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We present a classical analog of the quantum metric tensor, which is defined for classical integrable systems
that undergo an adiabatic evolution governed by slowly varying parameters. This classical metric measures
the distance, on the parameter space, between two infinitesimally different points in phase space, whereas the
quantum metric tensor measures the distance between two infinitesimally different quantum states. We discuss
the properties of this metric and calculate its components, exactly in the cases of the generalized harmonic
oscillator, the generalized harmonic oscillator with a linear term, and perturbatively for the quartic anharmonic
oscillator. Finally, we propose alternative expressions for the quantum metric tensor and Berry’s connection in
terms of quantum operators.
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I. INTRODUCTION

Two fundamental structures for understanding the geo-
metrical aspects of quantum states are the quantum metric
tensor formulated by Provost and Vallee [1,2] and the geo-
metric phases, in particular, the phase discovered by Berry
[3]. The quantum metric tensor is defined in the parameter
space and measures the distance between two states corre-
sponding to infinitesimally different parameters. Remarkably,
the singularities of this metric are associated with quantum
phase transitions exhibited by the corresponding system [4,5].
Further, the geodesics induced by this metric can also indicate
the presence of quantum phase transitions [6,7]. In general,
the quantum metric tensor played an essential role in diverse
physical phenomena (see Ref. [8] and references therein).
Berry’s phase is the extra phase acquired by the wave function
when the system undergoes an adiabatic excursion along a
closed path in the parameter space and can be understood as an
integral of a curvature [9], the so-called Berry curvature. This
phase was analyzed in various contexts [10–13], and, inter-
estingly, it is also connected with quantum phase transitions
[14]. These approaches to quantum phase transitions based
on the metric and the Berry phase can be unified in terms of
the critical singular behavior of the quantum geometric tensor
[15,16], whose real part gives the quantum metric tensor
whereas the imaginary part gives the Berry curvature.

On the other hand, Berry’s phase possesses a classical
counterpart known as Hannay’s angle [17]. For classical inte-
grable systems, it is an extra angle shift picked up by the angle
variables of the system when the parameters undergo a closed
adiabatic excursion in the parameter space. This classical
angle was investigated in a variety of systems [18–21], and
the semiclassical relation between it and Berry’s phase was
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established in Ref. [22] and has been verified in many systems
[22–25].

In the light of this and given the close relationship between
the quantum metric tensor and Berry’s curvature, a natural
question arises: What about the classical analog of the quan-
tum metric tensor? It is well known that, in the context of
thermodynamic systems, Weinhold [26] and later Ruppeiner
[27] proposed classical metrics in the parameter space which
are defined as the Hessian of a thermodynamic potential.
For Weinhold’s metric, the potential is the internal energy,
whereas for Ruppeiner’s metric the potential is the entropy.
In spite of the existence of these classical metrics, there is so
far no evidence for that in the context of classical mechanical
systems.

In this paper, we present a meaningful metric tensor for
classical integrable systems, which is defined in the parameter
space and is the classical analog of the quantum metric
tensor. These metrics are analogous in the sense that both
yield the same parameter structure, modulo the use of the
Bohr-Sommerfeld quantization rule for action variables. It
means that we can extract out the same (or almost the same)
“relevant” information from either of these metrics. This
important feature will be exhibited by the three examples that
we have considered: the generalized harmonic oscillator, the
generalized harmonic oscillator with a linear term, and the
quartic anharmonic oscillator. Another important property of
this classical metric, which is shared with Hannay’s angle, is
that it is gauge invariant in the parameter space in that it does
not depend on the choice of the point of origin from which we
measure the angle variables. The fundamental building blocks
from which the classical metric is constructed are certain
functions that generate displacements in the parameter space.
By promoting these classical functions to quantum operators,
we also find alternative expressions for the quantum metric
tensor and Berry’s connection.

The paper is organized as follows. In Sec. II we briefly
review some basics about the quantum metric tensor. In
Sec. III we define the notion of distance on the parameter
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space between points in phase space and derive the classical
analog of the quantum metric tensor. In Sec. IV we compute
and compare this classical metric and the quantum metric
tensor for the considered systems. Section V presents alter-
native expressions for the quantum metric tensor and Berry’s
connection. Finally, Sec. VI is devoted to conclusions and
directions for future research.

II. QUANTUM METRIC TENSOR

In this section, we shortly review the definition of the
quantum metric tensor. We start by considering a quantum
theory defined by a set of phase space operators q̂ = {q̂a}
and p̂ = { p̂a} (a, b, . . .= 1, . . . , n) together with a Hamilto-
nian operator Ĥ (q̂, p̂; x) that depends of this set and also
smoothly depends on a set of N � 2 external parameters
x = {xi} (i, j, . . .= 1, . . . , N) that are regarded as slowly
varying functions of the time t (adiabatic parameters) and
parametrize some N-dimensional parameter manifold M.
Assuming that Ĥ [x(t )] has at least one eigenvector |n[x(t )]〉
with nondegenerate eigenvalue En[x(t )], the adiabatic theo-
rem states that if the system is initially prepared in |n[x(0)]〉,
then during the quantum adiabatic evolution it will remain
in the same state |n[x(t )]〉. This fact means that, under the
small change of points x → x′ = x + δx in M, the state |n(x)〉
will become |n(x′)〉. In consequence, the distance between the
states |n(x)〉 and |n(x′)〉 is defined by

dl2 ≡ 1 − |〈n(x)|n(x′)〉|2, (1)

where f = |〈n(x)|n(x′)〉| is the fidelity and measures the
similarity between states. After expanding |n(x′)〉 into a
second-order Taylor series, Eq. (1) can be expressed as dl2 �
g(n)

i j δxiδx j where

g(n)
i j (x) ≡ Re(〈∂in|∂ jn〉 − 〈∂in|n〉〈n|∂ jn〉), (2)

is the (abelian) quantum metric tensor [1]. An alternative
expression for this metric derived from the Lagrangian for-
malism is given in Ref. [28]. Throughout this paper, we adopt
the convention that repeated indices i, j, . . . , are summed
from 1 to N , and ∂i := ∂/∂xi.

For the purposes of this paper, it is convenient to cast
Eq. (2) in terms of operators. Let P̂i be Hermitian operators
and consider that P̂iδxi is the generator of the displacement
|n(x)〉 → |n(x′)〉. Thus, the translated state is

|n(x′)〉 = exp

(
− i

h̄
δxiP̂i

)
|n(x)〉. (3)

From this equation, by considering a Taylor expansion, we
have

ih̄|∂in(x)〉 = P̂i|n(x)〉, (4)

which substituted into Eq. (2) leads to [1]

g(n)
i j (x) = 1

h̄2 Re(〈P̂iP̂j〉n − 〈P̂i〉n〈P̂j〉n), (5)

where 〈X̂ 〉n ≡ 〈n|X̂ |n〉 is the expectation value of X̂ with
respect to the state |n〉. It should be noted that because of
the Hermiticity of P̂i, the right-hand side (r.h.s) of Eq. (5)
is symmetric. Furthermore, the line element dl2 = g(n)

i j δxiδx j

now reads

dl2 = 1

h̄2 〈�P̂2〉n, (�P̂ = �P̂iδxi ), (6)

where �P̂i := P̂i − 〈P̂i〉n. Then, using operators, the distance
dl2 can be seen as the variance of the generator P̂iδxi. This last
remark will be the key point to obtain the classical counterpart
of the quantum metric in the next section.

III. CLASSICAL ANALOG OF THE QUANTUM
METRIC TENSOR

We now turn to the classical setting. Let us consider a clas-
sical integrable system with n degrees of freedom described
by the time-dependent Hamiltonian H[q, p; x(t )], where q =
{qa} and p = {pa} are the canonical coordinates and mo-
menta, and x = {xi} ∈ M is the set of slow time-dependent
parameters.

Since the system is integrable (for all values of x ∈ M),
we can introduce the action-angle variables, I = {Ia} and
ϕ = {ϕa}, which satisfy Hamilton’s equations of motion with
the new Hamiltonian

K (ϕ, I; x) = H (I; x) − Gi(ϕ, I; x)ẋi, (7)

where H (I; x) ≡ H[q(ϕ, I; x), p(ϕ, I; x); x] depends only on
the action variables and the parameters, and Gi(ϕ, I; x) :=
Gi[q(ϕ, I; x), I; x] with

Gi(q, I; x) := −(∂iS
(α) )q,I , (8)

where S(α)(q, I; x) is the generating function of the canon-
ical transformation (q, p) → (ϕ, I ). Also, ẋi := dxi/dt and
α labels different branches of the multivalued function
S(α)(q, I; x). We recall that the second term in the r.h.s of
Eq. (7) comes from (∂S(α)/∂t )q,I = (∂S(α)/∂xi )q,I ẋi, which
is a consequence of the fact that H[q, p, x(t )] (and hence
S(α)[q, I; x(t )] also) depends explicitly on time through the
parameters x. The explicit form of Gi in terms of the action-
angle variables is

Gi(ϕ, I; x) = pa(∂iq
a)ϕ,I − (∂iS)ϕ,I , (9)

where pa = pa(ϕ, I; x), qa = qa(ϕ, I; x) and we defined the
single-valued function S(ϕ, I; x) := S(α)[q(ϕ, I; x), I; x] with
0 � ϕ < 2π . We use the notation that repeated indices
a, b, . . . ,are summed from 1 to n.

As our first step towards the classical counterpart of
Eq. (5), we find that under the action of an infinitesimal
displacement of the parameters x → x′ = x + δx in M, the
function Giδxi is the generator of the infinitesimal canonical
transformation

[q(x), p(x)] → [q(x) + δ̄q, p(x) + δ̄p], (10)

where

δ̄qa := qa(x′) − qa(x) = (∂iq
a)ϕ,Iδxi, (11a)

δ̄pa := pa(x′) − pa(x) = (∂i pa)ϕ,Iδxi. (11b)

Notice that another form of Eq. (11a) is δ̄qa = δqa − δ̃qa,
where δqa := q′a(x′) − qa(x) is the total variation and δ̃qa :=
q′a(x) − qa(x) is the variation with “frozen” parameters. A
similar expression follows for δ̄pa.
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To prove the above statement it is sufficient to show that Gi

satisfy

(∂iq
a)ϕ,I = {qa, Gi}q,p = ∂Gi

∂ pa
, (12a)

(∂i pa)ϕ,I = {pa, Gi}q,p = −∂Gi

∂qa
, (12b)

which are the equations of the infinitesimal canonical transfor-
mation (10) [29]. Here {·, ·} denotes the Poisson bracket. To
do this, we first take the partial derivative with respect to xi,
holding (ϕ, I ) fixed, of the familiar relation pad̃qa − Iad̃ϕa =
d̃F , where F = S(α)(q, I; x) − Iaϕ

a and d̃ is the fixed-time
differential (or equivalently with fixed parameters x). From
this we obtain

(∂i pa)ϕ,I d̃qa + pad̃ (∂iq
a)ϕ,I = d̃ (∂iS)ϕ,I , (13)

where we used (∂id̃ f )ϕ,I = d̃ (∂i f )ϕ,I . Next, combining
Eq. (13) with the differential of Eq. (9) at fixed x, namely

d̃Gi = d̃ pa(∂iq
a)ϕ,I + pad̃ (∂iq

a)ϕ,I − d̃ (∂iS)ϕ,I , (14)

we have

d̃Gi = −(∂i pa)ϕ,I d̃qa + (∂iq
a)ϕ,I d̃ pa. (15)

Then, taking Gi as a function of (q, p), it follows that

d̃Gi = ∂Gi

∂qa
d̃qa + ∂Gi

∂ pa
d̃ pa. (16)

Equating the coefficients of d̃qa and d̃ pa on the r.h.s of
Eqs. (15) and (16), we read off Eqs. (12a) and (12b), which
completes the proof.

Given the fact that Giδxi generates an infinitesimal dis-
placement in x of points in phase space, and in complete
analogy with the quantum case [see Eq. (6)], we can natu-
rally define the distance between the points [q(x), p(x)] and
[q(x) + δ̄q, p(x) + δ̄p] as

ds2 := 〈�G2〉, (�G = �Giδxi ), (17)

where �Gi := Gi − 〈Gi〉 and

〈 f (ϕ, I; x)〉 = 1

(2π )n

∮
dϕ f (ϕ, I; x), (18)

with
∮

dϕ = ∏n
a=1

∫ 2π

0 dϕa, is the average of f (ϕ, I; x) over
the (fast) angle variables. Defined in this way, the classical
distance ds2 is nothing more than the variance of the generator
Giδxi. Clearly, if the parameters x are frozen, then Giδxi = 0,
and hence ds2 also vanishes, as expected.

Notice that ds2 depends only on the action variables I and
the parameters x. In this regard, it is important to emphasize
that, according to the classical adiabatic theorem [30], while
the parameters vary slowly with time, the action variables
are adiabatic invariants1 İa ≈ 0. That is, during the adiabatic
evolution from [q(x), p(x)] to [q(x) + δ̄q, p(x) + δ̄p] the ac-
tion variables I remain constant. This effect is similar to the
quantum case where the quantum number n remains constant

1Nevertheless, for Hamiltonian systems with n � 2 there may exist
conditions for which the adiabatic approximation is not optimal [30].

as the parameters vary. On the other hand, note also that in this
scenario, the average 〈·〉 in Eq. (17) is the classical counterpart
of the quantum average 〈·〉n in Eq. (6).

By expanding Eq. (17), we find that the distance ds2 =
gi jδxiδx j induces the metric

gi j (I; x) := 〈GiGj〉 − 〈Gi〉〈Gj〉, (19)

where Gi = Gi(ϕ, I; x) is given by Eq. (9). The metric
gi j (I; x) corresponds to the classical analog of the quan-
tum metric tensor (2) [or Eq. (5)], and provides a mea-
sure of the distance between the nearby points [q(x), p(x)]
and [q(x) + δ̄q, p(x) + δ̄p] on the parameter manifold M. It
should be pointed out that, in contrast to the quantum metric
tensor, the classical metric (19) is restricted to the case where
classical motion is integrable. This restriction is to be expected
since it is the same as that found in Hannay’s angle [17],
which also involves the action variables and is the classical
counterpart of Berry’s phase [22].

We now proceed to check some properties of gi j (I; x). Let
us first show that, under a coordinate transformation, gi j (I; x)
transforms as a tensor. By considering a coordinate change
y = y(x) and using Eq. (9), it follows that the transformation
law for Gi is

G′
i(ϕ, I; y) = ∂x j

∂yi
Gj[ϕ, I; x(y)]. (20)

This result, together with Eq. (19), leads to the expected
transformation law for the metric

g′
i j (I; y) = ∂xk

∂yi

∂xl

∂y j
gkl [I; x(y)]. (21)

We now prove that gi j (I; x) is positive semidefinite. This is
straightforward and follows from the fact that ds2 = 〈�G2〉 �
0 since the variance is nonnegative. In this light, it is interest-
ing to note that the quantum metric tensor (2) is also positive
semidefinite [31,32].

Analogously as the quantum metric g(n)
i j (x) is indepen-

dent of the gauge transformation2 |n′(x)〉 = exp[iαn(x)]|n(x)〉
where αn(x) is an arbitrary real function of x, the classical
metric gi j (I; x) is invariant under the (gauge) canonical trans-
formation

ϕ′a = ϕa + ∂λ(I; x)

∂Ia
, I ′

a = Ia, (22)

which is generated by the function F2 = ϕaI ′
a + λ(I ′; x) where

λ(I ′; x) is an arbitrary function of I ′ and x. The proof of this
statement is as follows. The Hamiltonian for the new action-
angle variables (ϕ′, I ′) is

K ′(ϕ′, I ′; x) = H (I ′; x) − G′
i(ϕ

′, I ′; x)ẋi, (23)

where H (I ′; x) = H (I; x) with I ′ = I , and

G′
i(ϕ

′, I ′; x) = Gi(ϕ
′, I ′; x) − [∂iλ(I ′; x)]I ′ , (24)

2In Ref. [33] is shown, however, that under a more general gauge
transformation, the quantum metric tensor depends on the gauge.

032144-3



GONZALEZ, GUTIÉRREZ-RUIZ, AND VERGARA PHYSICAL REVIEW E 99, 032144 (2019)

where Gi(ϕ′, I ′; x) := Gi[ϕ(ϕ′, I ′; x), I ′; x] are the functions
Gi for (ϕ, I ) expressed in terms of the variables (ϕ′, I ′).
Since G′

i(ϕ
′, I ′; x) satisfy the Eqs. (12a) and (12b) with (ϕ′, I ′)

instead of (ϕ, I ), it follows that G′
iδxi generates a canonical

transformation of the same type as Eq. (10) with δ̄′qa =
(∂iqa)ϕ′,I ′δxi and δ̄′ pa = (∂i pa)ϕ′,I ′δxi instead of Eqs. (11a)
and (11b), respectively. With this in mind, we can apply
Eq. (19), and write the classical metric associated with the
variables (ϕ′, I ′) as

g′
i j (I

′; x) = 〈G′
iG

′
j〉′ − 〈G′

i〉′〈G′
j〉′, (25)

where G′
i = G′

i(ϕ
′, I ′; x) and 〈·〉′ stands for the average over

the angle variables ϕ′.
By using Eq. (24), the average 〈G′

i〉′ gives

〈G′
i(ϕ

′, I ′; x)〉′ = 1

(2π )n

∮
dϕ′Gi(ϕ

′, I ′; x)−[∂iλ(I ′; x)]I ′ ,

= 1

(2π )n

∫ 2π−bn

−bn

· · ·
∫ 2π−b1

−b1

dϕ1 . . . dϕnGi(ϕ, I; x)

−[∂iλ(I; x)]I ,

= 〈Gi(ϕ, I; x)〉 − [∂iλ(I; x)]I , (26)

where in the second line we made the change of variables
from ϕ′ to ϕ and defined ba := ∂λ(I; x)/∂Ia, whereas in the
last line we used the fact that p, (∂iq)ϕ,I , and (∂iS)ϕ,I are
periodic functions of each angle variable ϕa with period 2π ,
which by virtue of Eq. (9) implies that Gi(ϕ, I; x) are also
periodic functions of each ϕa. The periodicity of (∂iS)ϕ,I

is easily seen by writing S(q, I; x) = ∑n
a=1 Sa(qa, I; x) and

recalling that each Sa(ϕ, I; x) ≡ Sa[qa(ϕ, I; x), I; x] satisfies
Sa(ϕ + 2π, I; x) − Sa(ϕ, I; x) = 2π Ia. In the same fashion,
the average 〈G′

iG
′
j〉′ leads to

〈G′
i(ϕ

′, I ′; x)G′
j (ϕ

′, I ′; x)〉′ = 〈Gi(ϕ, I; x)Gj (ϕ, I; x)〉
−〈Gi(ϕ, I; x)〉[∂ jλ(I; x)]I − 〈Gj (ϕ, I; x)〉[∂iλ(I; x)]I

+[∂iλ(I; x)]I [∂ jλ(I; x)]I . (27)

It remains to substitute Eqs. (26) and (27) into Eq. (25). By
doing so, all the terms involving the derivatives of λ(I; x) can-
cel among themselves and thus the metric g′

i j (I
′; x) becomes

g′
i j (I

′; x) = 〈GiGj〉 − 〈Gi〉〈Gj〉 = gi j (I; x), (28)

which is the desired result.
Therefore, although the angle variables are not unique but

only defined up to the canonical transformation (22), the
metric gi j (I; x) is unique and independent of this (gauge)
transformation, as expected for a metric tensor on M. It is
interesting to note from Eq. (27) that term 〈GiGj〉 is not invari-
ant under the transformation (22), and hence it cannot be used
alone to define a metric on M. As shown above, it must be
combined with 〈Gi〉〈Gj〉, in the precise form given by Eq. (19)
to produce a gauge invariant metric. This is the essence of
the nontrivial gauge invariance of gi j (I; x) under Eq. (22); it

arises as a consequence of the particular combination of both
〈GiGj〉 and 〈Gi〉〈Gj〉. Reinforcing the analogy made between
the classical metric gi j (I; x) and the quantum metric tensor
g(n)

i j (x), since the latter being a combination of 〈∂in|∂ jn〉 and
〈∂in|n〉〈n|∂ jn〉 is gauge invariant, but the term 〈∂in|∂ jn〉 alone
is not [1].

To end this section, let us add some comments on the
significance of Gi. Notice that Eq. (24) reveals that under
Eq. (22) the functions Gi transform as an abelian gauge
potential, which is not surprising since these functions are the
generators of translations in M [29]. The average of Gi can
be identified as the components of the connection 1-form on
M associated with Hannay’s angle, namely A(I; x) = Aidxi

with3

Ai(I; x) := 〈Gi(ϕ, I; x)〉 = 〈pa(∂iq
a)ϕ,I〉 − 〈(∂iS)ϕ,I〉. (29)

This means, according to Eq. (26), that under the transforma-
tion (22) the components (29) transform as those of an abelian
gauge potential [35]

A′
i(I

′; x) = Ai(I; x) − [∂iλ(I; x)]I . (30)

Besides, it follows from Eq. (29) that the curvature 2-form
F (I; x) = dA(I; x) of this connection can be written as
F (I; x) = (1/2)Fi jdxi ∧ dx j with

Fi j (I; x) = 〈(∂i pa)ϕ,I (∂ jq
a)ϕ,I − (∂ j pa)ϕ,I (∂iq

a)ϕ,I〉. (31)

Upon using Eqs. (12a) and (12b), we find that these compo-
nents take the form

Fi j (I; x) = −〈{Gi, Gj}q,p〉. (32)

In this way the functions Gi can be regarded as the fundamen-
tal building blocks that underlie the classical metric (19) and
Hannay’s curvature (32).

IV. ILLUSTRATIVE EXAMPLES

In this section, we set out some examples of classical
integrable systems to illustrate the appearance of the metric
(19). At the same time, we compare the results of this classical
metric with those found by using the quantum metric tensor
(2) associated with the quantum counterpart of each system.
We shall see that these results corroborate that the metric (19)
is the classical analog of (2) [or equivalently Eq. (5)].

A. Generalized harmonic oscillator

As our first example, let us take the generalized harmonic
oscillator, whose classical Hamiltonian is given by

H = 1
2 (Xq2 + 2Y qp + Z p2), (33)

where x = {xi} = (X,Y, Z ) ∈ R3 (i, j, . . .= 1, 2, 3) are the
adiabatic parameters, which are assumed to satisfy XZ −
Y 2 > 0. The transformation from the variables (q, p) to
the action-angle variables (ϕ, I ) is well known and turns

3In the literature, however, it is often found that the term 〈(∂iS)ϕ,I〉
is dropped from Eq. (29) since it does not contribute to Hannay’s
angle [31,34].
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out to be

q(ϕ, I; x) =
(

2ZI

ω

)1/2

sin ϕ, (34a)

p(ϕ, I; x) =
(

2ZI

ω

)1/2(
− Y

Z
sin ϕ + ω

Z
cos ϕ

)
, (34b)

where ω := (XZ − Y 2)1/2 is the parameter-dependent angular
frequency. Moreover, the generating function of this transfor-
mation, in terms of action-angle variables, is

S(ϕ, I; x) = −Y I

ω
sin2 ϕ + I (ϕ + sin ϕ cos ϕ). (35)

Then, putting Eqs. (34a), (34b), and (35) into Eq. (9), we
obtain the functions Gi(ϕ, I; x):

G1(ϕ, I; x) = − ZI

2ω2
sin ϕ cos ϕ, (36a)

G2(ϕ, I; x) = I sin ϕ

ω2
(Y cos ϕ + ω sin ϕ), (36b)

G3(ϕ, I; x) = I sin ϕ

2Zω2
[(XZ − 2Y 2) cos ϕ − 2Y ω sin ϕ].

(36c)

Rewriting these functions in terms of the variables (q, p), they
satisfy Eqs. (12a) and (12b). With this at hand, Eq. (19) can
now be readily applied to Eqs. (36a), (36b), and (36c). This
yields the components of the corresponding classical metric
gi j (I; x), which can be expressed as

gi j (I; x) = I2

32ω4

⎛
⎝ Z2 −2Y Z 2Y 2 − XZ

−2Y Z 4XZ −2XY
2Y 2 − XZ −2XY X 2

⎞
⎠.

(37)
The idea is now to compare this metric with that coming

from the quantum metric tensor (2). In the quantum case, the
time-dependent Hamiltonian operator Ĥ of the system is

Ĥ = 1
2 [Xq̂2 + Y (q̂ p̂ + p̂q̂) + Z p̂2], (38)

and leads to the Schrödinger equation (with fixed parameters)

−Zh̄2

2

d2ψn

dq2
− ih̄Y q

dψn

dq
+

(
Xq2

2
− ih̄

Y

2

)
ψn = Enψn,

(39)

which has the normalized solution

ψn(q; x) =
( ω

Zh̄

)1/4
χn

(
q

√
ω

Zh̄

)
exp

(
− iY q2

2Zh̄

)
, (40)

where ω := (XZ − Y 2)1/2 which implies XZ − Y 2 > 0, and
χn(ξ ) = (2nn!

√
π )−1/2e−ξ 2/2Hn(ξ ) are the Hermite functions,

with Hn(ξ ) = (−1)neξ 2 dn

dξ n e−ξ 2
being the Hermite polynomi-

als. Furthermore, the energy eigenvalues are given by En =
(n + 1/2)h̄ω where n are nonnegative integers.

Substituting the wave function (40) into
〈n|∂in〉 = ∫ ∞

−∞ dqψ∗
n (q, x)∂iψn(q, x) and 〈∂in|∂ jn〉 =∫ ∞

−∞ dq∂iψ
∗
n (q, x)∂ jψn(q, x), and bearing in mind the

following properties of the Hermite functions∫ ∞

−∞
dξ χm(ξ )χn(ξ ) = δmn,

d

dξ
χn =

√
n

2
χn−1 −

√
n + 1

2
χn+1,

ξ χn =
√

n

2
χn−1 +

√
n + 1

2
χn+1, (41)

the components of the quantum metric (2) become

g(n)
i j (x)= n2+n+1

32ω4

⎛
⎜⎝

Z2 −2Y Z 2Y 2 − XZ

−2Y Z 4XZ −2XY

2Y 2 − XZ −2XY X 2

⎞
⎟⎠. (42)

Comparing the metrics (37) and (42), it is clear that they
are related as follows:

g(n)
i j (x) = γ gi j (I; x), (43)

where

γ := n2 + n + 1

I2
. (44)

Therefore, for the generalized harmonic oscillator, the quan-
tum metric tensor g(n)

i j (x) can be determined from the classical
metric gi j (I; x), modulo the parameter-independent constant
factor γ . This result is nontrivial and supports our claim that
the metric (19) is the classical counterpart of the metric (2).
Note that if we take into account the Bohr-Sommerfeld quan-
tization rule for action variable

I =
(

n + 1

2

)
h̄, (45)

then γ turns out to be proportional to 1/h̄2. Additionally, by
using Eq. (45), the metrics (37) and (42) can also be related
by

∂

∂n
g(n)

i j (x) = 1

h̄

∂

∂I
gi j (I; x). (46)

On another hand, it is worth pointing out that the determi-
nants of the metrics (37) and (42) are zero, which indicates
that the corresponding Hamiltonians (33) and (38) involve
more parameters than the effective ones. Actually, these met-
rics have rank two and hence, to have metrics with nonvanish-
ing determinants, we must leave one of the parameters fixed
(but different from zero). In this case, the degeneration in the
metric only indicates that one of the parameters is redundant
and can be set equal to a constant. To show this explicitly, let
us consider for a moment that {yi′ } = (X,Y ) (i′, j′, . . .= 1, 2)
are the adiabatic parameters and suppose that Z = Z0 is a
nonvanishing constant. In this case, the classical metric (19)
becomes

gi′ j′ (I; y) = Z0I2

32ω4

(
Z0 −2Y

−2Y 4X

)
, (47)

and its determinant, det [gi′ j′ (I; y)] = Z2
0 I4

256ω6 , is not zero. Be-
sides, the corresponding quantum metric tensor g(n)

i′ j′ (y), which
can be obtained from Eq. (47) by replacing I2 with n2 + n + 1,
also has a nonvanishing determinant.
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Before concluding this example, it may be interesting
to obtain the components of the connection and curvature
associated with Hannay’s angle through Eqs. (29) and (32),
respectively. Using the functions Gi given by Eqs. (36a),
(36b), and (36c), the components of connection (29) lead to

A1(I; x) = 0, A2(I; x) = I

2ω
, A3(I; x) = − Y I

2Zω
, (48)

whereas the components of the curvature (32) give

F12(I; x) = − ZI

4ω3
, F13(I; x) = Y I

4ω3
,

F23(I; x) = − XI

4ω3
. (49)

It is also instructive to compare Eqs. (48) and (49) with their
quantum analogues, namely Berry’s connection and its cur-
vature, respectively. Then, using the wave function (40) and
Eq. (41), the components A(n)

i (x) := −Im(〈n|∂in〉) of Berry’s
connection become

A(n)
1 (x) = 0, A(n)

2 (x) = cn

2ω
, A(n)

3 (x) = − cnY

2Zω
, (50)

and the components F (n)
i j (x) := ∂iA

(n)
j − ∂ jA

(n)
i of its curvature

yield

F (n)
12 (x) = − cnZ

4ω3
, F (n)

13 (x) = cnY

4ω3
,

F (n)
23 (x) = −cnX

4ω3
, (51)

where cn := (n + 1/2). Comparing Eqs. (48) and (50) as well
as Eqs. (49) and (51), it is straightforward to see the following
relations:

A(n)
i (x) = β Ai(I; x), (52a)

F (n)
i j (x) = β Fi j (I; x), (52b)

where

β := n + 1
2

I
. (53)

This entails that A(n)
i (x) and F (n)

i j (x) can be obtained, re-
spectively, from Ai(I; x) and Fi j (I; x), modulo the parameter-
independent constant factor β. Moreover, after using Eq. (45),
this factor reduces to β = 1/h̄.

Some comments are in order. First, it is noteworthy to em-
phasize that connection defined by dropping 〈(∂iS)ϕ,I〉 from
Eq. (29), namely Ai(I; x) = 〈pa(∂iqa)ϕ,I〉, does not lead to
Eqs. (48) and therefore does not satisfy the relation (52a). Of
course, the curvature of such a connection, which is also given
by Eq. (31), implies Eq. (49). Second, notice that Eq. (52b)
is in complete agreement with the semiclassical relation be-
tween Berry’s curvature and the curvature associated with
Hannay’s angle reported in Ref. [22]. Finally, it is worth
mentioning that the multiplicative constants involved in the
relation (43) and the relations (52a) and (52b) are different:
while γ is proportional to 1/I2, β is proportional to 1/I .

B. Generalized harmonic oscillator with a linear term

For our second example we shall consider the generalized
harmonic oscillator with a linear term in the position. Thus the
Hamiltonian under consideration is

H = 1
2 (Xq2 + 2Y qp + Z p2) + W q, (54)

where x = {xi} = (W, X,Y, Z ) with i, j, . . .= 0, 1, 2, 3 are
the adiabatic parameters. Assuming XZ − Y 2 > 0, we find
that the variables (q, p) in terms of action-angle variables
(ϕ, I ) read

q(ϕ, I; x) =
(

2ZI

ω

)1/2

sin ϕ − W Z

ω2
, (55a)

p(ϕ, I; x) =
(

2ZI

ω

)1/2(
−Y

Z
sin ϕ + ω

Z
cos ϕ

)
+ WY

ω2
,

(55b)

where ω := (XZ − Y 2)1/2 is the angular frequency of the
system, which is independent of W . Furthermore, we get
that the generating function S(ϕ, I; x) of the transformation
(q, p) → (ϕ, I ) is

S(ϕ, I; x) = − Y

2Z

[(
2ZI

ω

)1/2

sin ϕ − W Z

ω2

]2

+ I (ϕ + sin ϕ cos ϕ). (56)

With these ingredients at hand, it is straightforward to obtain
Gi(ϕ, I; x) from Eq. (9). The resulting functions, in compact
form, are

Gi(ϕ, I; x) = fi(x)qp + gi(x)q2 + hi(x)

(
p + Y

Z
q

)
, (57)

where p = p(ϕ, I; x) and q = q(ϕ, I; x) are given by
Eqs. (55a) and (55b), respectively, while

fi(x) := ω

2Z
∂i

(
Z

ω

)
, (58a)

gi(x) := Y

Z
fi(x) + 1

2
∂i

(
Y

Z

)
, (58b)

hi(x) := W

2ω
∂i

(
Z

ω

)
− ∂i

(
W Z

ω2

)
. (58c)

It can be verified that Gi given by Eq. (57) satisfy Eqs. (12a)
and (12b). In addition, if the parameter W is fixed to 0, it is
not difficult to realize that these functions reduce to those of
Eqs. (36a), (36b), and (36c).
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By inserting Eq. (57) into Eq. (19), the corresponding components of the classical metric gi j (I; x) are

gi j (I; x) = I2

32ω4

⎛
⎜⎜⎜⎝

0 0 0 0

0 Z2 −2Y Z 2Y 2 − XZ

0 −2Y Z 4XZ −2XY

0 2Y 2 − XZ −2XY X 2

⎞
⎟⎟⎟⎠

+ I

ω7

⎛
⎜⎜⎜⎝

Zω4 −W Z2ω2 2WY Zω2 −WY 2ω2

−W Z2ω2 W 2Z3 −2W 2Y Z2 W 2Y 2Z

2WY Zω2 −2W 2Y Z2 W 2Z (3Y 2 + XZ ) −W 2Y (Y 2 + XZ )

−WY 2ω2 W 2Y 2Z −W 2Y (Y 2 + XZ ) W 2XY 2

⎞
⎟⎟⎟⎠. (59)

Notice that this metric has an extra term, as compared to the metric (37), which is proportional to I/ω7 and is a consequence of
the linear modification introduced in the Hamiltonian (54). Certainly, by fixing W = 0 in the above expression and eliminating
the corresponding row and column, we can recover the metric (37).

To contrast Eq. (59) with the quantum metric tensor, we consider the following Hamiltonian operator:

Ĥ = 1
2 [Xq̂2 + Y (q̂ p̂ + p̂q̂) + Z p̂2] + W q̂. (60)

In this case the Schrödinger equation reads

−Zh̄2

2

d2ψn

dq2
− ih̄Y q

dψn

dq
+

(
Xq2

2
+W q−ih̄

Y

2

)
ψn = Enψn, (61)

and the eigenfunctions ψn(q; x) are of the form

ψn(q; x) =
( ω

Zh̄

)1/4
χn

[(
q + W Z

ω2

)√
ω

Zh̄

]
exp

(
− iY q2

2Zh̄

)
, (62)

where once again ω = (XZ − Y 2)1/2 which entails XZ − Y 2 > 0. By substituting Eq. (62) into Eq. (2) and using Eq. (41), we
get that the components of the quantum metric g(n)

i j (x) are given by

g(n)
i j (x) = n2 + n + 1

32ω4

⎛
⎜⎝

0 0 0 0
0 Z2 −2Y Z 2Y 2 − XZ
0 −2Y Z 4XZ −2XY
0 2Y 2 − XZ −2XY X 2

⎞
⎟⎠

+n + 1
2

h̄ω7

⎛
⎜⎜⎜⎝

Zω4 −W Z2ω2 2WY Zω2 −WY 2ω2

−W Z2ω2 W 2Z3 −2W 2Y Z2 W 2Y 2Z

2WY Zω2 −2W 2Y Z2 W 2Z (3Y 2 + XZ ) −W 2Y (Y 2 + XZ )

−WY 2ω2 W 2Y 2Z −W 2Y (Y 2 + XZ ) W 2XY 2

⎞
⎟⎟⎟⎠. (63)

We can see that the classical metric (59) and the quantum metric (63) have exactly the same functional dependence on the
adiabatic parameters. Hence we corroborate once again that the metric (19) is the classical analog of the quantum metric tensor
(2). Remarkably, by using the Bohr-Sommerfeld quantization rule (45), it follows that the relation (46) also holds for the metrics
(59) and (63).

Note that in this example, as well as in the previous one, the metrics gi j (I; x) and g(n)
i j (x) have vanishing determinant. However,

here the rank of the metrics (59) and (63) is three, which shows the existence of a redundant parameter. In particular, if we take
{yi′ } = (W, X,Y ) (i′, j′, . . .= 0, 1, 2) as the adiabatic parameters and Z = Z0 as a nonvanishing constant, then the classical
metric reads

gi′ j′ (I; y) = Z0I2

32ω4

⎛
⎝0 0 0

0 Z0 −2Y
0 −2Y 4X

⎞
⎠ + Z0I

ω7

⎛
⎝ ω4 −W 2Z0ω

2 2WY ω2

−W Z0ω
2 W 2Z2

0 −2W 2Y Z0

2WY ω2 −2W 2Y Z0 W 2(3Y 2 + XZ0)

⎞
⎠, (64)

and its determinant det[gi′ j′ (I; y)] = Z3
0 I4

256ω12 (Iω3 + 8W 2Z0) is different from zero.
To conclude this example, let us obtain the corresponding classical and quantum connections and curvatures. Classically, by

applying Eqs. (29) and (32) to the functions Gi given by Eq. (57), we obtain the components of the connection,

A0(I; x) = A1(I; x) = 0, A2(I; x) = I

2ω
+ W 2Z

2ω4
, A3(I; x) = − Y I

2Zω
− W 2Y

2ω4
, (65)
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and the components of the curvature, which are displayed in
matrix form,

Fi j (I; x) = I

4ω3

⎛
⎜⎝

0 0 0 0
0 0 −Z Y
0 Z 0 −X
0 −Y X 0

⎞
⎟⎠

+ 1

ω6

⎛
⎜⎜⎝

0 0 W Zω2 −WY ω2

0 0 −W 2Z2 W 2Y Z
−W Zω2 W 2Z2 0 −W 2Y 2

WY ω2 −W 2Y Z W 2Y 2 0

⎞
⎟⎟⎠,

(66)

respectively. On the quantum side, Berry’s connection and
curvature obtained from the eigenfunctions (62) are

A(n)
0 (x) = A(n)

1 (x) = 0, A(n)
2 (x) = n + 1

2

2ω
+ W 2Z

2h̄ω4
,

A(n)
3 (x) = −

(
n + 1

2

)
Y

2Zω
− W 2Y

2h̄ω4
, (67)

and

F (n)
i j (x) = n + 1

2

4ω3

⎛
⎜⎝

0 0 0 0
0 0 −Z Y
0 Z 0 −X
0 −Y X 0

⎞
⎟⎠

+ 1

h̄ω6

⎛
⎜⎜⎝

0 0 W Zω2 −WY ω2

0 0 −W 2Z2 W 2Y Z
−W Zω2 W 2Z2 0 −W 2Y 2

WY ω2 −W 2Y Z W 2Y 2 0

⎞
⎟⎟⎠,

(68)

respectively. Here we used once again Eq. (41). By comparing
Eqs. (65) and (67) as well as Eqs. (66) and (68), it turns out
that the relations (52a) and (52b) hold provided that the Bohr-
Sommerfeld quantization rule (45) is taken into account, i.e.,
when β = 1/h̄ in Eq. (53).

C. Quartic anharmonic oscillator

In this example, we focus on the classical quartic anhar-
monic oscillator which is defined by the Hamiltonian

H = p2

2m
+ k

2
q2 + λ

4!
q4, (69)

where x = {xi} = (m, k, λ) with i = 1, 2, 3 are the adiabatic
parameters. In this case, in contrast to the previous examples,
we need to resort to the canonical perturbation theory in order
to find the functions Gi. With this in mind, the starting point
is to decompose the Hamiltonian (69) in the form H = H0 +
λH1 where

H0 = p2

2m
+ k

2
q2, H1 = q4

4!
, (70)

and we assume 0 � λ � 1. Here, H0 is the Hamiltonian of
the unperturbed problem, for which the action-angle variables
(ϕ0, I0) are well known and allow us to express the variables
(q, p) as

q(ϕ0, I0; x) =
(

2I0

mω0

)1/2

sin ϕ0, (71)

p(ϕ0, I0; x) = (2mω0I0)1/2 cos ϕ0, (72)

where ω0 = (k/m)1/2 is the unperturbed frequency. Further-
more, H1 is the perturbative potential.

Next we assume that the type 2 generating function
W (ϕ0, I; x) of the canonical transformation from (ϕ0, I0) to
the action-angle variables (ϕ, I ) of the total problem H (I; x)
can be expanded in a power series of λ:

W (ϕ0, I; x) = ϕ0I + λW1(ϕ0, I; x) + λ2W2(ϕ0, I; x)

+ λ3W3(ϕ0, I; x) + O(λ4), (73)

where W1, W2, . . . , are functions to be determined. Thus,
the equations of the canonical transformation, ϕ(ϕ0, I; x) =
∂W (ϕ0, I; x)/∂I and I0(ϕ0, I; x) = ∂W (ϕ0, I; x)/∂ϕ0, take the
form

ϕ(ϕ0, I; x) = ϕ0 + λ
∂W1(ϕ0, I; x)

∂I
+ λ2 ∂W2(ϕ0, I; x)

∂I

+ λ3 ∂W3(ϕ0, I; x)

∂I
+ O(λ4), (74)

and

I0(ϕ0, I; x) = I + λ
∂W1(ϕ0, I; x)

∂ϕ0
+ λ2 ∂W2(ϕ0, I; x)

∂ϕ0

+ λ3 ∂W3(ϕ0, I; x)

∂ϕ0
+ O(λ4), (75)

respectively.
Following the canonical perturbation theory and working

up to the third order in λ, the functions W1, W2, and W3 can be
obtained by solving the differential equations [36,37]

ω0
∂Wμ(ϕ0, I; x)

∂ϕ0
= 〈�μ(ϕ0, I; x)〉0 − �μ(ϕ0, I; x), (76)

where 〈·〉0 denotes the average with respect to ϕ0 and, in

our case, �1 = H1, �2 = ∂W1
∂ϕ0

∂H1
∂I and �3 = 1

2 ( ∂W1
∂ϕ0

)
2 ∂2H1

∂I2 +
∂W2
∂ϕ0

∂H1
∂I . Explicitly these functions are given by

�1(ϕ0, I; x) = I2 sin4 ϕ0

6m2ω2
0

, (77a)

�2(ϕ0, I; x) = − I3 sin4 ϕ0

144m4ω5
0

(8 sin4 ϕ0 − 3), (77b)

�3(ϕ0, I; x) = I4 sin4 ϕ0

13824m6ω8
0

(320 sin8 ϕ0 − 144 sin4 ϕ0 − 25),

(77c)

and together with Eq. (76) they imply

W1(ϕ0, I; x) = I2

192m2ω3
0

(8 sin 2ϕ0 − sin 4ϕ0), (78a)

W2(ϕ0, I; x) = I3

55296m4ω6
0

(−384 sin 2ϕ0 + 132 sin 4ϕ0

− 32 sin 6ϕ0 + 3 sin 8ϕ0), (78b)

W3(ϕ0, I; x) = I4

5308416m6ω9
0

(9264 sin 2ϕ0 − 4101 sin 4ϕ0

+ 1624 sin 6ϕ0 − 441 sin 8ϕ0 + 72 sin 10ϕ0

− 5 sin 12ϕ0). (78c)
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Having found W (ϕ0, I; x), it is straightforward to obtain the
generating function S(ϕ, I; x) of the canonical transformation
(q, p) → (ϕ, I ). Indeed, since the transformation (q, p) →
(ϕ, I ) can be regarded as the composition of the successive
canonical transformations (q, p) → (ϕ0, I0) and (ϕ0, I0) →
(ϕ, I ), generated, respectively, by S0(q, I0; x) and W (ϕ0, I; x),
we have that S(ϕ, I; x) is given by

S(q, I; x) = S0(q, I0; x) + W (ϕ0, I; x) − ϕ0I0, (79)

where the function S0 in terms of the variables (ϕ0, I0) reads

S0(ϕ0, I0; x) = I0(ϕ0 + sin ϕ0 cos ϕ0). (80)

Note that substituting Eq. (75) into Eqs. (71), (72), and
(79), we can write the variables q and p and the function S
in terms of ϕ0 and I . Now, to compute the metric (19) we need
to first obtain the functions Gi(ϕ, I; x) = p(∂iq)ϕ,I − (∂iS)ϕ,I ,
where the derivatives are taken at fixed action-angle variables
(ϕ, I ). These derivatives can be achieved by employing the
following useful formula:

(∂iF )ϕ,I = (∂iF )ϕ0,I − (∂F/∂ϕ0)I,x

(∂ϕ/∂ϕ0)I,x
(∂iϕ)ϕ0,I , (81)

where F (ϕ0, I; x) = F (ϕ(ϕ0, I; x), I; x) is q(ϕ0, I; x) or
S(ϕ0, I; x). Notice that we can use Eq. (74) to compute
(∂ϕ/∂ϕ0)I,x and (∂iϕ)ϕ0,I . After carrying out these calcula-
tions and retaining terms correct to second order in λ (since
derivatives with respect to this parameter are involved), we
arrive at the functions Gi in terms of ϕ0 and I , namely

Gi(ϕ0, I; x) = αi0 + αi1λ + αi2λ
2, (82)

where in the case i = 1:

α10 = − I sin 2ϕ0

4m
, (83a)

α11 = − I2 sin3 ϕ0

48
√

k3m3
(cos 3ϕ0 − 2 cos ϕ0), (83b)

α12 = − I3

55296k3m2
(318 sin 2ϕ0 − 204 sin 4ϕ0

+ 95 sin 6ϕ0 − 27 sin 8ϕ0 + 3 sin 10ϕ0), (83c)

in the case i = 2:

α20 = − I sin 2ϕ0

4k
, (84a)

α21 = I2

384
√

k5m
(23 sin 2ϕ0 − 7 sin 4ϕ0 + sin 6ϕ0), (84b)

α22 = − I3

18432k4m
(362 sin 2ϕ0 − 156 sin 4ϕ0

+ 53 sin 6ϕ0 − 11 sin 8ϕ0 + sin 10ϕ0), (84c)

and in the case i = 3:

α30 = I2

192
√

k3m
(sin 4ϕ0 − 8 sin 2ϕ0), (85a)

α31 = I3

27648k3m
(384 sin 2ϕ0 − 132 sin 4ϕ0

+ 32 sin 6ϕ0 − 3 sin 8ϕ0), (85b)

α32 = I4

1769472
√

k9m3
(−9264 sin 2ϕ0 + 4101 sin 4ϕ0

− 1624 sin 6ϕ0 + 441 sin 8ϕ0 − 72 sin 10ϕ0

+ 5 sin 12ϕ0). (85c)

Finally, substituting Gi(ϕ0, I; x) into Eq. (19) and writing
the average over the angle variable ϕ as

〈 f (ϕ)〉= 1

2π

∫ 2π

0
dϕ f (ϕ)= 1

2π

∫ 2π

0
dϕ0

(
∂ϕ

∂ϕ0

)
I,x

f (ϕ0),

we obtain the components of the classical metric gi j (I; x)
correct to second order in λ:

g11(I; x) = I2

32m2
− λI3

256
√

m5k3
+ 47λ2I4

32768m3k3
,

g12(I; x) = I2

32mk
− 7λI3

768
√

m3k5
+ 347λ2I4

98304m2k4
,

g13(I; x) = I3

192
√

m3k3
− 103λI4

49152m2k3
+ 15λ2I5

16384
√

m5k9
,

g22(I; x) = I2

32k2
− 11λI3

768
√

mk7
+ 1919λ2I4

294912mk5
,

g23(I; x) = I3

192
√

mk5
− 439λI4

147456mk4
+ 7λ2I5

4608
√

m3k11
,

g33(I; x) = 65I4

73728mk3
− 89λI5

147456
√

m3k9
+ 130621λ2I6

382205952m2k6
.

(86)

Now we are interested in contrasting Eq. (86) with its
quantum counterpart. For the ground state of the quantum
quartic anharmonic oscillator, by using Eq. (2) and following a
perturbative treatment, we find the corresponding components
of the quantum metric tensor g(0)

i j with terms up to second
order in λ (see the Appendix for the details):

g(0)
11 (x) = 1

32m2
− 3h̄λ

512
√

m5k3
+ 59h̄2λ2

16384m3k3
,

g(0)
12 (x) = 1

32mk
− 7h̄λ

512
√

m3k5
+ 143h̄2λ2

16384m2k4
,

g(0)
13 (x) = h̄

128
√

m3k3
− 21h̄2λ

4096m2k3
+ 2353h̄3λ2

589824
√

m5k9
,

g(0)
22 (x) = 1

32k2
− 11h̄λ

512
√

mk7
+ 785h̄2λ2

49152mk5
,

g(0)
23 (x) = h̄

128
√

mk5
− 89h̄2λ

12288mk4
+ 3841h̄3λ2

589824
√

m3k11
,

g(0)
33 (x) = 13h̄2

6144mk3
− 31h̄3λ

12288
√

m3k9
+ 57227h̄4λ2

21233664m2k6
. (87)

Note that by multiplying the components g(0)
i j in Eq. (87)

by h̄2 and comparing the result with the corresponding com-
ponents gi j (I; x) in Eq. (86), we have that terms with the same
powers of h̄ and I have exactly the same functional depen-
dence on the parameters m, k, and λ. Then, to match Eqs. (86)
and (87), it is reasonable to consider g(0)

i j = 1
h̄2 gi j (I; x).
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By doing this, we find the following identifications for the
ground state: I2 = h̄2, I3 = 3

2 h̄3, and I6 = 1030086
130621 h̄6. In the

case of I4 and I5, the identifications are not unique, but they
differ from each other slightly. Actually, for I4 we find I4 ≈
2.4h̄4, 2.43h̄4, 2.44h̄4, 2.45h̄4, 2.47h̄4, 2.51h̄4, whereas for I5

we find I5 ≈ 4.18h̄5, 4.29h̄5, 4.35h̄5. Therefore, g(0)
i j can only

be obtained in an approximate way from gi j (I; x) through the
relation g(0)

i j ≈ 1
h̄2 gi j (I; x) with the appropriate identifications.

This result is somehow expected because we have been deal-
ing with perturbation theories to arrive at Eqs. (86) and (87).
Finally, it is worth mentioning that the determinants of the
metrics defined by the components (86) and (87), obtained by
keeping terms up to second order in λ, are zero. Nonetheless,
if one of the parameters is left fixed, then the corresponding
(classical or quantum) metric could have a nonvanishing
determinant.

V. ALTERNATIVE EXPRESSIONS FOR THE QUANTUM
METRIC TENSOR AND BERRY’S CONNECTION

We now extend the use of the classical functions Gi given
by Eq. (8) to the quantum case. To this end we start by
promoting the functions Gi(q, p; x), expressed in terms of the
variables (q, p), to quantum operators Ĝi(q̂, p̂; x) which we
assume to be Hermitian. By analogy with the classical case
where Giδxi generates a displacement in the parameter space,
it is reasonable to consider δxiĜi(q̂, p̂; x) as the generator the
infinitesimal displacement of states |n(x)〉 → |n(x′)〉, namely
|n(x′)〉 = exp (− i

h̄δxiĜi )|n(x)〉. Then, we can replace the op-
erators P̂i in Eq. (4) by the operators Ĝi, obtaining

ih̄|∂in(x)〉 = Ĝi|n(x)〉. (88)

This allows us to write down the quantum metric tensor (2)
[or Eq. (5)] in terms of Ĝi(q̂, p̂; x) as

g(n)
i j (x) = 1

h̄2 Re(〈ĜiĜ j〉n − 〈Ĝi〉n〈Ĝ j〉n). (89)

Note that on account of the Hermiticity of Ĝi, the r.h.s of this
expression is symmetric.

Similarly, we can recast Berry’s connection in terms of
the operators Ĝi(q̂, p̂; x). Indeed, using Eq. (88) and recall-
ing that the expectation values 〈Ĝi〉n are real (by virtue of
the Hermiticity of Ĝi), we can rewrite Berry’s connection,
A(n)

i (x) := −Im(〈n|∂in〉), in the following form:

A(n)
i (x) = 1

h̄
〈Ĝi〉n. (90)

Finally, we note that that taking into account Eqs. (88) and
(90), the action of the operator �Ĝi := Ĝi − 〈Ĝi〉n on the state
|n(x)〉 can be written as

�Ĝi|n(x)〉 = (ih̄∂i − 〈Ĝi〉n)|n〉 = ih̄
(
∂i + iA(n)

i

)|n〉, (91)

which resembles the structure of the covariant derivative
D(n)

i = ∂i + iA(n)
i with connection A(n)

i .
In the following example we shall see that Eqs. (89) and

(90) yield the expected results.

Example: Generalized harmonic oscillator with a linear term

For this example we consider the quantum generalized
harmonic oscillator with a linear term described by the Hamil-
tonian operator (60). The notation used here is the same as
in Example B of Sec. IV. The starting point is to promote
the corresponding classical functions Gi given by (57) to the
quantum operators:

Ĝi(q̂, p̂; x) = 1
2 fi(x)(q̂ p̂+ p̂q̂) + gi(x)q̂2 + hi(x)

(
p̂ + Y

Z
q̂

)
,

(92)

where fi(x), gi(x), and hi(x) are given by Eqs. (58a), (58b),
and (58c), respectively. Notice that by construction (92) is
Hermitian. Then, using the eigenfunctions (62) and the prop-
erties of the Hermite functions (41), we compute the quantum
metric tensor (89) with the operators (92), obtaining

g(n)
i j (x) = 1 + n + n2

2

(
fi(x) f j (x) + Z2

ω2
li(x)l j (x)

)

+
(
n + 1

2

)
ω

h̄Z

(
4W 2Z4

ω6
li(x)l j (x) + mi(x)mj (x)

)
,

(93)

where li(x) := gi(x) − Y
Z fi(x) and mi(x) := hi(x) − W Z

ω2 fi(x).
It can be verified, by explicit calculation, that Eq. (93)
leads directly to Eq. (63), which corroborates the validity of
Eq. (89). Finally, we apply Eq. (90) to the operators (92). The
result is

A(n)
i (x) =

(
gi(x) − Y

Z
fi(x)

)[(
n + 1

2

)
Z

ω
+ W 2Z2

h̄ω4

]
, (94)

which leads to Eq. (67) and, hence, verifies the validity of
Eq. (90).

VI. CONCLUSION

In this paper, we have introduced the metric (19) for
classical integrable systems and shown through examples
that it corresponds to the classical counterpart of the quan-
tum metric tensor (2). The classical metric is defined on
the parameter space and provides a measure of the distance
between nearby points in phase space, which is induced by
the adiabatic evolution of the classical system. We investigate
the main features of this classical metric. In particular, we
show that this metric is gauge invariant in the parameter space
in the sense that it remains unchanged when we perform
the canonical transformation (22), meaning that this classical
metric is independent of the “zero” point from which we
measure the angle variables. Most importantly, we find for the
considered examples that this metric agrees with the quantum
metric tensor in rank and the functional dependence on the
parameters. This allowed us to establish the exact relation
between both metrics for the generalized harmonic oscillator
and the generalized harmonic oscillator with a linear term,
provided the Bohr-Sommerfeld quantization rule for action
variable. For the nontrivial example of the quartic anharmonic
oscillator, these metrics were calculated by using perturbation
theories, and hence we find an approximate relation between
them. We use the generating function (9) of translations
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in the parameter space as the fundamental object to build
the aforementioned classical metric and demonstrated that
Hannay’s curvature could also be expressed in terms of it;
thereby providing a unified treatment for both geometric
structures. Finally, we extend the use of this classical generat-
ing function to the quantum case and obtain alternative expres-
sions for the quantum metric tensor and Berry’s connection,
which are verified for the case of the quantum generalized
harmonic oscillator with a linear term.

We would like to close by pointing out some remarks. First,
it would be interesting to address the possible existence of
the classical analog of the non-Abelian quantum metric tensor
proposed in Ref. [38], and the generalization of the metric (19)
for the case of classical systems with chaotic dynamics along
the lines of Ref. [39]. In particular, those authors first study
the quantum case, where they resort to time dependence to
find an expression for Berry’s curvature. Then they introduce
a semiclassical approximation and get an expression for the
classical curvature, where instead of employing action-angle
variables, they perform the integration restricted to a particular
energy shell. This classical curvature then reduces to Han-
nay’s curvature when the system is integrable. In this spirit,
as both the quantum and classical cases are still tractable,
we may as well generalize our proposed classical metric.
Nevertheless, for a nonintegrable Hamiltonian that slightly
differs from an integrable Hamiltonian, the classical metric
(19) might shed some light on the chaotic behavior through
the application of the canonical perturbation theory. A further
generalization of Eq. (19) is one wherein the classical metric
is invariant under a more general gauge transformation where
the shift λ in Eq. (22) also depends on the angle variables,
this motivated by the work of Ref. [33]. Another interesting
and useful future consideration is how to generalize the metric
(19) for a classical field theory.

Apart from possible generalizations, the metric (19), being
the classical analog of the quantum metric tensor, may help to
provide more insight into the investigation of quantum phase
transitions. Furthermore, the metric (19) may be relevant in
the context of shortcuts to adiabatic processes in classical
integrable systems, which consist of the use of a control
Hamiltonian Kc(ϕ, I; x) that turns out to be Kc = Gi(ϕ, I; x)ẋi

and achieves a constant action variable I with arbitrarily fast
changing parameters x [40]. In this line of thought, it may
be noted that in Ref. [41] is proposed a metric analogous
to Eq. (19) that emerges in the study of the thermodynamic
cost of shortcuts to adiabaticity and defines a distance be-
tween the initial and final statistical states of the classical
system.
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APPENDIX: QUANTUM QUARTIC ANHARMONIC
OSCILLATOR

The Hamiltonian operator of the system is

Ĥ = p̂2

2m
+ k

2
q̂2 + λ

4!
q̂4. (A1)

Here we consider a perturbative treatment in the parameter λ

since there is not an exact solution to the resulting Schrödinger
equation. Furthermore, we restrict ourselves to obtain the
ground-state wave function and its energy up to third order in
λ. To accomplish this task, we will use the method proposed in
Ref. [42], which is suitable to find corrections to large powers
of λ.

The adimensional form of the eigenvalue problem consid-
ered is (

− d2

dQ2
+ Q2 + �Q4

)
ψ (Q) = εψ (Q), (A2)

where we defined the following quantities

� := h̄λ

12m2ω3
0

, Q :=
√

mω0

h̄
q, ε := 2E

h̄ω0
, (A3)

with ω0 = (k/m)1/2. After applying the method, the resulting
nonnormalized ground-state wave function ψ0(Q), to third
order in �3, is

ψ0(Q; x) = e
−Q2

2

[
1 − �Q2

8
(Q2 + 3) + �2Q2

384
(3Q6

+ 26Q4 + 93Q2 + 252) − �3Q2

3072
(Q10 + 17Q8

+141Q6 + 813Q4 + 2916Q2 + 7992)

]
, (A4)

and the corresponding energy is

ε = 1 + 3

4
� − 21

16
�2 + 333

64
�3. (A5)

Returning to our original variables and normalizing, we
arrive at

ψ0(q; x) = e− mω0
2h̄ q2

[
4

√
mω0

π h̄
− λP1(q; x)

384 4

√
πm7ω11

0 h̄5

+ λ2P2(q; x)

884736 4

√
πm15ω23

0 h̄9
− λ3P3(q; x)

339738624 4

√
πm23ω35

0 h̄13

]
,

(A6)

and

E0 = h̄ω0

2
+ h̄2λ

32m2ω2
0

− 7h̄3λ2

1536m4ω5
0

+ 37h̄4λ3

24576m6ω8
0

, (A7)

where

P1(q; x) = 4m2ω2
0q4 + 12h̄mω0q2 − 9h̄2, (A8)

P2(q; x) = 48m4ω4
0q8 + 416h̄m3ω3

0q6 + 1272h̄2m2ω2
0q4

+ 3384h̄3mω0q2 − 4677h̄4, (A9)
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P3(q; x) = 64m6ω6
0q12 + 1088h̄m5ω5

0q10 + 8592h̄2m4ω4
0q8

+ 48288h̄3m3ω3
0q6 + 154524h̄4m2ω2

0q4

+ 419076h̄5mω0q2 − 729153h̄6. (A10)

Plugging Eq. (A6) into Eq. (2) and keeping terms up to second
order in λ (due to derivatives with respect to λ are present), we
arrive at the components of the quantum metric tensor given
by Eq. (87).
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