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Size effects in energy transport between thermal contacts mediated by nanoparticles
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We investigate size effects in phononic energy transport in a system of two nanoparticles interconnected by a
molecule and attached to thermal contacts also by molecules. In the considered closed system, the nanoparticles
and contacts are described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma
model. The macroscopic character of the contacts is simulated by a large value of the ratio �/�B = n (n > 100)
of mode spacings � and �B corresponding to the nanoparticles and contacts, respectively. Quasistatic energy
transport on the timescale �−1 is investigated. Equations describing the dynamics of the averaged eigenmode
energies that belong to the nanoparticles and contacts are derived and solved. The resulting expressions for the
energy current exiting (entering) the contacts as well as the energy current between the nanoparticles are obtained
and investigated. The latter current accounts for energy accumulation by (depletion from) the nanoparticles.
The finite size effects result in reversibility features and peculiarities at time moments t = 2π��−1 for non-
negative integers �. They are qualitatively the same as in a previously studied system of two equal nanoparticles
mediated by a molecule, despite the presence of the macroscopic contacts. The thermal conductance of the whole
nanojunction is derived and explored. The energy currents and thermal conductance of the nanojunction in a case
when its parameters are known from the experiment are computed using the developed model.
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I. INTRODUCTION

Understanding the mechanisms of how energy (heat)
transfers through microscopic systems, such as molecules,
nanoparticles, or nanotubes, is one of the most important re-
search directions in modern physics and technology. However,
because of the necessity to account for quantum properties
and the nonequilibrium character of the problem [1–3], this
research still encounters many problems. In addition, due
to miniaturization of electronic devices and the increasing
density of binary switches in computer systems, development
of a fundamentally new approach to manipulate heat flow
has become increasingly important [4–6]. Indeed, the ultimate
physical limit of integration in integrated circuitry is power
dissipation [4,5]. Research suggests [7–13] that molecular and
nanoscale systems may also be good candidates for many
technological advances, such as thermoelectrics, molecular
diodes, switches, rectifiers, and quantum heat transfer in an-
harmonic junctions.

An important approach to deal with energy transport
through microscopic systems is based on the quantum
Langevin equation [14,15]. It was used, in particular, for
studying the thermalization of a quantum particle coupled
harmonically to a thermal reservoir [16,17] and to explore the
steady-state heat current and temperature profiles in chains
of harmonic oscillators placed between two thermal baths
[18–21]. Closely related to the Langevin dynamics is a “quan-
tum thermal bath method” [22,23] that was successfully used
for sampling quantum fluctuations within the framework of
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molecular dynamics (MD) and for reproducing the quan-
tum Wigner distribution of a variety of model potentials. A
similar approach was developed in [24], allowing to avoid
direct MD simulation. Based on classical MD, the method
employs a coarse-graining procedure adopting the statistical-
operator approach [25] and the classical linear response theory
[26]. Another frequently used approach is the nonequilibrium
Green’s function (NEGF) method [27]. It was applied to cal-
culate electron transport and steady-state properties of a finite
system interconnecting reservoirs modeled by noninteracting
Hamiltonians with infinite degrees of freedom [28–30] and to
phonon transport [31–36]. However, for systems represented
by harmonic oscillators, the Langevin approach reproduces
the NEGF results exactly [2,37]. Recently, a new method for
exactly solving the Lindblad and Redfield master equations,
which can be considered as an alternative to the quantum
Langevin equation, was developed [38–40].

In the above-mentioned studies the thermal reservoirs were
considered in the thermodynamic limit, i.e., having an in-
finitely large number of modes. However, due to scaling down
of electronic devices, size effects related to finite numbers of
atoms in nanosize components of such devices have become
increasingly important. For this reason, the study of size ef-
fects in nanostructured materials became an important part of
modern research. While study of the size and quantum effects
in the electromagnetic response of nanoparticles has a rather
long history [41–45], exploration of the role of size effects
in thermal properties of small particles has taken place only
recently. In particular, in [46–48], the static thermodynamic
properties of nanostructures, such as the local structure of
the grain boundary in ultrananocrystals, the phonon density
of states in nanostructures, and the order-disorder transition
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FIG. 1. Diagram representation of the nanojunction under con-
sideration. The macroscopic character of the contacts is expressed
by dense eigenstate levels.

in nanoparticles were investigated. An idea of a possible re-
current behavior in a system with a quantum particle coupled
to a harmonic quantum thermal bath was mentioned in [17]
(however, without any further analysis). In [49], the authors
found a recurrent phenomenon in the time evolution of the
energy current in a finite linear chain showing the critical role
of the on-site pinning potential in establishing quasi-steady-
state conditions. Finally, finite-size effects on energy current
in a system of two nanoparticles interconnected by a molecule
were explored in [50,51].

In this work, we study phononic quasistatic energy trans-
port on the timescale t ∼ �−1 � �−1

B between thermal reser-
voirs (contacts) connected by molecules to a system of two
equal nanoparticles interconnected also by a molecule (see
Fig. 1). Here � and �B are the mode spacing constants for
the nanoparticles and contacts, respectively. Our major goal is
to study finite size effects, related to small but nonzero � (or
a finite number of atoms in the nanoparticles), on the energy
current between the nanoparticles and on the energy current
that exits or enters the contacts. Unlike the nanoparticles,
the contacts are considered as macroscopic bodies and their
macroscopic nature is simulated by a large ratio, �/�B.
Our previous work [50] revealed finite size effects, such as
peculiarities at time moments t = 2π�/� with integers � �
0 and quasiperiodicity features, in a system of two equal
nanoparticles connected by a molecule. In this regard, this
work is a more realistic generalization of [50], because in
any device any nanostructured feature is connected to the
device’s macroscopic part. Another goal is to derive the ther-
mal conductance of the nanojunction and compute it, together
with the energy currents, for a case when the nanojunction’s
parameters are known from an experiment.

The paper is organized as follows. The model is introduced
in Sec. II, where the eigenstates of the whole system are
found and solutions for the displacement operators of the
molecules are obtained. In Sec. III, equations governing the
dynamics of the eigenmode average energies together with
the expressions for the energy currents and thermal con-
ductance of the chain are derived. In Sec. IV, the derived
equations are approximately solved and the energy currents
together with the thermal conductance of the nanojunction are
computed. Finally, Sec. V provides a summary to our research
and discusses a possible experimental realization for a system
of this kind.

II. MODEL

The total Hamiltonian of the system under considera-
tion, illustrated in Fig. 1, is a generalization of that in

Refs. [21,50,52,53]:

Htot = HBL + HBR + Hn1 + Hn2 + HML

+HMR + HMC + V1M + V2M + VBL + VBR. (1)

Here

HMσ = p2
σ

2mσ

+ kσ x2
σ

2
, σ = C, L, R (2)

are the Hamiltonians of the central, left, and right molecules,

HBμ =
Nμ∑
i=1

[
p2

μi

2mμi
+ mμiω

2
μix

2
μi

2

]
, μ = L, R, (3)

are the Hamiltonians of the thermal reservoirs having Nμ

quantum oscillators (modes),

Hnν =
Nν∑
i=1

[
p2

νi

2mνi
+ mνiω

2
νix

2
νi

2

]
, ν = 1, 2, (4)

are the Hamiltonians of the nanoparticles having Nν modes,

VBμ = −xμ

Nμ∑
i=1

Cμixμi + x2
μ

Nμ∑
i=1

C2
μi

2mμiω
2
μi

, (5)

where μ = L, R, describe interaction between the left and
right contacts and the corresponding molecules,

VνM = −
Nν∑
i=1

Ĉνixνi +
Nν∑
i=1

Ĉ2
νi

2mνiω
2
νi

, (6)

with Ĉ1i = C1ixC + C′
1ixL, when V1M describes interaction

between the first (left) nanoparticle and the central and left
molecules, and Ĉ2i = C2ixC + C′

2ixR, when V2M describes in-
teraction between the second (right) nanoparticle and the
central and right molecules. Quadratic terms in Eqs. (5) and
(6) are added in order to make Htot positively defined. In
Eq. (2), xσ and pσ are the displacement and momentum
operators and mσ and kσ are the masses and the spring
constants of the molecules. In Eqs. (3) and (5), xμi and
pμi are the displacement and momentum operators, whereas
mμi and ωμi are the masses and frequencies of the contacts’
oscillators in the absence of interaction with the molecules.
In (4) and (6), xνi, pνi, mνi, and ωνi are the similar quantities
for the nanoparticles. Finally, Cμ,νi and C′

νi are the coupling
coefficients that describe interaction between the contacts or
nanoparticles with the adjacent molecules. In order to make
our description quantitative, we employ the Drude-Ullersma
model [16,17,54,55] that assumes that in the absence of
interaction with the molecules, each contact and nanoparticle
consist of uniformly spaced modes and introduces the follow-
ing frequency dependence for the coupling coefficients:

ωεi = i�ε, Cεi =
√

2γεmεiω
2
εi�εD2

ε

π
(
ω2

εi + D2
ε

) . (7)

When ε = μ = L or R, i = 1, 2, ...Nμ and Dμ, �μ, and γμ

are the Debye cutoff frequencies for the left or right contacts,
the mode spacing constants for the contacts, and the coupling
constant between a given contact and the adjacent molecule,
respectively. When ε = ν = 1 or 2, i = 1, 2, ...Nν and Dν ,
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�ν are the similar quantities for the nanoparticles, whereas
γν is the coupling constant between a given nanoparticle and
the central molecule. The coupling coefficients C′

1i and C′
2i

describe interaction between the first (second) nanoparticle
and left (right) molecule. They are determined by relation
C′

νi = Cνi(γ → γ ′) = √
γ ′

ν/γνCνi.
Despite that the analytical derivation shown below can

be done for any values of the chain parameters, in order
to facilitate numerical study we assume that (i) the left and
right molecules are identical, having the same masses ML =
MR ≡ M and fundamental frequencies 
L = 
R ≡ 
; (ii) the
nanoparticles are made of the same material:

D1 = D2 ≡ D, γ1/m = γ2/m ≡ γ /m ≡ γ̂ , (8)

where mC ≡ m and ωC ≡ ω are the mass and fundamental
frequency of the central molecule, respectively; and (iii) the
contacts are made of the same material:

DL = DR ≡ DB, γL/M = γR/M ≡ γB/M ≡ γ̂B. (9)

In addition, we assume that the nanoparticles are equal:

�1 = �2 ≡ �, N1 = N2 ≡ N = ωm/�, (10)

where ωm is the maximum frequency in the nanoparticle
spectrum. In order to simulate the macroscopic nature of the
contacts, we assume that

�L = �R ≡ �B � �; NL = NR ≡ NB = ωBm/�B, (11)

where NB � N and ωBm is the maximum frequency in the
contacts’ spectrum. As one can suppose, there is no need to
distinguish between the mode numbers in the contacts, due
to NL, NR → ∞, and we introduce only one mode number
NB for both contacts. Also, due to the dense character of the
undisturbed contacts’ spectrum compared to the undisturbed
nanoparticles’ spectrum, we assume that each frequency in the
nanoparticle spectrum “hits” some frequency in the contact
spectrum: �/�B = n, where n � 1 is an integer. With these
simplifications, we can drop the indexes μ and ν in Cμi, Cνi,
C′

νi, and rν , denoting them as CBi, Ci, Cri, and r ≡ √
γ ′/γ ,

respectively.
Our major goal is to consider temporal variations of all

variables on the timescale �−1, which is much longer than
the microscopic time

τ = max
[
γ̂ −1, (γ̂ ′)−1, γ̂ −1

B , ω−1,
−1, D−1, D−1
B

]
, (12)

determining transient processes. So, we have

τ � �−1 � t � �−1
B . (13)

In the first step, we find the eigenstates (eigenmodes) of
our chain (see Appendix A). As a result, our roots zk (eigen-
frequencies of the chain) can be presented as the unification

{zk}Ntot
k=1 = {zBk}NB

k=1

⋃
{znk}N

k=1 (14)

of two subsets: the first is the roots associated with the con-
tacts and second is the roots associated with the nanoparticles.
In both cases, each root can be presented as

zk = k�B − φk�B, k = 1, 2, ..., Ntot = NB + N, (15)

where |φk| � 1. Thus, the first and second subsets of the
roots are slightly but inhomogeneously shifted from the sets

of the uniformly spaced modes that belong to the contacts
and nanoparticles, respectively, before interconnecting them
by the molecules. It is worth mentioning that none of the
nanoparticles’ roots coincide with any contacts’ root, despite
our assumption written after Eq. (11). This makes it possi-
ble to clearly distinguish between the dynamics of the eigen-
mode average energies of the nanoparticles and contacts and
derive unambiguous expressions for the energy currents that
enter or exit the contacts and between the nanoparticles. In
the second important step, we find temporal solutions for all
operators that encounter (1) (see Appendix A) and are used to
describe the dynamics of our system on the timescale �−1.

III. QUASISTATIC ENERGY BALANCE

Taking into account that our time-dependent variables sat-
isfy the Heisenberg equations, one can find the rate of change
of the averaged energy Eμ of the μth contact:

NB∑
i=1

〈
d

dt

(
p2

μi

2mBi
+ mBiω

2
Bix

2
μi

2

)〉

=
NB∑
i=1

CBi

2mBi
〈pμixμ + xμ pμi〉 ≡ PBμ, μ = L, R, (16)

where the angular brackets denote the ensemble averaging
(see below) and PBμ is the work per unit of time performed
by the left (right) molecule over the left (right) contact (or the
corresponding power dissipated in the left or right contacts
[18]). In a similar way, one finds that the rate of change of the
energy Eν of the νth nanoparticle is

N∑
i=1

〈
d

dt

(
p2

νi

2mi
+ miω

2
i x2

νi

2

)〉
≡ PCν + Pμ(ν)ν, (17)

where ν = 1, 2. Here

PCν =
N∑

i=1

Ci

2mi
〈pνixC + xC pνi〉 (18)

is the work per unit of time performed by the central molecule
over the νth nanoparticle, and

Pμ(ν)ν =
N∑

i=1

Cri

2mi
〈pνixμ(ν) + xμ(ν) pνi〉 (19)

is the work per unit of time performed by the left (right)
molecule over the first (second) nanoparticle.

As was shown [17], after coupling of a quantum particle
to a thermal reservoir, the whole system comes to equilibrium
after a microscopic time τ . Similar to [17] and [50], in our
case of two contacts and nanoparticles having different initial
temperatures, small energy currents, provided by “narrow”
channels of the molecular bridges, will be established during
the time τ (12) after connecting of the chain. One can assume
that in each moment of time each nanoparticle and contact
has a quasiequilibrium density matrix with slowly changing
parameters. More accurately, after the diagonalization and
introducing the eigenmode creation and annihilation oper-
ators a+

εk and aεk , where ε = μ = L, R or ε = ν = 1, 2,
one can present the density matrix of the whole system in
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the form ρε ∼ exp[−∑
k βεkzk (a+

εkaεk + 1/2)], similar to [50]
with βεk (t ) = 1/kBTεk (t ). Here, instead of trying to determine
the eigenmode temperatures Tεk (t ), we will construct and
solve equations to determine the (slow) dynamics of eigen-
mode average energies Eεk = Eεk (t ) and, eventually, energy
currents on the timescale (13) (see Appendix B).

In general, averaged energies Eν,μ of the νth nanoparticle
and the μth contact will consist of contributions from all the
eigenmodes. On the other hand, similar to [51], it is natu-
ral to expect that shortly after interconnecting of the chain,
Eν will be presented mostly by contributions En

νk from the
{znk}|Nk=1 subset of the eigenmodes. It will contain also small
contributions EB

νk from the {zBk}|NB
k=1 subset. In the same way,

Eμ will be presented mostly by contributions EB
μk from the

{zBk}|NB
k=1 subset, also having small contributions En

μk from the
{znk}|Nk=1 subset. Because neither a nanoparticle nor a contact
temperatures can change noticeably over τ , one can assume
that at t = 0,

En
νk (0) = h̄znk

2
coth

h̄znk

2kBTν

and EB
νk (0) = 0, (20)

EB
μk (0) = h̄zBk

2
coth

h̄zBk

2kBTμ

and En
μk (0) = 0, (21)

and Tν,μ are initial (equilibrium) temperatures of the nanopar-
ticles (ν = 1, 2) and contacts (μ = L, R), respectively. As
follows from (20), (21), and (B10)–(B13), the only equations
that we need to solve are (see Appendix B)

d

dt

[
EB

Lk (t ) − EB
Rk (t )

] = FBk
[
EB

Lk (t ) − EB
Rk (t )

]
(22)

if zk ∈ {zBk}NB
k=1, and

d

dt

[
En

1k (t ) − En
2k (t )

] = (F ′
nk + F ′′

nk )
[
En

1k (t ) − En
2k (t )

]
(23)

if zk ∈ {znk}N
k=1. The other energy differences vanish,

En
Lk (t ) − En

Rk (t ) = EB
1k (t ) − EB

2k (t ) ≡ 0, (24)

due to second relations in (20) and (21). These observations
lead us to the following expression for energy current flowing
between the nanoparticles (see Appendix B),

J (12)(t ) = J (12)
B (t ) + J (12)

n (t ), (25)

where

J (12)
B (t ) = −1

2

NB∑
k=1

FBk
[
EB

Lk (t ) − EB
Rk (t )

] = J (LR)
B (t ) (26)

is also the energy current exiting from the left contact or
entering the right contact, and

J (12)
n (t ) = −1

2

N∑
k=1

(F ′
nk + F ′′

nk )
[
En

1k (t ) − En
2k (t )

]
(27)

is its modification due to energy absorbed by (or depleted
from) the left nanoparticle. Assuming continuity of the eigen-
mode average energies EB,n

μ,νk as functions of time (otherwise
d
dt EB,n

μ,νk (t ) will diverge at t = 2π�/�, when � = 0, 1, 2, ...)
and taking into account initial conditions (20)–(21), Eqs. (22)
and (23) can be solved and all currents can be computed.

(b)
(a)

1
0
7
F

B
k
/
ω

Δt/2π 3210

0.2

-0.2

-0.6

-1

FIG. 2. Time dependences of FBk when γ̂ /ω = 0.1, D/ω = 1,
�/ω = 0.001, and k = 105: (a) accurate result and (b) its approxi-
mation by a sequence of step functions.

Finally, for �T = TL − TR → 0, one finds the thermal con-
ductance K of the chain:

K = J (LR)
B

�T
= 1

2

NB∑
k=1

FBk
s2

sinh2(s)
, s ≡ h̄zk

2kBTav
, (28)

and Tav = (TL + TR)/2; we assumed for clarity that TL > TR.
For just two equal nanoparticles connected by a molecule,

all coefficients F are zeros except F ′
nk , so the energy current

between the nanoparticles in this case is

J (12)
0 (t ) = −1

2

N∑
k=1

F ′
nk

[
En

1k (t ) − En
2k (t )

]
, (29)

where only the nanoparticle eigenmodes {znk}N
k=1 must be

taken into account. They are found by solving the equation
h = 0, where h is determined in (A1) with Cr = 0.

IV. RESULTS AND DISCUSSION

In the numerical examples considered here, we assume,
in addition to Eqs. (8)–(11), that all the molecules in the
chain are identical and the nanoparticles are made of the same
material as the contacts, resulting in γ̂B = γ̂ ′ = γ̂ , m = M,
and ω = 
. As in [50], we choose ωm = ωBm = 1.3D and
N = 1300.

As follows from our numerical analysis, the coefficients
F can be approximated by a sequence of step functions
with the steps occurring at t = �P, � = 0, 1, 2,..., and the
value of each coefficient on an interval �P � t � (� + 1)P is
equal to its time average on the interval (see Fig. 2 for FBk

coefficient). The accuracy of this approximation was checked
by computing ratios |Dk1| and |Dk2| to their largest values
in the right-hand sides of (B15) and (B16), respectively, for
each k and were found to be about several percent, supporting
this approximation for the F and R coefficients (Appendix
B). It is also in line with our goal to describe the dynamics
on the timescale �−1 � τ , i.e., disregarding details of tran-
sient processes. This allows analytical solutions of Eqs. (22)
and (23) on each interval �P � t � (� + 1)P. Due to the
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(d)
(c)
(b)
(a)

1
0
4
J
/

ω
2

Δt/2π 3210

3

2.4

1.8

1.2

0.6

0

FIG. 3. Time dependences of (a) J (LR)
B (t ) and (b) its approxima-

tion J (LR)
B (0); (c) energy current J (12)

n (t ) and (d) total energy current
(25) between the nanoparticles; TL = 300 K.

step-function approximation, some curves in Figs. 3–8 pos-
sess “jumps” (sharp changes).

In Figs. 3–6, �/ω = 0.001, �B/ω = 7.8 × 10−6, NB =
1.7 × 105, α ≡ (TL − TR)/TL = 0.01, and we assumed that
T1 = TL(1 − α/3) and T2 = TL(1 − 2α/3). It is important,
however, to notice that our approach is valid even for α ∼ 1.
In Figs. 3 and 4, D/ω = 1 and γ̂ /ω = 0.1.

Due to the extensity of the contacts (NB � N), one can ne-
glect temporal variation of their eigenenergies, approximating

EB
Lk (t ) ≈ EB

Lk (0) and EB
Rk (t ) ≈ EB

Rk (0), (30)

where EB
L,Rk (0) are determined by (21). This approximation is

supported in Figs. 3–6, in which curves (b) show approximate
(time independent) J (LR)

B from (26) using (30).
Figures 5 and 6 predict this kind of time dependence

when all contacts and nanoparticles are made of silicon with
D = DB = 457 cm−1 interconnected by SiO2 molecules hav-
ing ω = 
 = 460 cm−1 [56], which corresponds to �−1 ∼
100 ps and γ̂ /ω ≈ 0.16. The latter quantity was estimated
from the FWHM of the corresponding absorption experiment
[56].

(d)
(c)
(b)
(a)

1
0
6
J
/

ω
2

Δt/2π 3210

8

6

4

2

FIG. 4. Same as in Fig. 3 for TL = 100 K.

(d)
(c)
(b)
(a)

1
0
4
J
/

ω
2

Δt/2π 3210

3

2

1

0

FIG. 5. Same as in Fig. 3 for TL = 300 K and γ̂ /ω = 0.16.

An important consequence of the presented results is that
the total energy currents J (12)(t ) between the nanoparticles
essentially repeat the shapes of their partial contributions
J (12)

n (t ), shifting their values by the approximately constant
“background” currents J (LR)

B (t ) that exit (enter) the contacts.
Figures 7 and 8 show energy currents J (12)

0 (t ) between the
same nanoparticles in the absence of the contacts at the same
parameters ωm, N , ω, and γ̂ as in the “contact” case. As one
finds, the currents J (12)

n (t ) shown in Figs. 3–6 are qualitatively
similar to the corresponding currents in Figs. 7 and 8, demon-
strating the same quasiperiodicity. It is important to note that
as presented in Figs. 3–6, temporal dependencies are valid
only for t � �−1

B , when one can consider the contacts having
essentially infinite sizes.

Using Eq. (28), one can compute the thermal conductance
K for the total nanojunction chain and compare it to the corre-
sponding thermal conductance K0 obtained for a nanojunction
that consists of only two macroscopic contacts interconnected
by a molecule [53] (no nanoparticles). In the experimental
case [56], when γ̂ /ω = 0.16, results are the following: if T =
300 K, K/kBω = 1.1 × 10−2 and K0/kBω = 0.06; if T =
100 K, K/kBω = 1.1 × 10−3 and K0/kBω = 1.4 × 10−3; if
T = 50 K, K/kBω = 8.4 × 10−5 and K0/kBω = 1.8 × 10−4.

(d)
(c)
(b)
(a)

1
0
5
J
/

ω
2

Δt/2π 3210

1.25

1

0.75

0.5

0.25

FIG. 6. Same as in Fig. 5 for TL = 100 K.
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(b)
(a)

1
0
4
J

to
t
/

ω
2

Δt/2π 3210

1

0.5

0

FIG. 7. Energy currents J (12)
0 (t ) at TL = 300 K: (a) γ̂ /ω = 0.1

and (b) γ̂ /ω = 0.16.

The same calculations with NB = 1.7 × 106 modify the values
of K by less than 1%, showing convergence of our results.
Thus, for ω = 460 cm−1, the total range of K is between
10−13 and 10−11 W/K, depending on the temperature. These
very small values for the thermal conductance are expected
due to the narrow channels for thermal transport provided
by the molecules. As one can expect, any K in the current
case is smaller than the corresponding K0: phonons traveling
across the nanojunction suffer additional reflections from the
nanoparticles.

V. CONCLUSIONS

We investigated energy transport in a chain consisting
of two macroscopic contacts and two equal nanoparticles
interconnected by molecules, shown in Fig. 1. The nanopar-
ticles and contacts are represented by ensembles of harmonic
oscillators, and the interaction in the system is described by
the Drude-Ullersma model. The macroscopic nature of the
contacts in our closed system is simulated by a large ratio
�/�B = n with an integer n � 1, where � and �B are the
mode spacing constants for the nanoparticles and contacts.
As is shown, the eigenmode spectrum of our system can be

(b)
(a)

1
0
6
J

to
t
/

ω
2

Δt/2π 3210

5

4

3

2

1

FIG. 8. Same curves as in Fig. 7 for TL = 100 K.

presented as a unification of two subsets. One subset is associ-
ated with the contacts and the other one with the nanoparticles.
Equations that determine temporal variation of the eigenmode
average energies of the contacts and nanoparticles are derived
and solved. This allows us to compute the energy current J (12)

B
that exits (enters) the contacts and the current J (12)(t ) between
the nanoparticles. The latter current takes into account energy
accumulation by (depletion from) the nanoparticles. As our
numerical analysis shows, on the timescale �−1 � t � �−1

B ,
J (12)

B is essentially the same as if the contacts’ temperatures
stay unchanged and equal to their thermal equilibrium values
before interconnecting of the chain. On the other hand, de-
spite the presence of the macroscopic contacts, J (12)(t ) shows
reversibility (or quasiperiodicity) features and peculiarities at
time moments 2π�/�, with � = 0, 1, 2,..., representing the
finite size effects similar to those in [50]. This is illustrated
in Figs 3–6, including the case when the model parame-
ters are taken from the experiment [56]. Substitution of the
quasiperiodicity for the true periodicity with period 2π/� is
due to interaction of the nanoparticles with the molecules that
inhomogeneously shift uniformly spaced modes [see (15)]. As
one can expect, all energy currents increase with the increase
of the coupling constants and temperature. An expression for
the thermal conductance of the whole nanojunction is derived
and evaluated for different temperatures with the experimental
parameters [56]. Small values for the thermal conductance
are due to the molecules providing narrow channels for the
currents and additional phonon reflections from the nanopar-
ticles. This is in a qualitative agreement with the experiment
[57], where it was proved that the thermal conductance is
not sensitive to the shape of the nanojunction but only to
its nanojunction-substrate contacts with the smallest cross
section (determined by the molecules in our case), decreasing
with the cross section area. A possible experimental study
of this kind of system is not necessary to conduct in the
nanojunction described here. One can expect that a similar
type of size effects can be found also in a nanojunction with
only one nanoparticle connected to the contacts by molecules,
which is more amenable to experimental study. In this regard,
our approach can be easily extended to explore the energy
currents and thermal conductance in this kind of nanojunction,
as well as for chains of more than two nanoparticles.
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APPENDIX A

The interaction matrix of Htot can be arranged in such
a way that, except for its diagonal terms, the only nonzero
matrix elements occupy the first three lines and rows. The
resulting dispersion equation is factorized h(z) · H (z) = 0,
where

h(z) = ω2 − z2 + 2CS(z)z2 − 2CrCB[S(z)z2]2

H (z)
(A1)
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and H (z) = 
2 − z2 + [CrS(z) + CBSB(z)]z2. Here

C = 2γ̂ D2

π
, Cr = 2γ̂ ′D2

π
, CB = 2γ̂BD2

B

π
, γ̂ ′ = γ ′

M
,

(A2)

S(z) =
N∑

i=1

�(
ω2

i + D2
)(

z2 − ω2
i

) , (A3)

and SB(z) can be found from S(z) by substitution,

N, �, ωi, D → NB, �B, ωBi, DB. (A4)

Thus, we have two separate systems of eigenstates. The first
one comes from solving the equation h(z) = 0, and the other
one comes from solving H (z) = 0. In the h(z) = 0 case, each
eigenfrequency zk is associated with the eigenvector

ek = e0k
[
1, −dk, −dk, Ei(zk )

∣∣N

i=1, Ei(zk )
∣∣N

i=1,

EBi(zk )
∣∣NB

i=1, EBi(zk )
∣∣NB

i=1

]
, (A5)

where Ei(zk ) = (rdk − 1)Ai/(z2
k − ω2

i ), EBi(zk ) =
dkABi/(z2

k − ω2
Bi ), and dk = √

CCBS(zk )z2
k/H (zk ). In the

H (z) = 0 case, each zk is associated with the eigenvector

ek
H = e1k

[
0, 1, −1, −E ′

i (zk )
∣∣N

i=1, E ′
i (zk )

∣∣N

i=1,

− E ′
Bi(zk )

∣∣NB

i=1, E ′
Bi(zk )

∣∣NB

i=1

]
, (A6)

where E ′
i (zk ) = rAi/(z2

k − ω2
i ) and E ′

Bi(zk ) = ABi/(z2
k − ω2

Bi ).
In Eqs. (A5) and (A6),

Ai = ωi

√
C�(

ω2
i + D2

) , ABi = ωBi

√
CB�B(

ω2
Bi + D2

B

) , (A7)

and e0k, e1k are the normalization constants. The first three
components of the eigenvectors ek

i and ek
Hi contribute to the

eigenmode expansion for xC, xL, and xR, respectively [see
(B1) in Appendix B]. The next 2N and last 2NB components
of (A5) and (A6) contribute to xνi (ν = 1 or 2) and xμi (μ = L
or R), respectively. As our study shows, the antisymmetric
structure of the eigenvectors in the H (z) = 0 case can be inter-
preted in a way where the central molecule stays motionless
(xC = 0), whereas symmetrically placed atoms in the nanopar-
ticles and contacts move in opposite directions. In such a case,
a study of the whole system breaks into a study of two separate
identical problems. Each of them consists of energy transport
between the left (right) contact and nanoparticle mediated by
a molecule (left or right). Here, we concentrate our attention
only on the first case corresponding to the eigenvectors (A5).
The roots of h(z) = 0 can be found numerically. In our study,
N ∼ 103 whereas NB > 105. In order to make the numerics
feasible we, first of all, present (A3) as

S(z) = 1

z2 + D2

[
N∑

i=1

�

z2 − ω2
i

+
N∑

i=1

�

ω2
i + D2

]
(A8)

and SB(z) by the same expression (A8) with substitution (A4).
The second sum in (A8) can be calculated accurately (it does

not depend on z). Using an accurate relation [58],

N∑
i=1

�

z2 − ω2
i

= 1

2z
{ψ (−zN/zm ) − ψ (zN/zm )

+ψ[N (1 + z/zm ) + 1]

−ψ[N (1 − z/zm ) + 1]} − zm

z2N
, (A9)

the following properties of the first derivative ψ (z) = �′(z) of
the � function [58,59],

ψ (z + 1) = ψ (z) + 1

z
, ψ (1 − z) = ψ (z) + πctg(πz),

(A10)
and large |z| expansion of ψ (z) [59], one finds

z2S(z) ≈ πzctg(πNαz ) + 2(P1 + P2)

2(D2 + z2)
, αz = z

zm
, (A11)

P1(z) = z2
N∑

i=1

�

ω2
i + D2

+ z

2
ln

(
1 + αz

1 − αz

)

− �

2az
+ zαz

6(Naz )2

[
1 − 1 + α2

z

5(Naz )2

]
(A12)

with az = 1 − α2
z , and

P2(z) = z

480

[
20

21

(
1

N6
m

− 1

N6
p

)
+ 1

N8
m

− 1

N8
p

]
, (A13)

where Np,m = N (1 ± αz ), for the nanoparticles and the similar
expression for z2SB(z) with substitution (A4). Formula (A11)
works extremely well for all roots zk except few last roots
closest to zm (or to zBm). This approximation allows one to
decrease the numerical complexity of the problem of finding
the roots by 4 orders of magnitude. Using the above approx-
imation, one can express z2SB(z) from the equation h(z) =
0 and, looking for the roots in the form zk = �B(k − φk ),
present the resulting equation for finding φk as

φk = 1

π
atan

{
πzk

2[FB(zk ) + PB(zk )]

}
, (A14)

where

FB(z) = F
(z)FB1(z) + CrFC(z)z2S(z)

FB1(z)FB2(z)
, (A15)

FB1(z) = FC(z) + 2Cz2S(z), and FB2(z) = CB/(D2
B + z2) with

FC(z) = ω2 − z2, F
(z) = 
2 − z2, and PB can be obtained
from P by substitution (A4) and zm → zBm. Equation (A14)
can be solved iteratively on each interval (i − 1)�B < z <

i�B, where i = 1, 2, ..., NB, to find all NB roots zk ≡ zBk

that can be associated with the contacts. Convergence is
fast and stable. The roots of h(z) = 0 can be also found by
the bisection method on each interval (i − 1)�B < z < i�B,
i = 1, 2, ..., NB. In this way, one can reproduce exactly the
same NB roots {zBk}|NB

k=1 as above and find additional N roots
{zk}|Nk=1, each of them different from any contact root. One can
also try to find these N roots by expressing z2S(z) from h(z) =
0, looking for the roots in the form zk = �(k − φk ), and trying
to find φk iteratively on each interval (i − 1)� < z < i�,
where i = 1, 2, ..., N . In most cases, indeed, a solution found
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iteratively in this way coincides with the corresponding root
found by the bisection method. In some cases, however, there
is no conversion or an iterative solution converges to a wrong
value. So, we adopted a different way to find the nanoparti-
cle’s roots. We find all roots of h(z) = 0 using the bisection
method on each interval (i − 1)�B < z < i�B, where i =
1, 2, ..., NB. For most intervals, there is only one (iterative)
root. If there are two roots, we distinguish the one coinciding
with the iterative root previously found, so the other one is
identified as a root associated with the nanoparticles.

Formal solutions of the Heisenberg equations for the
contacts’ and nanoparticles’ operators are

xμi(t ) = xμi(0) cos(ωBit ) + pμi(0)

mBiωBi
sin(ωBit )

+ CBi

mBiωBi

∫ t

0
sin[ωBi(t − s)]xμ(s)ds, (A16)

and pμi(t ) = mBiẋμi(t ), where μ = L or R;

xνi(t ) = xνi(0) cos(ωit ) + pνi(0)

miωi
sin(ωit )

+ Ci

miωi

∫ t

0
sin[ωi(t − s)]xC(s)ds

+ Cri

miωi

∫ t

0
sin[ωi(t − s)]xμ(ν)(s)ds (A17)

and pνi(t ) = miẋνi(t ). Here and below ν = 1, 2, μ(1) = L,
and μ(2) = R. Excluding xμi and xνi from the corresponding
equations for xL,R,C, one obtains three equations that contain
only the displacement operators of the molecules. Solving
them using the Laplace transform and its inverse in a standard
way (see, for example, [17]), one arrives at the following
solution for the displacement operator of the central molecule:

xC(t ) = xC0(t ) + 1

m

∫ t

0
dsg0(t − s)[η1(s) + η2(s)]

− 1

M

∫ t

0
dsg1(t − s){r[η1(s) + η2(s)]

+ ηL(s) + ηR(s)}.
Here a function g0(t ) (solution kernel) is determined using the
Heaviside expansion theorem:

g0(t ) = 1

2π i

∫ c+i∞

c−i∞

ezt

ĥ(z)
=

∑
k

ez̃kt

d
dz ĥ(z)|z=z̃k

, (A18)

where z̃k is a root of ĥ(z) = 0 and ĥ(iz) = h(z) from (A1).
Taking into account that all the roots of the even function ĥ(z)
are on the imaginary axis of the z plane, z̃k = izk , one finds

g0(t ) = −2
Ntot∑
k=1

sin(zkt )

h′(zk )
, where h′(z) ≡ d

dz
h(z). (A19)

Analogously, one can find

g1(t ) = −2
Ntot∑
k=1

f (zk )sin(zkt )

h′(zk )
(A20)

with f (z) = √
MCCr/mS(z)z2/H (z). In a similar way,

xμ(t ) = xμ0(t ) + 1

M

∫ t

0
dsg3(t − s)[η1(s) + η2(s)]

+ 1

M

∫ t

0
dsg2(t − s)[ηL(s) + ηR(s)] (A21)

for the left and right molecules, where

g2(t ) = −2CCBR−2
Ntot∑
k=1

[ f (zk )]2sin(zkt )

h′(zk )
, (A22)

R2 = M/m, and g3(t ) = rg2(t ) − g1(t ). Next,

ην (t ) =
N∑

i=1

Ci

[
xνi(0) cos(ωit ) + pνi(0)

miωi
sin(ωit )

]
and

ημ(t ) =
NB∑
i=1

CBi

[
xμi(0) cos(ωBit ) + pμi(0)

mBiωBi
sin(ωBit )

]

are “random forces” or “noises” coming from νth nanoparticle
and μth contact. Finally, xC0(t ) and xμ0(t ) depend linearly
on the solution kernels and their time derivatives and can
be dropped from xC(t ) and xμ(t ) solutions. Indeed, as our
numerics shows, solution kernels gq(t ), where q = 0, 1, 2,...,
differ noticeably from zero only on time intervals of the order
of τ � �−1 in a vicinity of t = �P, where P = 2π/� and
� = 0, 1, 2,.... This is not unusual, because solution kernels
usually possess short (on the microscopic scale) memories.

APPENDIX B

The dynamics of xεi and pεi is determined by [17,50,51]

xεi(t ) =
∑

k

√
h̄

2mεizk
ek
εi(a

+
εkeizkt + aεke−izkt ), (B1)

and pεi(t ) = mεiẋεi (t ), where εi ≡ ε = C, L, or R correspond
to the central, left, or right molecule, respectively; ε = ν = 1
or 2 with i = 1, 2, ..., N corresponding to the left or right
nanoparticles; ε = μ = L or R with i = 1, 2, ..., NB corre-
sponding to the left or right contacts. Corresponding compo-
nents of ek

εi are determined by (A5).
After the diagonalization, the total system consists of in-

dependent modes, each of them carrying eigenenergy Eεk ≡
h̄zknεk/2, where nεk = 〈a+

εkaεk + aεka+
εk〉 is the occupation

number of the corresponding state. Our goal is to derive
equations to find all the (unknown) Eεk . This can be done by
substituting (B1) and pεi(t ) = mεiẋεi (t ) into Eqs. (16)–(19).
In this derivation, one can drop contributions proportional to
a+

εka+
εk1

exp[i(zk + zk1 )t] and aεkaεk1 exp[−i(zk + zk1 )t] yield-
ing zero at time averaging due to their fast time dependences.
In fact, these terms must be also dropped for another reason:
due to the absence of any nonlinear interaction in our system,
the number of the eigenmodes (phonons) cannot be increased
or decreased and is equal to NB + N [see (14)]. Also, due to
the eigenmode independence, only k1 = k terms survive in the
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resulting double sum over k, k1, and

NB∑
i=1

〈
p2

μi

2mBi
+ mBiω

2
Bix

2
μi

2

〉
=

∑
k

fBkEμk (B2)

results. The expression for fBk follows from (A5):

fBk =
NB∑
i=1

(
ek

Bi

)2 = CBd2
k e2

0kZBk with (B3)

ZBk =
NB∑
i=1

�Bω2
Bi(

ω2
Bi + D2

B

)(
z2

k − ω2
Bi

)2

≈ π2

4�B
(
z2

k + D2
B

)
sin2(πzk/�B)

(B4)

(see [58]), where sin2(πzk/�B) = sin2(πφk ). As our numer-
ics shows, the relative error of this approximation is � 10−5

for NB � 105. With the same accuracy,

NB∑
i=1

(
ωBie

k
Bi

)2 ≈ z2
k

NB∑
i=1

(
ek

Bi

)2 ≈ z2
k fBk. (B5)

Using a similar approach, one finds

N∑
i=1

〈
p2

νi

2mi
+ miω

2
i x2

νi

2

〉
=

∑
k

fnkEνk with (B6)

fnk =
N∑

i=1

(
ek

ni

)2 = C(rdk − 1)2e2
0kZnk . (B7)

Here Znk is determined by (B4) with substitution reverse to
(A4), i.e., NB, �B, ωBi, DB → N, �, ωi, D. Now N ∼ 103

so the relative error of the produced expression for Znk and the
similar to (B5) relation is ∼10−3. This is still good enough for
our semi-phenomenological model.

Derivation of the right-hand side in (16), as well as en-
semble averages PCν and Pμ(ν)ν in (17), follows similar ideas.
Employing (B1), one finds the following for the nanoparticles
and contacts:

〈xεi(0)xε j (0) + xε j (0)xεi(0)〉

= h̄√
mεimε j

∑
k

nεkek
εie

k
ε j

zk
= 2√

mεimε j

∑
k

Eεkek
εie

k
ε j

z2
k

,

(B8)

〈pεi(0)pε j (0) + pε j (0)pεi(0)〉
= h̄

√
mεimε j

∑
k

nεkzkek
εie

k
ε j = 2

√
mεimε j

∑
k

Eεkek
εie

k
ε j,

(B9)

and 〈xεi(0)pεi(0) + pεi(0)xεi(0)〉 = 0. Eventually, the balance
equations (16) and (17) can be presented as

∑
k fBkĖμk =∑

k jμk and
∑

k fnkĖνk = ∑
k jνk , respectively, where k =

1, 2, ..., NB + N . In order to satisfy them, it is enough to solve
Ėμk = jμk f −1

Bk and Ėνk = jνk f −1
nk for each k, resulting in the

following independent sets of four equations for each k:

ĖB,n
Lk ≡ dEB,n

Lk

dt
= PB,n

BLk = (FBk + RBk )EB,n
Lk

+ Rnk
(
EB,n

1k + EB,n
2k

) + RBkEB,n
Rk (B10)

and ĖB,n
Rk = PB,n

BRk , with PB,n
BRk produced from PB,n

BLk by
exchange EB,n

Lk ↔ EB,n
Rk . For nanoparticles,

ĖB,n
1k = PB,n

C1k + PB,n
L1k and ĖB,n

2k = PB,n
C2k + PB,n

R2k, (B11)

where

PB,n
C1k = (F ′

nk + R′
nk )EB,n

1k + R′
nkEB,n

2k + R′
Bk

(
EB,n

Lk + EB,n
Rk

)
,

(B12)

PB,n
L1k = (F ′′

nk + R′′
nk )EB,n

1k + R′′
nkEB,n

2k + R′′
Bk

(
EB,n

Lk + EB,n
Rk

)
,

(B13)

and PB,n
C2k and PB,n

R2k are produced from PB,n
C1k and PB,n

L1k by
exchange EB,n

1k ↔ EB,n
2k . Here the superscripts B and n mean

that zk ∈ {zBk}NB
k=1 and zk ∈ {znk}N

k=1, respectively. Finally, con-
sidering ĖB,n

Lk − ĖB,n
Bk in (B10) and ĖB,n

1k − ĖB,n
2k in (B11), one

arrives at (22)–(24).
The coefficients F and R in (B10)–(B13) are not all in-

dependent. Relations between them follow from the energy
conservation law for our closed system applied for each
eigenstate:

PB,n
BLk + PB,n

BRk + PB,n
C1k + PB,n

L1k + PB,n
C2k + PB,n

R2k = 0. (B14)

Using here the right-hand sides of Eqs. (B10)–(B13) and
taking into account that (B14) must be correct for any initial
eigenstate average energy (for any initial temperatures), one
can derive the following relations:

Dk1 ≡ FBk + 2(RBk + R′
Bk + R′′

Bk ) = 0 (B15)

and

Dk2 ≡ F ′
nk + F ′′

nk + 2(Rnk + R′
nk + R′′

nk ) = 0. (B16)

Equations (B10)–(B13) assume that there is no energy accu-
mulation (depletion) by the molecules on the timescale �−1.
We were able to confirm this explicitly by computing the rate
of energy variation of the molecules as it was done in (16) and
(17) with substituting HBμ or Hnν by HMσ .

As one can notice, PB,n
LBk = −PB,n

BLk can be considered as the
kth eigenmode energy current flowing from the left contact
towards the left nanoparticle. Thus, the kth contribution to the
energy current flowing between the nanoparticles is

J (12)
k = PB,n

LBk − (
PB,n

L1k + PB,n
C1k

)
, (B17)

which takes into account that the current exiting from the
left contact is partially absorbed (or augmented) by the left
nanoparticle by the amount indicated inside the brackets be-
fore it reaches the central molecule. Similarly, the kth energy
current that reaches the central molecule from the right is

J (21)
k = PB,n

RBk − (
PB,n

R2k + PB,n
C2k

) = −J (12)
k , (B18)

where PB,n
RBk = −PB,n

BRk . The last relation in (B18) is due to
(B14). Using (B10)–(B17), one arrives at (25)–(27).
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The expression for FBk appears after substitution of the
nonintegral part of pμi(t ) = mBiẋμi(t ) with xμi(t ) from (A16)
and the integral part of xμ from (A21) into (16). The result is

PBμ = 1

2

∫ t

0
dsg2(t − s)[Sμa − Sμb], where (B19)

Sμa =
NB∑
i=1

CBicos(ωBit )

MmBi fBk
〈ημ(s)pμi(0) + pμi(0)ημ(s)〉

and

Sμb =
NB∑
i=1

CBiωBisin(ωBit )

M fBk
〈ημ(s)xμi(0) + xμi(0)ημ(s)〉.

Using the expression for ημ (end of Appendix A) and
Eqs. (B8) and (B9) results in

〈ημ(s)pμi(0) + pμi(0)ημ(s)〉

= 2
√

mBi

NB∑
j=1

CB jsin(ωB j s)√
mB jωB j

NB∑
k=1

ek
Bie

k
B jEμk (s) and (B20)

〈ημ(s)xμi(0) + xμi(0)ημ(s)〉

= 2√
mBi

NB∑
j=1

CB jcos(ωB js)√
mB j

NB∑
k=1

ek
Bie

k
B j z

−2
k Eμk (s). (B21)

Substituting (B20) into Sμa and (B21) into Sμb, one finds

Sμa = 2CB

NB∑
k=1

Eμk (s)Z−1
Bk

NB∑
i=1

bk
i ω

2
Bicos(ωBit )

×
NB∑
j=1

bk
jωB jsin(ωB js) and

Sμb = 2CB

NB∑
k=1

Eμk (s)z−2
k Z−1

Bk

NB∑
i=1

bk
i ω

3
Bisin(ωBit )

×
NB∑
j=1

bk
jω

2
B jcos(ωB js),

where bk
i = �B/[(ω2

Bi + D2
B)(z2

k − ω2
Bi )]. Defining

BBk (t ) ≡
NB∑
i=1

bk
i sin(ωBit ), (B22)

ABk (t ) = ḂBk (t ), and ȦBk (t ) = G(t ) − z2
k BBk (t ) with

G(t ) =
NB∑

k=1

�BωBisin(ωBit )

ω2
Bi + D2

B

, (B23)

one can write

PBμ = CB

NB∑
i=1

Z−1
Bk

∫ t

0
dsg2(t − s)Eμk (s)

× [ABk (t )BBk (s) − BBk (t )ABk (s) + G(t )ABk (s)].

(B24)

Taking into account that g2(t ) decays fast (see the observation
at the end of Appendix A) whereas EBk (s) varies on a much
longer timescale, EBk (s) can be taken out from the integral at
s = t and (B24) can be rewritten as

PBμ ≈
NB∑
i=1

Eμk (t )FBk with (B25)

FBk (t ) = CBZ−1
Bk

[
SF

AB(t ) − SF
BA(t )

]
, where (B26)

SF
AB(t ) = ABk (t )

∫ t

0
dsg2(t − s)BBk (s), (B27)

and SF
BA can be produced from SF

AB by interchanging ABk ↔
BBk . Here we also neglected the G(t ) term, because G(t ) is
fast oscillating and a quickly decaying function of time: as
our numerics shows, its contribution to FBk is less than 1%.

A possible way to compute FBk is to present it as

FBk (t ) = CBZ−1
Bk

NB∑
i, j=1

[
f k
i ωBi f k

j I1i j (t ) − f k
i f k

j ωB j I2i j (t )
]

using the definitions of ABk and BBk . Here f k
i = bk

i ωBi,
I1i j (t ) = cos(ωBit )[sin(ωB jt )g2c j − cos(ωB jt )g2s j], and
I2i j (t ) = sin(ωBit )[cos(ωB jt )g2c j + sin(ωB jt )g2s j]. In accor-
dance to the observation at the end of Appendix A, each time
when t passes �P, the integrals

g2c j ≡
∫ t

0
dsg2(s)cos(ωB js), g2s j ≡

∫ t

0
dsg2(s)sin(ωB js)

change their values and stay approximately unchanged until
the next time moment (� + 1)P, allowing the following ap-
proximation by the step functions θ (t ) on the interval 0 < t �
�P:

g2c,s j (t ) ≈ g2c,s j (1) +
(�−1)∑
n=1

δg2c,s j (n)θ (t − nP) (B28)

with P = 2π/�, δg2c,s j (n) ≡ g2c,s j (n + 1) − g2c,s j (n), and

g2s j (n) = 1

P

∫ nP

(n−1)P
dt

∫ t

0
dsĝ2 j (s)

=
∫ (n−1)P

0
dsĝ2 j (s) +

∫ nP

(n−1)P
ds(n − s/P)ĝ2 j (s)

(B29)

are the time averages on the interval (n − 1)P � t � nP.
Here ĝ2 j (s) = g2(s)sin(ωB js), and g2c j (n) is determined
by (B29) with substitution sin(ωB js) → cos(ωB js).
Finally, substituting the following products by the
corresponding time averages, sin(ωBit )cos(ωB jt ) → 0
and sin(ωBit )sin(ωB jt ), cos(ωBit )cos(ωB jt ) → δi, j/2, our
F approx

Bk ≡ FBk (n) on each periodicity interval is found as

FBk (n) = −CBZ−1
Bk

NB∑
i=1

�2
Bω3

Big2si(n)(
ω2

Bi + D2
B

)2(
z2

k − ω2
Bi

)2 . (B30)
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Simplifying (B30) using a similar to (B4) approach, one finds

FBk (n) = −CB�Bzkg2sk (n)

z2
k + D2

B

, g2sk (n) = g2si(n)|ωBi→zk .

(B31)
As follows from comparison with its initial (accurate) value
(B26), illustrated in Fig. 2, the accuracy of (B31) is good.

Similarly, initially F ′
nk (t ) = CZ−1

nk [SF′
AB(t ) − SF′

BA(t )]. Here

SF′
AB(t ) = Ank (t )

∫ t

0
dsg4(t − s)Bnk (s),

where g4(t ) = g0(t ) − rg1(t ), Bnk is found from BBk reversing
(A4), Ank (t ) = Ḃnk (t ), and F ′approx

nk ≡ F ′
nk (n), where

F ′
nk (n) = −CZ−1

nk

N∑
i=1

�2ω3
i g4si(n)

(ω2
i + D2)2(z2

k − ω2
i

)2 (B32)

with g4si(n) is obtained from (B29) by the substitution
ĝ2i(s) → ĝ4i(s) ≡ g4(s)sin(ωis).

Finally, initially F ′′
nk (t ) = CrR−2Z−1

nk [SF′′
AB(t ) − SF′′

BA(t )] and
SF′′

AB is obtained from SF′
AB with g4 → g3. Thus, F ′′approx

nk is

F ′′
nk (t ) = −Cr

R2
Z−1

nk

N∑
i=1

�2ω3
i g3si(n)(

ω2
i + D2

)2(
z2

k − ω2
i

)2 , (B33)

where g3si(n) is obtained from (B29) by the substitution
ĝ2i(s) → ĝ3i(s) ≡ g3(s)sin(ωis).

As one can see, the computational complexities of the
initial forms for FBk (t ) and F ′

nk (t ) or F ′′
nk (t ) are O(NBN2

t ) and
O(NN2

t ), respectively. For comparison, complexities for the
step-function approximations of FBk (n) and F ′

nk (n) or F ′′
nk (n)

in (B31) and (B32)–(B33) are only O(NBNt ) and O(NNt ), re-
spectively. Here Nt is the number of mesh points in computing
time integrals and Nt � 105 in our case. Expressions for the
R coefficients appear after substitution of the integral part of
pμ,νi into the right-hand sides of (16), (18), or (19). Deriva-
tion of these coefficients follows exactly the same ideas and
approximations as those described above. In fact, we do not
need any R coefficients for computing the energy currents or
thermal conductance. Taking into account that N � Nt � NB,
the adopted approximation expedites calculation of all F (or
R) coefficients by a factor Nt , making the total computational
complexity just O(NBNt ), which is not a problem even for
NB ∼ 106.
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