
PHYSICAL REVIEW E 99, 032142 (2019)

Machine learning of phase transitions in the percolation and XY models

Wanzhou Zhang,1,2 Jiayu Liu,1 and Tzu-Chieh Wei2
1College of Physics and Optoelectronics, Taiyuan University of Technology, Shanxi 030024, China

2C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,
State University of New York at Stony Brook, Stony Brook, New York 11794-3840, USA

(Received 16 May 2018; revised manuscript received 18 January 2019; published 29 March 2019)

In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical
models on the two-dimensional lattices, whose transitions involve nonlocal or topological properties, including
site and bond percolations, the XY model, and the generalized XY model. We find that using just one hidden layer
in a fully connected neural network, the percolation transition can be learned and the data collapse by using the
average output layer gives correct estimate of the critical exponent ν. We also study the Berezinskii-Kosterlitz-
Thouless transition, which involves binding and unbinding of topological defects, vortices and antivortices,
in the classical XY model. The generalized XY model contains richer phases, such as the nematic phase, the
paramagnetic and the quasi-long-range ferromagnetic phases, and we also apply machine learning method to it.
We obtain a consistent phase diagram from the network trained with only data along the temperature axis at two
particular parameter � values, where � is the relative weight of pure XY coupling. Aside from using the spin
configurations (either angles or spin components) as the input information in a convolutional neural network, we
devise a feature engineering approach using the histograms of the spin orientations in order to train the network
to learn the three phases in the generalized XY model and demonstrate that it indeed works. The trained network
by using system size L × L can be used to the phase diagram for other sizes (L′ × L′, where L′ �= L) without any
further training.

DOI: 10.1103/PhysRevE.99.032142

I. INTRODUCTION

Recent advancement in computer science and technology
has enabled processing big data and artificial intelligence. Ma-
chine learning (ML) has been successfully and increasingly
applied to everyday life, such as digital recognition, computer
vision, news feeds, and even autonomous vehicles [1]. Aside
from that, ML methods have also been recently adopted to
various fields of science and engineering and, in particular,
in the context of phases of matter and phase transitions in
physics [2–5]. The main tools are roughly divided into (I)
supervised machine learning (classification or regression with
labeled training data) and (II) unsupervised machine learning
(clustering of unlabeled data) [6].

Amongst the earliest development in this direction of
phases of matter, it was used in the study of the thermody-
namical phase transitions of the classical Ising model and its
gauge variant by supervised machine learning methods [2]. In
addition, unsupervised learning was also applied to the Ising
model and the XY model mainly by the principal component
analysis (PCA) method and the autoencoder (an artificial
neural network) [3–5,7]. Other unsupervised methods, such
as random trees embedding and t-distributed stochastic neigh-
boring ensemble (SNE), have also been used (see, e.g., [8]).
Instead of just learning the transition, a learning scheme
called confusion method was invented to predict the phase
transitions [9], and similarly a moving-window method was
also shown to be useful [10]. Beyond classical physics, the
quantum many-body problems have also been studied with
artificial neural networks in the description of equilibrium

and dynamical properties [11]. For example, the strongly
correlated Fermi systems were studied using, e.g., connected
networks [12], self-learning methods [13], and even with
ML methods beyond limitation of the sign problems [14].
Other systems have also been studied successfully, such as
topological phases [15–19], disorder systems [20], quantum
percolation model [21], nonequilibrium models [22,23], and
many others [24–31]. The machine learning has also been
discussed in the context of tensor networks [32,33], and is
helpful to accelerate the Monte Carlo sampling and reduce
the autocorrelation time [34–36]. Attempts have been made to
understand theoretically by mapping it to the renormalization
group [37].

Here, we focus on using mostly supervised machine learn-
ing methods to study two types of classical statistical models,
whose transitions involve nonlocal or topological properties,
including site and bond percolations, the XY model and the
generalized XY (GXY) models. In order to apply supervised
learning to calculate phase boundaries, one needs to prepare
Monte Carlo configurations in three regimes [2]: (i) below the
suspected Tc, (ii) above the suspected Tc, and (iii) an interme-
diate regime in a region containing Tc. The first two regimes
are used for training: by applying the trained algorithm to
configurations in the vicinity of Tc, one can infer an accurate
Tc. However, if the purpose is to learn (instead of predicting)
the phase transition, configurations from all three regimes are
used for both training and testing, with the latter being used to
verify that the network indeed can learn the transition and the
distinct phases with high confidence [2].

2470-0045/2019/99(3)/032142(14) 032142-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.032142&domain=pdf&date_stamp=2019-03-29
https://doi.org/10.1103/PhysRevE.99.032142

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

When the model under study has a local order parameter
(OP) such as the magnetization, the optimized fully connected
network (FCN) actually can recognize phase transitions by
essentially averaging over local spins [2]. For the phase tran-
sition characterized by the nonlocal order parameters, such
as the topological phase of the Ising gauge model [2] or the
classical XY model [38], the convolutional neural network
(CNN) is a better tool than the FCN as it encodes spatial infor-
mation. It was demonstrated in the classical two-dimensional
(2D) Ising gauge model that the optimized CNN essentially
uses violation of local energetic constraints to distinguish the
low-temperature from the high-temperature phase [2].

In percolation, nonlocal information such as the wrapping
or spanning of a cluster is needed to characterize the phases
and the transition in-between. Percolation is one of the sim-
plest statistical physical models that exhibits a continuous
phase transition [39–41], and the system is characterized by
a single parameter, the occupation probability p of a site or
bond, instead of temperature. If a spanning cluster exists in
a randomly occupied lattice, then the configuration perco-
lates [42]. Can the neural network be trained to recognize such
nonlocal information and learn or even predict the correct crit-
ical point? If so, can it be used to reveal other properties of the
continuous transition, such as any of the critical exponents?
This motivates us to study percolation using machine learning
methods.

We first use the unsupervised t-SNE method to characterize
configurations randomly generated for various occupation
probability p and find that it gives clear separation of configu-
rations away from the percolation threshold pc. This indicates
that other machine learning methods such as supervised ones
will likely work, which we also employ. We find that both the
FCN and the CNN works for learning the percolation tran-
sition, and the networks trained with configurations labeled
with information of whether they are generated with p > pc

or p < pc can result in a data collapse for different system
sizes, giving the critical exponent of the correlation length. We
alternatively train the neural network to learn the existence of
a spanning cluster and with this the percolation transition can
be identified (without supplying labels of p > pc or p < pc).

Our interest in the XY model originates from its topolog-
ical properties, vortices, and how ML methods can be used
to learn the Berezinskii-Kosterlitz-Thouless (BKT) transition.
The XY model in the two- and three-dimensional lattices
was studied by the unsupervised PCA method [4,5] and
generative model [43]. In Ref. [5], various choices of input
were considered, e.g., spin configurations (i.e., components of
spins), local vortices, and their square into the PCA method. It
was concluded that learning the vortex-antivortex unbinding
to predict the transition might be difficult in the PCA. In a
very recent work by Beach, Golubeva, and Melko [38], it was
shown that the CNN works better than FCN to learn the BKT
transition. Furthermore, the advantage of using vortices rather
than spin configurations only shows up for large system sizes,
e.g., L � 32, but for smaller sizes using spin configurations
may work better. Here, for small sizes we use either spin
orientations or their components as input to a CNN and verify
that both give successful learning of the BKT transition in the
XY model. Additionally, we find that using the histograms of
the spin orientations also works for the XY model and can be

applied efficiently to larger system sizes Additionally, we find
that using the histograms of the spin orientations also works
for the XY model and the training can be done efficiently for
larger system sizes. To go beyond the XY model, we find it
interesting to apply the ML to the generalized XY (GXY)
model [44,45] as it contains more complex configurations
such as half-vortices linked by strings (domain walls) and an
additional nematic phase. We find the use of spin configura-
tions (either angles or spin components) and histograms both
works. The advantage of the latter approach is that the training
can be done for larger system sizes and, moreover, trained
network for one system size can be applied to other system
sizes.

The outline of this work is as follows. In Sec. II, we
introduce models to be studied, i.e., site and bond perco-
lations, the XY model and the GXY models. In Sec. III A,
we show classifications via the t-SNE approach on the high-
dimensional configurations of site and bond percolation on
both square and triangular lattices. Then, supervised learning
using the fully connected neural network is illustrated in
Sec. III B. In Sec. III C, the CNN structure is introduced and
the learning results of percolations by using the CNN are
described, and a different way of labeling the configuration
(using the existence of a spanning cluster) is used. No labeling
regarding p > pc or p < pc is used there, but the transition
point can be obtained. In Sec. IV we use the CNN to study the
XY model and its generalized versions. For the GXY model
containing a nematic phase, we construct the histograms of the
spin orientations and then use them as images for the network
to learn. This way of feature engineering can result in better
learning of the transitions. We conclude in Sec. V.

II. MODELS

In this paper we study two types of classical statistical
physical models, include (I) site and bond percolations, and
(II) the XY model and (III) the GXY models. Let us introduce
them as follows.

(Ia) Site percolation. The site percolation can be defined by
the partition function

Z =
∑

{σ }
pnσ

s
s (1 − ps)N−nσ

s , (1)

where, e.g., on the square lattice with N = L × L sites, ps is
the probability of site occupation, nσ

s is the number of sites
being occupied in the configuration labeled by σ . In order
to obtain the critical phase transition points by Monte Carlo
simulations, usually the wrapping probability R is defined [42]
in the case of the periodic boundary condition. With open
boundaries, a cluster growing large enough could touch the
two opposite boundaries and hence it is referred to a spanning
cluster. The wrapping cluster is defined as a cluster that
connects opposite sides that would be in the otherwise open
boundary condition, as illustrated in Figs. 1(a) and 1(b). A
cluster forming along either the x or y direction can contribute
to R. In ML method, we do not need to measure this ob-
servable directly and a naive labeling of each configuration is
given according to how it is generated according to the occu-
pation probability p and p’s relation with the critical value (the
percolation threshold) pc, i.e., whether p > pc (say labeled

032142-2

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

(b)(a)

(d)(c)

FIG. 1. (a) A site percolation configuration on the square lat-
tice with periodic boundary condition. With the periodic boundary
condition, the dashed line connects the opposite sides of the largest
cluster and it demonstrates the “wrapping.” (b) A bond percolation
configuration on a square lattice. (c) Configuration of the XY model
on the square lattice. (d) Configuration of the XY model on the
honeycomb lattice.

as “1”) or p < pc (say labeled as “0”). This resembles the
scenario in the Ising model whether configurations are labeled
according to whether they are generated above or below the
transition temperature Tc. But, such a topological property
of wrapping (or percolating) can be used as an alternative
labeling for training the neural network (see Sec. III C 3).

(Ib) Bond percolation. The bond percolation partition func-
tion can be defined as

Z =
∑

{σ }
p

nσ
b

b (1 − pb)N−nσ
b , (2)

where pb is the probability of occupying a bond on the
lattices, nb is the number of bonds being occupied in the bond
configuration σ . The wrapping or spanning cluster is defined
in a similar way as in the site percolation.

(II) XY model. The Hamiltonian of the classical XY
model [46] is given by

H = −J
∑

〈i, j〉
�si · �s j = −J

∑

〈i, j〉
cos(θi − θ j), (3)

where �si is unit vector with two real components and 〈i, j〉
denotes a nearest-neighbor pair of sites i and j, and θi in
(0, 2π] is a classical variable defined at each site. The sum in
the Hamiltonian is over nearest-neighbor pairs or bonds on the
square lattice (L × L) with the periodic boundary condition;
other lattices can be also considered.

(III) Generalized XY model. The Hamiltonian of the classi-
cal GXY models is given by

H = −
∑

[� cos(θi − θ j) + (1 − �)cos(qθi − qθ j)], (4)

where � is the the relative weight of the pure XY model,
and q is another integer parameter that could drive the system
to form a nematic phase. For both � = 0 and 1 the model

reduces to the pure XY model (redefining qθ as θ in the
first case), and hence the transition temperature is identical
to that of the pure XY model. However, such a redefinition
is not possible with � �= 1. The phase diagrams of the GXY
models (4) depend on the integer parameter q, and they have
been explored extensively [44,45].

III. PERCOLATIONS

Even though we mainly use supervised learning methods,
we will begin the study of percolation using an unsupervised
method, the t-distributed stochastic neighbor embedding (t-
SNE). We shall see that it can characterize configurations
randomly generated in percolation to two distinct groups with
high and low probabilities p of occupation as well as a belt
containing configurations generated around the percolation
threshold p = pc. This gives us confidence to proceed with
supervised methods such as FCN and CNN.

A. Learning percolation by t-SNE

The t-SNE is an unsupervised machine learning algo-
rithm for dimensionality reduction via an iteration proce-
dure [47]. By using a nonlinear technique (unlike the PCA), it
projects high-dimensional data (e.g., M-dimensional objects
x1, . . . , xN) into a two-dimensional space, which can then
be visualized in a scatter plot, where similar (or dissimilar)
objects are modeled by nearby (or distant) points. (Here, the
bold symbols mean that each x is an M-component vector.)
For example, it has been successfully used to analyze the
Ising configurations and project the data into two-dimensional
scattering figures [2].

We show, in Fig. 2(A), for site percolation on the square
lattice with size L = 32, such a scatter plot, produced by
using M = 11 000 site configurations in the t-SNE procedure,
where each configuration x contains 32 × 32 = 1024 ele-
ments 0 or 1. Figure 2(A) is the distribution obtained after only
one step of iteration in the t-SNE method. Clearly, after the
first iteration, the data for both labels are still mixed together
and there is no separation into distinct groups. However, after
2000 iterations, as shown in Fig. 2(B), the data converge into
three distinct groups, with two concentrated clusters and a
wide “belt.” The concentrated cluster with yellow solid circles
indicates data generated from nonpercolating (or subcritical)
phase, i.e., p < pc, while the purple cluster indicates data
from the percolating (or supercritical) phase, i.e., p > pc. In
addition to the two distinct clusters, the belt contains the data
around the percolation transition point pc (roughly between
0.2 and 0.8). Similar behavior in the t-SNE analysis of the
distribution is also obtained in the percolation study on the
triangular lattice, as shown in Figs. 2(a) and 2(b).

We remarked that there are only two colors used in
Figs. 2(A), 2(a), 2(B) and 2(b), indicating only above or
below pc, but a continuous hue between pink (dark shade)
and yellow (light shade) was used in Figs. 2(C) and 2(c) to
denote the occupation probability p. In Figs. 2(C) and 2(c), we
show the embeddings for occupation probability p of the bond
percolation on the square lattice and on the triangular lattice,
respectively, both with L = 16. The behavior is similar to that
of site percolation. The upshot is that the t-SNE method can

032142-3

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

(A) (a)

(B) (b)

(C) (c)

FIG. 2. The t-SNE distribution of site percolation on the square
lattice with L = 32 for (A) one step of iteration, and (B) 2000 steps
of iterations. (C) The result for bond percolation on the square lattice
with size L = 16 after 1100 iterations. The t-SNE distribution of site
percolation on the triangular lattice with L = 32 for (a) only one step
of iteration and (b) 2000 steps of iteration. (c) The result for the bond
percolation on triangular lattice at L = 16 after 1100 iterations. Note
that in (A), (a), (B), and (b), we only use two colors pink (dark shade)
and yellow (light shade), but in (C) and (c) the samples are colored
according to the probability p of occupation, from pink (dark shade)
to yellow (light shade).

characterize percolation configurations into different phases
and near the transition. In order to obtain the transition point
pc, one can probably divide the belt into two halves and the
probability value p at the cut can be used as an estimation of
the percolation threshold. But, we do not do that here, as we
will use supervised learning below to learn the transition more
accurately.

B. Learning percolation by FCN

In Fig. 3, we show the structure of the FCN (which we
implemented with the TensorFlow library [48]), which con-
sists of one input layer, one hidden layer, and one output layer
of neurons. The network between two neighboring layers is
fully connected, i.e., each neuron in one layer is connected
to every neuron in the previous and next layers. The layers
are interconnected by sets of correlation weights (usually
denoted by a matrix W) and there are biases (denoted by a
vector b associated with neurons at each layer, except the
input one). The input layer accepts the data sets of images
or configurations and then the network processes the data
according to the weights and biases, as well as some activation

2

input layer
hidden layer

output layer

Neuron

X W W Y

Input

1 2 3 4
1

4
3
2 1

0

1

FIG. 3. Architecture of the fully connected neural network used
to obtain pc for the site percolation model. The input is a set of =
configurations in a two-dimensional lattice with periodic lattice with
size L = 4. A percolating configuration is illustrated, where the
blue squares are the occupied sites while the empty squares are not
occupied.

function for each neuron. The optimization is performed to
minimize some cost function, e.g., the cross entropy function
in Eq. (8) via the stochastic gradient decent method. The
number of neurons in the input layer should be equal to the
total number of lattice sites, i.e., L × L in the site percolation
(or the number of spins in the Ising model), or the total number
of bonds in the bond percolation. The values of the neurons
are denoted as the input vector x.

The hidden layer is to transform the inputs into something
that the output layer can use and one can employ as many such
hidden layers (but we will focus on just one hidden layer in
FCN). It determines the mapping relationships. For example,
as illustrated in Fig. 3, we denote W1 as the weight matrix
from the input to the hidden layer and b1 the bias vector for
the hidden layer. The number of neurons in the hidden layers
generally is chosen to be approximately of the same order
as the size of the input layer or less. Assume the activation
function for the neurons in the hidden layer is f . Then, the
neurons in the hidden layer will output yH = f (x · W1 + b1).
Denote W2 as the weight matrix from the hidden to the output
layer and b2 the bias vector for the output layer. Assume
the activation function for the neurons in the hidden layer
is g. Then, the neurons in the output layer will have states
described by y = g(yH · W2 + b2). One choice usually used as
the activation is the so-called sigmoid function

σ (z) ≡ 1

1 + e−z
, (5)

related to the Fermi-Dirac distribution in physics. Another is
the so-called softmax function that, when applied to a vector
with components z j , gives another vector with components

a j = ez j

∑
k ezk

, (6)

032142-4

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

and it is related to the Boltzmann weight in physics. Yet an-
other choice that has become popular recently is the rectifier,
defined as frec(z) = max(0, z), and one unit that uses this
activation function is called a rectified linear unit. In principle,
one can employ as many hidden layers in the network. It is the
universality of the neural network, i.e., it can approximate any
given function, that makes machine learning powerful.

These weights W ’s and biases b’s need to be optimized
at the training stage. The inputs consist of pairs of {x : yT },
where each configuration is represented by a vector x of L × L
components of value being 1 (whether a site is occupied)
or 0 (not occupied) and a corresponding label yT indicating
whether the configuration x is generated above or below
the percolation threshold pc. This label can be described by
one single binary number, e.g., 1 representing p > pc and 0
representing p < pc. The cost function can be chosen as (i)
the average two-norm between the label vectors yT and the
output layer vector y (resulting from input x) over many such
pairs,

L2 ≡ 1

N

∑

x

|y(x) − yT (x)|2, (7)

or (ii) the average cross entropy between such pairs

CE ≡ − 1

N

∑

x

∑

j

[yT j log y j + (1 − yT j) log(1 − y j)]. (8)

An additional term called regularization, such as
λ/(2N)

∑
i |Wi|2, is introduced to the cost function in

order to prevent overfitting. The optimization is done with
stochastic gradient descent using the TensorFlow library.

Once the network is optimized after the training stage, we
use as input different and independently generated configu-
rations with possibly different sets of p values, and use the
average values of the output layer y (sometimes referred to
as the average output layer) from the network to estimate
the transition. This is referred to as the test stage. The two
components in y are in the range [0,1], and the larger the value
of the component (associated with a neuron) gives the more
probable prediction the neuron makes. Usually, we plot such
average numbers for both output neurons (one is associated
label 0 and the other 1). This results in two curves as a function
of the probability p, as illustrated in Fig. 4. The value of p
at which the two curves cross is used as an estimate of the
percolation threshold. Note that, as seen below in Sec. IV,
when we encounter three or more phases to identify, then the
number of neurons in the output layer will be accordingly
three or more.

In Fig. 4(A), we show the two average values y1 and y2

in the output layer, obtained by testing the network with site
percolation configurations in the range of 0.562 < p < 0.625
for different system sizes. The FCN was trained using data
from 0 < p < 1 with 2500 samples per value of p. To reduce
the statistical errors, 20 000 samples per p are used for the test
data to obtain two neurons y1(p) and y2(p), i.e., the average
values of the output layer. We find that the two corresponding
lines cross, and the crossing in Fig. 4(B) as function of 1/L
is used to estimate the transition point in the thermodynamic
limit L → ∞. From this, pc is estimated to be 0.594 ± 0.002.
This agrees with the phase transition from the Monte Carlo

0.562 0.593 0.625
p

0

0.5

1

y 1 ,
y 2

L4
L8
L16
L24
L32
L48

0.465 0.5 0.535
p

0

1

0 0.1 0.2 0.3
1/L

0.55

0.593

0.65

p c

0 0.1 0.2 0.3
1/L

0.46

0.5

0.54

-0.3 0.2 -0.1 0 0.1 0.2 0.3
(p - pc)L1/v

0

0.5

1

y 1 ,
y 2

-0.4 -0.2 0 0.2 0.4
(p - p)c L1/v

0

0.5

1

(A)

(B)

(a)

(b)

(C) (c)

FIG. 4. The two values y1 and y2 of the output layer of site perco-
lation on the square lattice (left columns) and triangular lattice (right
columns) with the system sizes L = 4, 8, 16, 24, 32, 48 using the
fully connected network. The second and last rows are, respectively,
the average results of the output layer (y1, y2), and the finite size
scaling for extracting the critical point, the data collapse of y1 and y2.

methods within error bars [49]. In Fig. 4(C), we show the
data collapse of the two average output layers. Due to the
finite size effects, the intersects between different sizes L =
4, 8, 16, 24, 32, and 48, are slightly shifted away from the
exact pc. By taking into account this and by rescaling the
horizontal axis with (p − pc)L1/ν , the data collapse very well
to a single curve for each neuron output, with the use of the
exponent ν = 4

3 from percolation theory [50].
During the stage of training, the labeling yT gives the infor-

mation whether a configuration is generated at the probability
p greater or less than pc. The information about whether the
individual configuration is percolating or not is not known.
However, one would expect that for the configurations gen-
erated sufficiently away from p = pc, the neural network is
learning such a property. But close to pc even if a configura-
tion is generated at p < pc it can still be percolating and vice
versa even if a configuration is generated at p > pc it may not
be percolating. There are a lot of fluctuations near pc; see also
Figs. 9(e) and 9(f). In Sec. III C 3, we will use the alternative
labeling by giving the information of whether a configuration
is percolating or not.

We also apply the FCN to site percolation on other lat-
tices. For example, on the triangular lattice, the percolation
threshold pc = 0.5 is also exactly known [51]. Similar to the
square lattices, we generate the configuration with randomly
occupied sites with a statistically independent probability p
and then label the configurations according to whether p > pc

or p < pc. After training the FCN, we test FCN with different
data sets, the average values of the output layer cross at
the phase transition point pc = 0.5 [51]. The data collapse
and the finite size scaling are shown in Figs. 4(b) and 4(c),
respectively.

Similarly, we use the FCN to study bond percolation,
and the results are shown in Figs. 5(A) and 5(B) give the
average output layer for the square lattice (with sizes L =

032142-5

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

0.48 0.5 0.52
p

0.2

0.5

0.8

y 1,
y 2 L4

L8
L16
L24

0.33 0.347 0.36
p

0.2

0.5

0.8

0 0.1 0.2 0.3
1/L

0.485
0.5

0.515

p c

0 0.1 0.2 0.3
1/L

0.315

0.347

0.375

(A)

(B)

(a)

(b)

FIG. 5. The two values y1 and y2 of the output layer of the
machine learning for bond percolation on the square lattice (left
columns) and triangular lattice (right columns) with the system sizes
L = 4, 8, 16, 24 using the fully connected network. The first and the
second rows show the average results in the output layer y1 and y2

and the finite size scaling for the critical points, respectively.

8, 16, 24, 32), and finite size scaling (yielding the critical
point at pc = 0.5), respectively. Figures 5(a) and 5(b) show
the results of bond percolation on the triangular lattices. The
bond percolation threshold [51] is at 2 sin(π/18) ≈ 0.347 and
our result agrees with it. We remark that in the training, each
input configuration has 2L × L bond variables for the square
lattice and 3L × L bond variables for triangular lattices.

Site percolation on the Bethe lattice was studied analyti-
cally and exact transition was known, and thus it is interesting
to apply the neural network. In Fig. 6(a) we illustrate the
Bethe lattice with four shells, indicated by the green dashed
lines. Different from the square or triangular lattices, the
Bethe lattice with coordination number z (here z = 3) has a
topological tree structure that expands from a central site out
to infinity [52]. Each site has one neighboring site pointing
toward the central site and z − 1 sites going away from it.
The total number of sites in K th shell is NK = z(z − 1)(K−1).
Checking whether the configuration percolates or not by ma-
chine learning is interesting because the path connecting any
two sites of different trees has to go through the central site.
The exact critical probability [52] is known to be at pc = 0.5
and our learning results in Fig. 6(b) show that the FCN can
recognize the phase transition after training the network. The
results are obtained using K = 3 and 5 and the total size is
N = 1 + ∑K

1 NK , i.e., 22 and 94.

(a)
(b)

0.48 0.5 0.52
p

0.5

y 1, y
2 K3

K5

FIG. 6. (a) Bethe lattice with coordination number z = 3. The
lattice sites are represented by solid circles at different shells K =
0, 1, 2, (b) The average values y1 and y2 in the output layer of
site percolation on the Bethe lattice for K = 3 and 5.

convolution pooling fully connected layers

FIG. 7. Architecture of the fully connected neural network used
to obtain pc for the site percolation model. The input is the configura-
tions in a two-dimensional lattice with periodic boundary condition,
illustrated with size L = 4. The colored or shaded squares are the
occupied sites while the white squares are not occupied.

C. Learning percolation by CNN

We have seen in the previous section that the FCN works
well in learning percolation transition. However, the informa-
tion about the lattice structure is not explicitly used, but rather
it might be inferred during optimization. For problems that
have such natural spatial structure, the CNN is naturally suited
and can yield better results.

1. CNN structure

We first begin by discussing the structure of the CNN
shown in Fig. 7, where the input is a two-dimensional array
or an image. There is a filter with a small size such as 5 × 5
also called a local receptive field, that processes information
of a small region. This same local receptive field moves along
the lattice to give a coarse-grained version of the original 2D
array or image. We can move the filter not one lattice site
but a few (which is usually called stride to the next region).
We can also pad the outer regions with columns or rows of
zeros so as to maintain the same size of the filtered array,
which is referred to as padding. This results in a filtered
or generally coarse-grained hidden layer. We can use many
different local receptive fields to obtain many such layers,
usually referred to as kernels. Roughly speaking, the original
image is converted to small ones with different features. For
each kernel, a further processing called maxpooling is done on
nonoverlapping small patches, e.g., 2 × 2 regions, that further
coarse grain the arrays. Other pooling methods can be used.
One can repeat such convolution+pooling layers a few times,
but we will use one such combination layer in the percolation
and two in the later part of the XY and the GXY models.
After this, there is a fully connected layer of neurons, as in
the FCN. This can be repeated a few more layers, but we will
only use one such layer here. Finally, the fully connected layer
is connected to a final output layer, and the number of neurons
depends on the output type; for example, to distinguish digits
0 to 9, there are 10 output neurons. For distinguishing between
two phases, there are two output neurons. Our optimization of
the CNN again takes the advantage of the TensorFlow library.

2. Site and bond percolations

We repeat the same study of percolation on square and
triangular lattices with CNN. In the CNN structure, we
use two combination layers (i.e., convolution+maxpool). In
Figs. 8(A) and 8(B), we show the results of site percolation

032142-6

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

0.55 0.593 0.650.2

0.5

0.8

y 1,y
2

6
8
10
12
14
16

0.48 0.520.2

0.5

0.8

0.48 0.52
p

0.25

0.5

0.75

y 1,y
2

0.33 0.347 0.397
p

0.25

0.5

0.75
4
6
8
10
12
14
16

(A)

(B)

(a)

(b)

FIG. 8. The two values y1 and y2 of the output layer, using the
CNN for site [(A) and (a)] and bond percolation [(B) and (b)] on the
square (left) and triangular (right) lattices, respectively.

and bond percolation results on the square lattice, respectively.
The critical point is converged to 0.593 and 0.5, respectively.
During the training, for the site percolation on, e.g., the square
lattice, the L × L site occupation configuration is used as in-
put. For the bond percolation, the 2L × L bond configuration
is used. As expected, the CNN works well in learning the
phase in percolation. For the site and bond percolation on
the triangular lattices, the results are also shown in Figs. 8(a)
and 8(b). We note that some slight improvement in the learn-
ing of the transition point can be made by careful choosing
of p’s; see Appendix C. We also comment that since the
Bethe lattices are not regular and we do not use CNN for the
corresponding percolation problem. But, it should be possible
in principle. Moreover, the FCN result of the percolation on
the Bethe lattices is good enough.

3. Labeling by cluster identifying algorithm

In this section, we would like to show a different ways
of training the data using the nonlocal property of whether
the configuration is percolating or not as the label y. In the
previous works for thermodynamic phase transitions [2,5,9],
for a configuration x at parameter such as T , the correspond-
ing label y is set to be 0 if T < Tc, which means that the
configuration is belonging to one phase. If T > Tc, the con-
figurations belong to another phase, and the label is set to be
1. Because the configurations around the percolation threshold
pc have fluctuations and the configurations at p < pc may also
be percolating and some configurations at p > pc may not be
percolating, as illustrated in Figs. 9(e) and 9(f). Therefore, it
is interesting to label the configuration according to whether
or not the configuration has a spanning or wrapping cluster,
instead of the relationship between occupation probability p
and pc.

Using the new labeling scheme, we show the results in
Figs. 9(a) and 9(c) with sizes L = 8, 16, 32, 48 by using FCN
and 9(b) and 9(d) with sizes L = 8, 12, 20 by using CNN.
Here, no information about whether p > pc or p < pc is
given to the network, and the labels of the configurations are
obtained by cluster-identifying algorithm [53]. However, the
crossing obtained from the average values of the two output
neurons gives the prediction of the percolation transition.
They agree with the known results very well.

0.520 0.593
p

0

1
L8
L16
L32
L48

0.520 0.593
p

0.5

1
L8
L16
L32
L48

0.520 0.593
p

0

1

L8
L12
L20

0.52 0.593
p

0.6

0.85

L8
L12
L20

0 0.593 1
p

0

0.5

1

L16

0 0.593 1
p

0

0.5

1

L12

(a)

(c)

(b)

(d)

(e) (f)

y 1 ,
y 2

FIG. 9. The two values y1 and y2 of the output layer, using the
cluster identifying method to label the configuration, with (a) the
FCN and (b) the CNN. The respective accuracy curves of (a) and
(b) are shown in (c) with FCN and in (d) with CNN. Labels {0, 1} for
percolation or not are shown for randomly generated configurations
with (e) L = 16 and (f) L = 12. Notice the fluctuations near the
transition.

IV. XY AND GXY MODELS

We now turn to the second type of models that we are
interested in, which includes the pure XY model and the GXY
model. As remarked in the Introduction, we shall first use as
input to the network either projections of the spin vector onto
x axis and y axis, i.e.,

x = (cosθ1, sinθ1, . . . , cosθN , sinθN), (9)

or the spin orientations {θi}. The vortices are defined as
the winding numbers, i.e., a collection ±1 for vortices and
antivortices, but we shall not use those as input, for the reason
remarked earlier due to the results in Ref. [38]. The results in
Ref. [38] show that the detection of vortices does not neces-
sarily result in the best classification accuracy, especially for
lattices of less than approximately 1000 spins. The advantage
may show up for larger sizes, but the training becomes more
costly. Here, we limit ourselves to smaller sizes for using
spin orientations (or their components) in the training, but
later introduce a different approach in feature engineering that
can be efficiently applied to larger systems. In terms of the
two-dimensional image for the CNN, when we use the spin
components, the L × L sites need to be effectively doubled to
L × 2L that gives the same information of x.

In the following, we will focus on the pure XY model
on both the square and the honeycomb lattices and the GXY
model with q = 2, 3 and q = 8 on the square lattices.

A. Pure XY model

The configurations of XY model on the square and hon-
eycomb lattices are obtained by the classical Monte Carlo

032142-7

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

0.75 0.8935 1T

0.2

0.5

0.8

y 1,
y 2

6
8
12
14
16

0.75 0.8935 1
T

0.2

0.5

0.8
4
6
8
10

0 0.1 0.2
1/L

0.8
0.9

T c

0 0.1 0.2
1/L

0.8
0.9

(A)

(B)

(a)

(b)

Tc=0.89(1) Tc=0.891(8)

FIG. 10. The two values y1 and y2 of the output layer using
the CNN for XY model by inputting (A) {θi} with sizes L =
6, 8, 12, 14, 16 and (a) {sin θi, cos θi} with sizes L = 4, 6, 8, 10 on
the square lattices. (B), (b) Finite size scaling of the critical points;
the results obtained are consistent with Tc = 0.8935 within error bars
for both types of the inputs.

method; see, e.g., Refs. [54,55]. In the zero temperature limit,
the spin at each site will point to the same orientation as the
model is ferromagnetic. However, at a finite and small tem-
perature T less than TKT , the spin orientations of spins point
almost to the same direction with some fluctuation, but there
are excitations in the form of bound vortex-anitvortex pairs.
Above the TKT , the spin orientations will become disordered
as the vortex-anitvortex pairs unbind.

Since the phase transition points are already known for
the XY model on both lattices [46,56,57], i.e., T square

c =
0.8935(1), and T honeycomb

c = √
2/2, respectively, it is thus

interesting to see whether or not machine learning could
recognize the phase transition of XY model. Although the
BKT transition of the XY model has been studied by machine
learning methods [38], it is our motivation to go beyond and
study the GXY model.

In Figs. 10(A) and 10(a), we show the learning results
using the raw spin configurations (i.e., both spin directions
{θi} and spin components {sinθi, cosθi}) on the square lat-
tices with sizes L = 4 to 16. The lines y1 and y2 correspond to
the average values of the two output neurons. Due to the fact
that the performance of the network is lowest near the critical
points, we use 25 000 Monte Carlo samples of the training
data and of test data for each temperature T . In this way, we
obtain results with low standard deviations around the critical
point in the range 0.75 < T < 1.

Figures 10(B) and 10(b) show the dependence on the lattice
size L of the estimated critical points Tc. The green symbols
are obtained from the intersections. The red curves are fitted
by the result from renormalization group [58]:

Tc(L) = Tc + b

[log(L)]2
, (10)

where the coefficient b = π2/4c and c is a parameter. In the
thermodynamic limit, the estimated transition temperatures
are Tc = 0.89 ± 0.01 and Tc = 0.891 ± 0.008 for the pure
XY model by using as the input {θi} and {cosθi, sinθi},
respectively. The results agree with the result of Tc = 0.8935.
The CNN indeed works well in learning the BKT transition
for the XY model, as previously demonstrated in Ref. [38] on
the square lattice, so the success here comes with no surprise.

0.6 0.707 0.8
T

0.2

0.5

0.8

y 1,
y 2

4
6
8
10

0.68 0.707 0.76
T

4
6
8
10
12

0 0.1 0.2
1/L

0.67

0.73

T c

0 0.1 0.2
1/L

0.67

0.73

(A)

(B)

(a)

(b)

Tc T10.0-/+17.0= c=0.725+/-0.009

FIG. 11. The two values y1 and y2 of the output layer using the
CNN for XY model by inputting (A) {θi} with sizes L = 4, 6, 8, 10
and (a) {sin θi, cos θi} with sizes L = 4, 6, 8, 10, 12 on the honey-
comb lattices. (B), (b) Finite size scaling of the critical points; the
results obtained are consistent with Tc = 0.707 using both types of
the inputs.

Using the spin configurations on the honeycomb lattices as
the input to the CNN gives good learning results as shown
in Fig. 11. We note that the unit cell of the honeycomb has
two sites. Each configuration thus has N elements, where
N = 2L × L for using {θi} and N = 4L × L for using {cosθi,
sinθi}. Our result agrees decently with the theoretical value
Tc = √

2/2 ≈ 0.707. (Some slight improvement can be made
by choosing training data generated at temperatures symmet-
ric about Tc and without including those at Tc; see Appendix C
and Fig. 20.) In the next section we will study the GXY model
to extend the machine learning beyond the XY model.

B. Generalized XY models

1. q = 2 and 3

The phase diagram of GXY models [44,45] is rich and
two examples with q = 2 and 3 are shown, respectively, in
Figs. 12(a) and 12(b). In the lower temperature and � = 0
limit, the system is in the generalized nematic phase that
has q preferred spin orientations. The statistical distribution
for spin orientations in the nematic phase displays q peaks
as shown in Fig. 12(c). In the � = 1 limit, the system is
quasi-long-range ferromagnetic (broken reflection symmetry)
in low-temperature limit and the distribution of the spin orien-
tations is shown in Fig. 12(d). In the higher temperature, the
system becomes disordered, and is in a paramagnetic phase.
The distribution for the paramagnetic phase is also shown in
Figs. 12(e) and 12(f) for q = 2 and 3, respectively. Clearly,
the distributions spread through a very wide arrange of angles
due to strong thermal fluctuations.

We use the configuration of (1) {θi} and (2) {cos θi, cos θi}
as input to the CNN with two convolutional layers, and the
network indeed can learn the transition. For both � = 1 (pure
XY model) and 0 (the GXY model) the phase transition is
located at T/J = 0.8935. As remarked earlier, this is because
the � = 0 GXY model isomorphic to the usual XY model [59]
by changing the variable qθi as θ̄i. For both � = 0 and 1,
using either (1) or (2) as the input works well and the CNN
can distinguish, respectively, the quasi-long-range ferromag-
netic phase and the nematic phase, from the high-temperature
disordered paramagnetic phase. Figure 13(A) displays the

032142-8

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

0 0.5 1
Δ

0

0.8935

T

0 0.5 1
Δ

0

0.365

0.8935

T

(a) q=2 (b) q=3

N F

PP

FN

(c) (d)

(e) (f)

FIG. 12. Phase diagrams of the GXY model for (a) q = 2 and
(b) q = 3, the data are from Refs. [44,45]. The symbols N, P, and F
represent the nematic, ferromagnetic, and paramagnetic phases, re-
spectively. The dashed lines show the parameter paths to be scanned.
(c) Histograms of the configurations {θi} for the nematic phase at
q = 3, � = 0, and T = 0.2, the three independent peaks show three
preferred orientations. (d) Histogram for the spin orientations in the
(quasi-long-range) ferromagnetic phase at q = 3, � = 1, T = 0.2,
where the system prefers one spin angle with some fluctuations. (e),
(f) Histogram for the paramagnetic phase at q = 2, � = 0, T = 2
(e), and the paramagnetic phase at q = 3, � = 0, T = 2 (f), respec-
tively. Note that for illustrations, these distributions are obtained by
over 2000 samples. But for the input to the neural network, we use
histograms each derived from a very small number of samples, such
as 20.

average values of the output layer and the performance of
learning by using {θi} as input for q = 2 at � = 0, with
L = 6, 8, 12, 14, 16, while that in Fig. 13(a) is obtained from
using {sin θi, cosθi} as input. The resulting two curves y1 and
y2 from the two neurons in the output layer can distinguish
different phases and their crossing gives the transition. In the
thermodynamic limit, the critical points are estimated to be
Tc = 0.92 ± 0.03 and Tc = 0.92 ± 0.05, respectively, using
the two different types of input.

Here, in the network there are 32 and 64 kernels in the first
and second layers, respectively. We use the Wolff-cluster algo-
rithm to generate configurations for the GXY model. To obtain
enough equilibrated states, we throw out the configurations
during the first 10 000 Monte Carlo steps. To avoid the cor-
relations between configurations, we pick up configurations
with intervals of 2–5 Monte Carlo steps at each temperature.

0.75 0.8935 1
T

0.2

0.5

0.8

y 1,
y 2

6
8
12
14
16

0.75 0.8935 1
T

6
8
10
12

0 0.1 0.2
1/L

0.8

0.9T c

0 0.1 0.2
1/L

(A)

(B)

(a)

(b)

Tc=0.92(3)

Tc=0.92(5)

FIG. 13. The two values y1 and y2 of the output layer of learning
of (A) {θi} and (a) {sin θi, cos θi} for (a) q = 2, � = 0 with
various lattice sizes. (B), (b) The estimated critical points from the
dependence on lattices sizes 1/L. In the thermodynamical limit,
Tc = 0.92(3) and Tc = 0.92(5) are estimated.

Inspired by the main difference between the above three
phases being the shape of the histograms, we investigate
whether using such feature engineering (i.e., histograms) can
help the learning better. In principle, spin configurations
from each sample in the Monte Carlo algorithm generate
a histogram. However, to make the histogram smooth, we
use multiple configurations to average (e.g., 20) for small
system sizes. Employing Wolff-cluster algorithm allows us to
access larger lattices, we can use just one single configuration
to generate a histogram. After obtaining the histogram, we
segment the images into a 32 × 32 matrix of black and white
pixels, in which the white area is set to 0 and colorful area is
set to 1. These matrices of pixels are our engineered feature
and are used as the input to the CNN for training.

We directly recognize the histograms and obtain results
as accurate as other kinds of inputs, using the two-layer-
convolution CNN as shown in Figs. 14(a)–14(d) along the four
red dashed lines in Figs. 12(a) and 12(b). For both � = 0 and
1, the GXY model has the phase transition located at T/J =
0.8935. The results of using histograms as the engineered
feature make the CNN able to recognize different phases in
the generalized XY model and the associated transitions in
these two limits of �. For completeness, we also scan a path
in the phase diagram of q = 3 model by first varying � at
T/J = 0.365 (for which the �c = 0.25 [45]), and the results
shown in Figs. 14(e) and 14(f) demonstrate that the neural
network, in particular, can also distinguish the nematic phase
from the ferromagnetic phase and learn the transition point.
The approach of using histograms helps us to access larger
lattices without any further training.

Armed with the success of learning two distinct phases,
we move on to test whether our method can be used to
distinguish three phases. In particular, we scan the phase
diagram in Fig. 12(b) along the green dashed lines, combining
the previous horizontal path varying � (at T/J = 0.365) and
then the vertical path by varying T/J (at � = 1); this path
cuts through the three phases: N, F, and P. To do this, we need
to use three neurons in the output layer. During the training of
the network, the configurations in the three phases are labeled
as 0, 1, and 2, respectively. The sigmoid function maps the
output layer located between the range [0, 1]. In the test stage,
the first neuron in the output layer (representing the N phase)

032142-9

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

0.8 0.8935 1
T

0

0.5

1

y 1,
y 2

L40
L60

0.8 0.8935 1
T

0

0.5

1

L40
L60

0.8 0.8935 1
T

0

0.5

1

y 1, y
2

L40
L60

0.8 0.8935 1
T

0

0.5

1
L40
L60

0.22 0.25 0.265
Δ

0

0.5

1

y 1, y
2 L20

L40
L60
L80

0 0.02 0.04
1/L

0.25 Δc=0.2505(5)

(a)

(c)

(b)

(d)

q2Δ0 q2Δ1

q3Δ0 q3Δ1

(f)(e)
T=0.365

FIG. 14. The two values y1 and y2 of the output layer in the
learning of histograms of {θi} for (a) q = 2, � = 0; (b) q = 2, � =
1; (c) q = 3, � = 0; (d) q = 3, � = 1. (e) The average results in
the output layer and (f) the finite size scaling of the critical points
by scanning the parameter �, and critical point �c is estimated to be
0.2505(5).

is 1 for � < 0.25 and becomes zero at other two phases (the
F and P phases). The output of the other two neurons shows
converse behavior as shown in Fig. 15(a). There are three
curves corresponding to the three neurons in the output layer.
The accuracy is shown in Fig. 15(b) and it equals to 100% at
noncritical regimes and decreases near the two critical points
around (� = 0.25, T = 0.365) and (� = 1, T = 0.89). In
short, we have demonstrated successful learning of three
phases (N, P, and F) and the transitions.

As a final test, we use a semisupervised method to retrieve
the global phase diagram of GXY model with q = 2 and
3 on the square lattice of 12 × 12 sites. What we mean
by the semisupervised method is that, only the limited data
that are not generic are used in the training, for example,

0 0.25 0.89350

0.5

1

y1
y2
y3

0

0.5

1

Accuracy

(a)

(b)

Δ T

N

F

P

FIG. 15. (a) The results in averaging outcomes separately in the
three neurons of the output layer by scanning the green dashed lines
in Fig. 12(b). (b) The accuracy of the learning.

FIG. 16. The phase diagram of the GXY model, which contains
nematic phase (N, blue), ferromagnetic phase (F, green), and para-
magnetic phase (P, red), obtained by the semisupervised method
discussed in the text. The neural network is trained only for data
from � = 0 and 1. (a) The q = 2 model: the input data for training
are the histogram of spin orientations {θi}. (b) The q = 2 model: the
input data for training are the spin orientations. (c) The q = 3 model:
the input data for training are the histogram of spin orientations.
(d) The q = 3 model: the input data for training are spin orienta-
tions θi. These agree with those (from Monte Carlo simulations) in
Figs. 12(a) and 12(b). The phase boundaries represented by white
lines by Monte Carlo methods are also shown.

those along � = 0 and 1, i.e., the two vertical paths in
Figs. 14(a) and 14(b). These are nongeneric, as they only give
very limited representations in the phase diagram. Once the
network is trained and optimized, we use the neural network
to predict the phases, using the configurations generated from
Monte Carlo in the whole phase diagram, with parameters
(�, T) covering the range � = 0, 0.1, 0.2, . . . , 1 and T =
0.2, 0.4, . . . , 1.8, 2. We use both the spin orientation and the
histogram as the input, and the phase diagrams thus obtained,
as shown in Fig. 16, agree well with those in Figs. 12(a)
and 12(b).

2. q = 8

For q > 3, the results in Refs. [60,61] suggest the existence
of new phases at intermediate values of � that do not appear
for either � = 0 or 1. Since the existence and/or nature
of some of those transitions are still disputed, it would be
interesting to see the outcome of the neural networks in those
cases.

Without loss of generality, a typical value q = 8 is chosen.
In Fig. 17(a), the phase diagram, containing N, P, and F
phases, is shown. The blue dashed lines are the data from
Refs. [60,61]. The color of the small squares is the mapping
of the average values in the output layer yN, yF2 , yP, and yF

of the two-layer CNN. The color is mapped via z = yP +
20 ∗ yN + 40 ∗ yF2 + 60 ∗ yF and its normalized expression
z = [z − min(z)]/max(z). Aside from the previous phases of
the q = 3 model, a new phase F2 phases emerges, consistent
with Refs. [60,61].

032142-10

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

P(
θ/

π)

0 1 2
θ/π

F2(c) T=0.35 Δ=0.5

(b) T=0.35 Δ=0

(d)T=0.35 Δ=1

N

F

FIG. 17. (a) The phase diagram of the GXY model with q = 8,
containing N, P, F, and F2 phases from Ref. [60]. The network is
trained from the spin histograms of size L = 100. (b) Illustration
of the distributions of spins directions in the nematic phase show
8 peaks. (c) The distributions of spins directions in F2 phase. (d) The
distributions of spins directions in F phase. Using the trained network
of (a), we obtain the phase diagrams of systems with sizes L = 150
(e) and L = 200 (f).

Here, we comment on the way we train the CNN. First,
the lattice size should be large enough such as L = 100. By
fixing the temperatures at T = 0.35 and 0.8, we scan the
parameter � from 0 to 1 in the phase diagram with an interval
of 0.05. For each parameter point, 2500 histogram samples
for training are used and 25 000 samples of histograms for
testing, and four labels for the different phases are used. We
can distinguish the new emerged phase F2 by the nonzero
labels. At the same time, the boundaries between other phases
are also obtained, consistent with the known results (indicated
by the blue dotted lines).

In Figs. 17(b)–17(d), the distributions of spins directions
P(θ/π) for each phase are shown according to configurations,
generated by the Wolff-cluster Monte Carlo method. Differ-
ent from the case of q = 3, P(θ/π) in the q = 8 nematic
phase has 8 peaks at T = 0.35, � = 0. In the F2 phase,
as shown Fig. 17(c), some spin directions (peaks) dominate
the configuration at T = 0.35, � = 0.5. In the F phase, all
of the directions for the spins are restricted in a half-plane
0 < θ < π .

In order to have efficient machine learning algorithms
with large data sets, the representation of the data (e.g.,
configurations from Monte Carlo simulations) can af-
fect both efficiency and accuracy. In this paper, one
idea is to use distribution of spin orientations as the input

to the neural network, instead of the complete spin configu-
rations. In the usual machine learning, the size of the latter
(L × L spins) can be so large that the training time can take
too long. However, transforming the data into distributions
can reduce the cost of training, as the distribution of the data
is a much smaller set.

Furthermore, the neural network trained by histograms
of spin orientations from a system of size L × L can be

used to test the distributions from other system sizes without
further training. In Figs. 17(e) and 17(f), the phase diagrams,
consistent with the previous one, are obtained by inputting the
test data from systems with sizes 150 × 150 and 200 × 200,
respectively. The network used for the test is from that training
using data from the 100 × 100 system size. We note that the
size of our histogram images was chosen and fixed more or
less arbitrarily at, e.g., 32 × 32, and that other (larger) sizes
can be used to increase accuracy. Using previously trained
network avoids training the network repeatedly for other
system sizes.

V. CONCLUSION

In summary, we have used machine learning methods to
study the percolation, the XY model, and the GXY model in
the two-dimensional lattices. For the percolation phase transi-
tion, the unsupervised t-SNE can map the high-dimensional
data sets of configurations into a two-dimensional image
with classifiable data. Using the FCN even without explicitly
giving the two-dimensional spatial structure still allows to
recognize the percolation phase transition. By feeding the
information about the existence or not of the spanning cluster,
the transition can be predicted without any training informa-
tion on whether the configurations are generated with p > pc

or p < pc. The percolation exponent ν was obtained correctly
using results from the output neurons. We have also demon-
strated that the CNN method works well for percolation, but
there is no substantial advantage using CNN. The advantage
of the CNN against the FCN arises in the study of the XY
model and the generalized XY models.

The pure XY model on the square and honeycomb lattice
in our study was learned by inputting the spin configurations
{cosθi, sinθi}, {θi, j} and even with small sizes such as L =
4, . . . , 16, the critical point could be obtained by performing
the finite size scaling. For the generalized XY model with
q = 2, 3, and 8, the global phase diagrams were obtained
by a semisupervised method, i.e., with a network trained by
learning just some limited set of the data. Specifically, for
q = 8, the new phase F2 in the range of 0 < � < 1 is also
be confirmed through the perspective of machine learning.

The use of spin configurations as the naive input works for
training the network to recognize phases in the XY model.
One key difference between the phases is the probability
distribution of the spin orientations. We have devised a feature
engineering using the histograms of the spin orientations
instead, and this has resulted in successful learning of various
phases in the generalized XY model beyond the XY model.
Moreover, the trained network with system size L × L can
also be used for testing data from other system sizes (L′ × L′,
where L′ �= L), saving additional training effort. The use of
machine learning in phases of matter in general may still need
the ingenuity of appropriate features for the neural network to
learn, but can become a useful tool.

Note added. We recently learned of a very interesting paper
by Suchsland and Wessel [62]. Even though it is beyond the
scope of this paper, but as a future direction, it will be inter-
esting to employ the methods presented there in percolation
and the generalized XY models. (They have already analyzed
the XY model.)

032142-11

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

ACKNOWLEDGMENTS

W.Z. is grateful for the valuable discussion with C. X. Ding
on Monte Carlo simulations and gratefully acknowledges
financial support from China Scholarship Council and the
NSFC under Grant No. 11305113. T.-C.W. is supported by the
National Science Foundation under Grants No. PHY 1314748
and No. PHY 1620252.

APPENDIX A: t-SNE METHOD

Here, we summarize for convenience the t-distributed
stochastic neighbor embedding (t-SNE) method [47], which
is an improvement from the stochastic neighbor embedding
(SNE) method [63]. The main idea of these methods is to,
from a set of high-dimensional data represented by high-
dimensional vectors {xi}, obtain a corresponding set of low-
dimensional (e.g., two- or three-dimensional) data, repre-
sented by a set of vectors {yi} such that the latter maintains
key features of the former. In the t-SNE method, the pairwise
similarity qi j’s for a pair of low-dimensional vectors yi and y j

is defined as

qi, j = (1 + ||yi − y j ||2)−1

∑
k �=l (1 + ||yk − yl ||2)−1

, (A1)

whereas that for the high-dimensional vectors is defined as
pi, j ≡ (p j|i + pi| j)/(2n), where n is the total number of vec-
tors and

p j|i = exp
(− ||xi − x j ||2/2σ 2

i

)
∑

k �=l exp
(− ||xk − xl ||2/2σi

2
) . (A2)

The lower-dimensional vectors y’s are obtained by using a
gradient descent approach by minimizing the cost function

C =
∑

i

∑

j

pi j log
pi j

qi j
, (A3)

where the gradient by varying yi’s is given by

δC

δyi
= 4

∑

j

(pi j − qi j)(yi − y j)(1 + ||yi − y j ||2)−1. (A4)

In the above, the standard deviation σi’s are obtained by fixing
the so-called perplexity (supplied by the user)

Perp(Pi) = 2− ∑
j p j|i log2 p j|i , (A5)

0 1 2 3
Epoch

0

0.5

1
Sigmoid
Softmax

0.56 0.58 0.6 0.62 0.64
p

0.2

0.4

0.6

0.8

y 1, y
2

Sigmoid
Softmax

(a) (b)

FIG. 18. (a) The training accuracy by using the sigmoid and
softmax activation, respectively. (b) For the site percolation on the
square lattices, we find the average output layers are the same using
enough samples (25 000).

73.0743.023.0 0.36
p

0.2

0.5

0.8

y 1,
 y

2 8
10
14
16

0 0.05 0.1
1/L

0.33

0.37

0.347

p c pc=0.349(8)

(a)

(b)

FIG. 19. The result of bond percolation on the triangular lattice
via training the CNN with configurations generated symmetrically
with respect to pc. This is to be compared with Fig. 8(b), and the
results here show some improvement.

which is typically chosen between 5 and 50, according to the
performance. Here, we set it to be 20.

The initial low-dimensional vectors yi’s are generated ran-
domly. Iterating the gradient descent procedure will yield an
improved approximation consecutively, until the gradient is
very small.

APPENDIX B: ACTIVATION FUNCTIONS OF SIGMOID
AND SOFTMAX

There are many activation functions to be used in the
neural network; here we use the sigmoid function for the FCN.
Taking the site percolation as an example for test, we output

8.0707.06.0
T

0.2

0.4

0.6

0.8

y 1,
 y

2

4
6
8
10

0 0.1 0.2
1/L

0.69

0.707

0.72

T c

Tc=0.709(2)

(a)

(b)

FIG. 20. (a) Averaged values of the two neurons in the output
layer, y1 and y2, for the XY model on the honeycomb lattice by
choosing the training data {cosθi, sinθi} below Tc and above Tc sym-
metrically with respect to Tc but not including it. (b) The finite size
scaling of Tc and the value in the thermodynamic limit is estimated
to be 0.709(2).

032142-12

MACHINE LEARNING OF PHASE TRANSITIONS IN THE … PHYSICAL REVIEW E 99, 032142 (2019)

the results with 25 000 samples per occupation probability. In
Fig. 18(a), the training accuracy of using the sigmoid function
reaches an equilibrated stage faster than that by the softmax
function. It is also found that the results of using softmax and
sigmoid function are almost the same as shown in Fig. 18(b).
Therefore, enough samples can avoid systematic error induced
by different activation functions.

APPENDIX C: CHOOSING TRAINING DATA

There are several factors that could affect the trained
network. In this Appendix, we compare two choices of the
training data and the resultant learned transition points, i.e.,
intersections of y1 and y2. The first approach for the training
data is to use configurations corresponding to probabilities p’s

uniformly, as we have used in most of the plots in the main
text, such as the percolation in Fig. 8. The second choice is to
use configurations generated at p’s symmetric with respect to
pc (but not including those at pc), which is demonstrated in
Fig. 19.

We remark that the training data used in Fig. 8 were
obtained at p’s that are uniform. By judiciously making the
choice such that these p’s are symmetric with respect to
the transition point (excluding the transition point), better
learning of the transition can be made.

We also test this for the XY model on the honeycomb. In
Fig. 20(a), y1 and y2 for the two neurons in the output layer are
plotted and the result Tc = 0.709(2) from finite size scaling
in Fig. 20(b) appears more accurate than Tc = 0.729(8) in
Fig. 11(b).

[1] M. Jordan and T. Mitchell, Machine learning: Trends, perspec-
tives, and prospects, Science 349, 255 (2015).

[2] J. Carrasquilla and R. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

[3] L. Wang, Discovering phase transitions with unsupervised
learning, Phys. Rev. B 94, 195105 (2016).

[4] Sebastian J. Wetzel, Unsupervised learning of phase transitions:
From principal component analysis to variational autoencoders,
Phys. Rev. E 96, 022140 (2017).

[5] W. Hu, R. Singh, and R. Scalettar, Discovering phases, phase
transitions and crossovers through unsupervised machine learn-
ing: A critical examination, Phys. Rev. E 95, 062122 (2017).

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[7] C. Wang and H. Zhai, Unsupervised learning of frustrated
classical spin models I: Principle component analysis, Phys.
Rev. B 96, 144432 (2017).

[8] K. Ch’ng, N. Vazquez, and E. Khatami, Unsupervised machine
learning account of magnetic transitions in the Hubbard model,
Phys. Rev. E 97, 013306 (2018).

[9] E. van Nieuwenburg, Y. Liu, and S. Huber, Learning phase
transitions by confusion, Nat. Phys. 13, 435 (2017).

[10] P. Broecker, F. Assaad, and S. Trebst, Quantum phase recogni-
tion via unsupervised machine learning, arXiv:1707.00663.

[11] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[12] K. Ch’ng, J. Carrasquilla, R. Melko, and E. Khatami, Machine
Learning Phases of Strongly Correlated Fermions, Phys. Rev. X
7, 031038 (2017).

[13] J. Liu, H. Shen, Y. Qi, Z. Meng, and L. Fu, Self-learning Monte
Carlo method in fermion systems, Phys. Rev. B 95, 241104
(2017).

[14] P. Broecker, J. Carrasquilla, R. Melko, and S. Trebst, Machine
learning quantum phases of matter beyond the fermion sign
problem, Sci. Rep. 7, 8823 (2017).

[15] G. Torlai and R. Melko, A Neural Decoder for Topological
Codes, Phys. Rev. Lett. 119, 030501 (2017).

[16] Y. Zhang and E. A. Kim, Quantum Loop Topography for
Machine Learning, Phys. Rev. Lett. 118, 216401 (2017).

[17] D. Deng, X. Li, and S. Sarma, Exact machine learning topolog-
ical states, Phys. Rev. B 96, 195145 (2017).

[18] D. Deng, X. Li, and S. Sarma, Quantum Entanglement in Neural
Network States, Phys. Rev. X 7, 021021 (2017).

[19] P. Zhang, H. Shen, and H. Zhai, Machine Learning Topological
Invariants with Neural Networks, Phys. Rev. Lett. 120, 066401
(2018).

[20] F. Schindler, N. Regnault, and T. Neupert, Probing many-body
localization with neural networks, Phys. Rev. B 95, 245134
(2017).

[21] T. Mano and T. Ohtsuki, Phase diagrams of three-dimensional
Anderson and quantum percolation models using deep three-
dimensional Convolutional Neural Network, J. Phys. Soc. Jpn.
86, 113704 (2017).

[22] M. Bukov, A. Day, D. Sels, P. Weinberg, A. Polkovnikov,
and P. Mehta, Reinforcement Learning in Different Phases of
Quantum Control, Phys. Rev. X 8, 031086 (2018).

[23] J. Venderley, V. Khemani, and E. Kim, Machine Learning Out-
of-Equilibrium Phases of Matter, Phys. Rev. Lett. 120, 257204
(2018).

[24] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Neural-network quantum state tomography, Nat.
Phys. 14, 447 (2018).

[25] L. Li, T. E. Baker, S. R. White, and K. Burke, Pure density
functional for strong correlations and the thermodynamic limit
from machine learning, Phys. Rev. B 94, 245129 (2016).

[26] D. Crawford, A. Levit, N. Ghadermarzy, J. Oberoi, and P.
Ronagh, Reinforcement Learning Using Quantum Boltzmann
Machines, Quantum Inf. Comput. 18, 0051 (2016).

[27] K. I. Aoki and T. Kobayashi, Restricted Boltzmann machines
for the long range Ising models, Mod. Phys. Lett. B 30, 1650401
(2016).

[28] C. Li, D. Tan, and F. Jiang, Applications of neural networks
to the studies of phase transitions of two-dimensional Potts
models, Ann. Phys. 391, 312 (2018).

[29] L. Arsenault, A. Lopez-Bezanilla, O. Lilienfeld, and A. Millis,
Machine learning for many-body physics: The case of the
Anderson impurity model, Phys. Rev. B 90, 155136 (2014).

[30] G. Torlai and R. G. Melko, Learning thermodynamics with
Boltzmann machines, Phys. Rev. B 94, 165134 (2016).

032142-13

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevB.96.144432
https://doi.org/10.1103/PhysRevB.96.144432
https://doi.org/10.1103/PhysRevB.96.144432
https://doi.org/10.1103/PhysRevB.96.144432
https://doi.org/10.1103/PhysRevE.97.013306
https://doi.org/10.1103/PhysRevE.97.013306
https://doi.org/10.1103/PhysRevE.97.013306
https://doi.org/10.1103/PhysRevE.97.013306
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
http://arxiv.org/abs/arXiv:1707.00663
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.7566/JPSJ.86.113704
https://doi.org/10.7566/JPSJ.86.113704
https://doi.org/10.7566/JPSJ.86.113704
https://doi.org/10.7566/JPSJ.86.113704
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1142/S0217984916504017
https://doi.org/10.1142/S0217984916504017
https://doi.org/10.1142/S0217984916504017
https://doi.org/10.1142/S0217984916504017
https://doi.org/10.1016/j.aop.2018.02.018
https://doi.org/10.1016/j.aop.2018.02.018
https://doi.org/10.1016/j.aop.2018.02.018
https://doi.org/10.1016/j.aop.2018.02.018
https://doi.org/10.1103/PhysRevB.90.155136
https://doi.org/10.1103/PhysRevB.90.155136
https://doi.org/10.1103/PhysRevB.90.155136
https://doi.org/10.1103/PhysRevB.90.155136
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134

ZHANG, LIU, AND WEI PHYSICAL REVIEW E 99, 032142 (2019)

[31] X. Gao and L. Duan, Efficient representation of quantum many-
body states with deep neural networks, Nat. Commun. 8, 662
(2017).

[32] E. M. Stoudenmire and D. J. Schwab, Supervised learning with
quantum-inspired tensor networks, Adv. Neural Inf. Process.
Syst. 29, 4799 (2016).

[33] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, On the equiv-
alence of restricted Boltzmann machines and tensor network
states, Phys. Rev. B 97, 085104 (2018).

[34] L. Huang and L. Wang, Accelerate Monte Carlo simulations
with restricted Boltzmann machines, Phys. Rev. B 95, 035105
(2017); L. Wang, Exploring cluster Monte Carlo updates with
Boltzmann machines, Phys. Rev. E 96, 051301(R) (2017).

[35] J. Liu, Y. Qi, Z. Meng, and L. Fu, Self-learning Monte Carlo
method, Phys. Rev. B 95, 041101 (2017).

[36] N. Portman and I. Tamblyn, Sampling algorithms for vali-
dation of supervised learning models for Ising-like systems,
J. Comput. Phys. 350, 871 (2017).

[37] P. Mehta and D. Schwab, An exact mapping between
the variational renormalization group and deep learning,
arXiv:1410.3831.

[38] M. Beach, A. Golubeva, and R. Melko, Machine learning
vortices at the Kosterlitz-Thouless transition, Phys. Rev. B 97,
045207 (2018).

[39] S. R. Broadbend and J. M. Hammersley, Percolation processes.
I. Crystals and Mazes, Proc. Cambridge Philos. Soc. 53, 629
(1957).

[40] J. M. Hammersley, in Percolation Structure and Process, edited
by G. Deutscher, R. Zallen, and J. Adler (Adam Hilger, Bristol,
1983).

[41] G. Grimmett, Percolation (Springer, New York, 1989).
[42] J. P. Hovi and A. Aharony, Scaling and universality in the

spanning probability for percolation, Phys. Rev. E 53, 235
(1996).

[43] M. Cristoforetti, G. Jurman, A. I. Nardelli, and C. Furlanello,
Towards meaningful physics from generative models,
arXiv:1705.09524.

[44] D. Hübscher and S. Wessel, Stiffness jump in the generalized
XY model on the square lattice, Phys. Rev. E 87, 062112
(2013).

[45] F. Poderoso, J. Arenzon, and Y. Levin, New Ordered Phases in a
Class of Generalized XY Models, Phys. Rev. Lett. 106, 067202
(2011).

[46] S. Chung, Essential finite-size effect in the 2D XY model, Phys.
Rev. B 60, 11761 (1999); P. Olsson, Monte Carlo analysis of the
two-dimensional XY model. II. Comparison with the Kosterlitz
renormalization-group equations, ibid. 52, 4526 (1995).

[47] L. van der Maaten, Accelerating t-SNE using tree-based al-
gorithms, J. Mach. Learn. Res. 15, 3221 (2014); L. van der
Maaten and G. Hinton, Visualizing non-metric similarities in
multiple maps, Machine Learning 87, 33 (2012); Visualizing

high-dimensional data using t-SNE, J. Mach. Learn. Res. 9,
2579 (2008).

[48] M. Abadi, A. Agarwal, P. Barham et al., TensorFlow: Large-
scale machine learning on heterogeneous distributed systems,
arXiv:1603.04467.

[49] M. Newman and R. Ziff, Efficient Monte Carlo Algorithm and
High-Precision Results for Percolation, Phys. Rev. Lett. 85,
4104 (2000).

[50] M. Levenshteı̌n, B. Shklovskiı̌, M. Shur, and A. Ěfros, The
relation between the critical exponents of percolation theory,
Zh. Eksp. Teor. Fiz. 69, 386 (1975) [Sov. Phys. JETP 42, 197
(1976)].

[51] M. Sykes and J. Essam, Exact critical percolation probabilities
for site and bond problems in two dimensions, J. Math. Phys. 5,
1117 (1964).

[52] A. Saberi, Recent advances in percolation theory and its appli-
cations, Phys. Rep. 578, 1 (2015).

[53] M. E. J. Newman and R. M. Ziff, Fast Monte Carlo algorithm
for site or bond percolation, Phys. Rev. E 64, 016706 (2001).

[54] R. Swendsen and J. Wang, Nonuniversal Critical Dynamics in
Monte Carlo Simulations, Phys. Rev. Lett. 58, 86 (1987).

[55] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller, Equations of state calculations by fast computing
machines, J. Chem. Phys. 21, 1087 (1953).

[56] Y. Hsieh, Y. J. Kao, and A. W. Sandvik, Finite-size scal-
ing method for the Berezinskii-Kosterlitz-Thouless transition,
J. Stat. Mech.: Theory Exp. (2013) P09001.

[57] B. Nienhuis, Exact Critical Point and Critical Exponents of
O(n) Models in Two Dimensions, Phys. Rev. Lett. 49, 1062
(1982); Y. Deng, T. Garoni, W. Guo, H. Blöte, and A. Sokal,
Cluster Simulations of Loop Models on Two-Dimensional Lat-
tices, ibid. 98, 120601 (2007).

[58] D. R. Nelson and J. M. Kosterlitz, Universal Jump in the
Superfluid Density of Two-Dimensional Superfluids, Phys. Rev.
Lett. 39, 1201 (1977).

[59] G. A. Canova, F. Poderoso, J. J. Arenzon, and Y. Levin,
Reply to “Incommensurate vortices and phase transitions in
two-dimensional XY models with interaction having auxiliary
minima” by S. E. Korshunov, arXiv:1207.3447.

[60] G. A. Canova, Y. Levin, and J. J. Arenzon, Competing nematic
interactions in a generalized XY model in two and three dimen-
sions, Phys. Rev. E 94, 032140 (2016).

[61] G. A. Canova, Y. Levin, and J. J. Arenzon, Kosterlitz-Thouless
and Potts transitions in a generalized XY model, Phys. Rev. E
89, 012126 (2014).

[62] P. Suchsland and S. Wessel, Parameter diagnostics of phases
and phase transition learning by neural networks, Phys. Rev. B
97, 174435 (2018).

[63] G. E. Hinton and S. T. Roweis, Stochasitic neighbor embedding,
Advances in Neural Information Processing Systems (The MIT
Press, Cambridge, MA 2002), Vol. 15, pp. 833–840.

032142-14

https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1016/j.jcp.2017.06.045
https://doi.org/10.1016/j.jcp.2017.06.045
https://doi.org/10.1016/j.jcp.2017.06.045
https://doi.org/10.1016/j.jcp.2017.06.045
http://arxiv.org/abs/arXiv:1410.3831
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
http://arxiv.org/abs/arXiv:1705.09524
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevLett.106.067202
https://doi.org/10.1103/PhysRevLett.106.067202
https://doi.org/10.1103/PhysRevLett.106.067202
https://doi.org/10.1103/PhysRevLett.106.067202
https://doi.org/10.1103/PhysRevB.60.11761
https://doi.org/10.1103/PhysRevB.60.11761
https://doi.org/10.1103/PhysRevB.60.11761
https://doi.org/10.1103/PhysRevB.60.11761
https://doi.org/10.1103/PhysRevB.52.4526
https://doi.org/10.1103/PhysRevB.52.4526
https://doi.org/10.1103/PhysRevB.52.4526
https://doi.org/10.1103/PhysRevB.52.4526
http://jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf
https://doi.org/10.1007/s10994-011-5273-4
https://doi.org/10.1007/s10994-011-5273-4
https://doi.org/10.1007/s10994-011-5273-4
https://doi.org/10.1007/s10994-011-5273-4
http://arxiv.org/abs/arXiv:1603.04467
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1103/PhysRevE.64.016706
https://doi.org/10.1103/PhysRevE.64.016706
https://doi.org/10.1103/PhysRevE.64.016706
https://doi.org/10.1103/PhysRevE.64.016706
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1088/1742-5468/2013/09/P09001
https://doi.org/10.1088/1742-5468/2013/09/P09001
https://doi.org/10.1088/1742-5468/2013/09/P09001
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1103/PhysRevLett.98.120601
https://doi.org/10.1103/PhysRevLett.98.120601
https://doi.org/10.1103/PhysRevLett.98.120601
https://doi.org/10.1103/PhysRevLett.98.120601
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
http://arxiv.org/abs/arXiv:1207.3447
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.89.012126
https://doi.org/10.1103/PhysRevE.89.012126
https://doi.org/10.1103/PhysRevE.89.012126
https://doi.org/10.1103/PhysRevE.89.012126
https://doi.org/10.1103/PhysRevB.97.174435
https://doi.org/10.1103/PhysRevB.97.174435
https://doi.org/10.1103/PhysRevB.97.174435
https://doi.org/10.1103/PhysRevB.97.174435

