ of the chaotic part of the phase space.
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Using his method, he derives a diffusion exponent μ ≈ 1.25,
for K = 6.908 745. However, we have shown in Sec. V that
the value of μ tends always to 1, in the chaotic part of the
phase, after long enough time of calculations, and this value
is not influenced by the extreme stickiness around self-similar
accelerator mode islands. Moreover, we show here that this
similarity of the number of islands does not continue in further
levels of detail and, as we see in Fig. 15(f), there are six large
islands of stability just outside the last KAM curve of the last
level and not eight as in previous levels.

Furthermore, we stress that the eight islands in Figs. 15(b)–
15(e) are not the first islands just outside the corresponding
last KAM curves. In fact, we find several higher order islands
outside the last KAM curves, like for example the islands of
stability with rotation number 2/15 [red islands in Figs. 15(d)
and 15(e)]. In Fig. 15(d) these higher order islands are found
inside the last KAM curve, while in Fig. 15(e) they are found
outside the last KAM curve. In Fig. 16 we plot the rotation
number as a function of the x component across the islands
of stability for the cases of Figs. 15(b) and 15(f), respectively.
The curve of the rotation number passes through an infinity of
rational numbers as we go outward along any given direction
from the center. These rational numbers correspond to islands
of multiplicity equal to the denominator of the rational number
(see [9]).

In particular, in Figs. 15(b)–15(e) there are seven islands
of stability inside the last KAM curve of the main island that
have rotation number rot = 1

7 . Outside the last KAM curve
of the main island there are eight islands of stability with
rotation number rot = 1

8 . Therefore, between them there must
be a periodic orbit with rotation number rot = 1+1

7+8 = 2
15 [see

Figs. 15(d) and 15(e)]. Between the islands of multiplicity 15
and the islands of multiplicity 8 there is a periodic orbit with
rotation number rot = 1+2

8+15 = 3
23 and so on. In fact, there is a

hierarchy of islands, forming a Farey tree, with multiplicities
going all the way to infinity (see [9]).

Therefore, there are a lot of higher order islands of sta-
bility just outside the last KAM curve. Neither the 8 nor
the 15 islands of stability play the role of BIC (boundary
island chain) proposed by Zaslavsky in [18] since near the

last KAM curves there are islands of multiplicities going to
infinity.

VIII. CONCLUSIONS

The three characteristic times in the case of the standard
map are the Lyapunov time, the Poincaré recurrence time, and
the stickiness time (or escape time). Our main conclusions are
as follows:

(i) The Lyapunov time tL is the inverse of the Lyapunov
characteristic number (L) and it is different in separated
chaotic domains, in cases with perturbation parameter K
smaller than the critical value Kc ≈ 0.9716 . . . . The Lyapunov
characteristic number L for a given perturbation parameter
K < Kc is approximately proportional to the square root of the
percentage of the area of the corresponding chaotic domain:
L = c

√
A. On the other hand, for K > Kc the value of L is re-

lated to the corresponding percentage of the available chaotic
area A through the relation L = cA4.2. For large enough values
of K the percentage of the chaotic area A is close to 100%
and the L is roughly proportional to ln K , i.e., for large K
the relation between L and K is L ≈ 0.925 ln K , while for
relatively small K (but K > Kc) the relation is L ≈ ln(0.55 +
0.46K ).

(ii) The mean Poincaré recurrence time 〈tr〉 depends on the
size ε of the box inside which we take the initial conditions.
We have shown that the logarithm of the mean Poincaré
recurrence times 〈tr〉 for all the chaotic domains (for K < Kc

as well as for K > Kc) is a linear function of the logarithm
of ε, with the same slope equal to −2. On the other hand,
the slope inside the islands of stability is equal to −1. The
absolute value of this slope is equal to the fractal dimension
dw, i.e., dw = |slope|. Moreover, the fractal dimension is equal
to dw = 2/μ (see [29]), where μ is the diffusion exponent.
Inside the chaotic domain of the phase space the diffusion
exponent converges always to μ = 1 and therefore the fractal
dimension is dw = 2. Inside an accelerator mode island the
diffusion exponent is μ = 2 and therefore dw = 1. Inside the
sticky domain outside an accelerator mode island the diffusion
exponent is μ = 2 for some time (and hence dw = 1) but for

FIG. 16. The rotation number as a function of x for the chain of islands of stability corresponding to (a) Fig. 15(b) and (b) Fig. 15(f). The
vertical lines indicate chaotic domains.
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long enough time it tends to 1, i.e., the diffusion is normal
(and hence dw = 2).

The mean Poincaré recurrence time 〈tr〉 depends also on
the area of the available chaotic domain A. In fact, the relation
between these two quantities for K < Kc as well as for K > Kc

is 〈tr〉 ≈ Aε−2. For large enough K , where the percentage
of the available area A converges to 1, the mean Poincaré
recurrence time 〈tr〉 is simply proportional to the inverse of
the size of the area: tr ≈ ε−2. In general, tr ≈ ε−dw , where dw

is the fractal dimension of the mapping.
For K < Kc, the Lyapunov characteristic number L is

proportional to
√

A, so it follows that L = gε
√

tr . As a con-
sequence, the Lyapunov time tL is inversely proportional to
the square root of the recurrence time, i.e., for large recurrence
time the Lyapunov time is small. However, the recurrence time
cannot be smaller than a minimum (see [22,23]).

On the other hand, for K > Kc, the relation between L and
available chaotic area A is found to be L = cA4.2 and therefore
the relation between L and mean Poincaré recurrence time 〈tr〉
is L ∝ 〈tr〉4.2.

(iii) The stickiness (or escape) time depends on a number
of factors that were discussed in a previous paper of our
group [8]. The most important factor is the distance from the
boundary (last KAM curve) of the island of stability. In fact,
it was found that as the distance from the island increases, the
stickiness time decreases almost exponentially. On the other
hand, very close to this boundary the stickiness time increases
considerably and tends to infinity as the distance tends to zero.
However, these very long stickiness times affect a very small
domain close to the boundary of the islands of stability.

(iv) We studied the distributions of the stickiness times and
the Poincaré recurrence times and we compared the average
values of these times for sets of orbits in small boxes at
different distances from the islands of stability. We found that
the Poincaré recurrence times are many orders of magnitude
larger than the stickiness times.

(v) In the past, many authors considered the diffusion
exponent μ of the chaotic part of the phase space, in cases
where accelerator mode islands exist, to lie between the values
1 and 2, i.e., they claimed that the overall diffusion exponent
for initial conditions in the sticky region around these islands
is about 1.5. However, we have shown that for initial con-
ditions inside the extreme sticky regions around accelerator
mode islands, if we calculate the diffusion coefficient for long
enough time (of the order of 1010 or more) the diffusion

exponent μ tends always to the value μ = 1 and, therefore, the
diffusion is normal. In fact, orbits with initial conditions close
to the boundary of an accelerator mode island have initially
μ = 2 for times corresponding to the stickiness time, but later
on when the orbits are detached from the sticky region of the
island and for a long interval of time the diffusion exponent
remains, close to μ = 0. Finally, when these orbits scatter
inside the large chaotic sea, the diffusion exponent converges
to μ = 1. The fact that the orbits come again close to the
boundary of the accelerator mode islands infinitely many
times does not affect the average value of μ because (a) the
recurrence times are many orders of magnitude longer than
the stickiness times and (b) the recurrence times inside the
sticky zone are very different for each initial condition (even
if these initial conditions are all found inside a very small box
in the beginning of the calculations). Therefore, the diffusion
of these orbits will finally become normal (with μ = 1) after
long enough computational time. On the other hand, initial
conditions in the large chaotic sea far away from the islands of
stability will manifest normal diffusion (μ = 1) much earlier.

(vi) Finally, we studied the hierarchy of islands considered
by Zaslavsky et al. in [18], who found a sequence of 3,8,8,8,8,
... islands at successive levels (islands around islands) and
used this similarity to derive a value of the diffusion exponent
μ ≈ 1.25. However, we found (a) that this sequence does
not continue indefinitely because at the next level there are
six large islands of stability around the main island (and not
eight) and (b) the eight islands do not form a “boundary island
chain” (called “BIC” in [18]). In fact, closer to the boundaries
of the successive sets of 8 islands we found 15 islands (in
some levels these islands are inside the last KAM curve of the
main island of stability and in other levels they are outside the
last KAM curve). Furthermore, very close to the boundaries
of the islands of various levels, there are infinite islands of
higher and higher multiplicity and therefore one cannot claim
that any one of them is BIC. As a consequence, there is no
self-similar sequence of islands around islands, but infinities
of islands of various multiplicities.
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