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Negative differential thermal resistance in one-dimensional hard-point gas models
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We study negative differential thermal resistance (NDTR) of one-dimensional hard-point gas models. The
models are non-integrable unless all particles have the same mass. We show that NDTR can exist in both
the integrable case and the non-integrable case. In the integrable case, the existence of NDTR is analytically
predicted and numerically confirmed and a mechanism for NDTR different from that observed in lattice models
is unveiled. In the non-integrable case, we show that the mechanism also works under certain conditions and the
properties of NDTR are found to depend on the particle masses and the system size by the molecular dynamics
simulations. These results shed new light on the mechanisms for NDTR and may help design new functional
heat devices.
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I. INTRODUCTION

Due to the growing energy demand and the depletion and
environmental impact of fossil fuels, renewable and envi-
ronmentally friendly energy resources are always desired. In
this framework, new functional heat devices [1] will play an
important role and may be part of the dynamic mix in the
future. A crucial point for the implementation of these heat
devices is based on an indepth and comprehensive under-
standing of various heat transport phenomena [2], such as the
thermoelectricity, thermal rectification, negative differential
thermal resistance (NDTR), thermal cloaking, and so on. So
far these heat transport phenomena have attracted intensive
studies (see Refs. [1,2] for reviews and references therein). In
the present paper, the heat transport problems associated with
NDTR will be studied.

As is well known, the Fourier law describes how the heat
current is sustained by the temperature gradient, i.e.,

J = −κ∇T, (1)

where J is the heat current, κ is the heat conductivity, and ∇T
is the temperature gradient. The Fourier law implies that in
the linear response regime (∇T is sufficiently small), the heat
current is proportional to the temperature gradient. However,
an interesting and nontrivial phenomenon, i.e., the NDTR
effect, may take place in a system where the heat current coun-
terintuitively decreases as the temperature gradient increases.

In 2004, NDTR was first noticed by Li et al. in the study
of asymmetric heat conduction [3], where it has been shown
to be pivotal to design a thermal diode with an enormous
rectification factor, and two years later the thermal transistor
was shown to be possible because of NDTR [4]. Since then
NDTR has attracted considerable interests for designing new
functional heat devices based on the possibility to control
the heat current. So far it has been shown in the theoretical
models that NDTR plays a critical role in the design of various
heat devices [4–7]. As few real systems have been chosen for
investigating NDTR, the experimental progress for studying

NDTR is relatively slow. However, a piece of good news
is that in recent years, NDTR has been numerically shown
to exist in the graphene nanoribbons [8–10] and the carbon
nanotubes [11,12], which may provide new guidings to the
NDTR experiment.

Theoretically, in the past decade, NDTR has been inten-
sively studied in low-dimensional lattice models for identi-
fying its mechanisms and related properties. So far NDTR
has been found in various non-integrable lattices, such as the
hybrid Frenkel-Kontorova (FK) lattices with weak links [4],
the anharmonic lattice with gradient mass [13,14], the pure φ4

[15] and FK models [16], the double-stranded systems [17],
the two-segment Fermi-Pasta-Ulam lattice [18], etc. Mean-
while, the dependence of NDTR on different parameters such
as the system size [19,20], temperature range [19], coupling
strength [20–22], homogeneity [13,16], thermal dependence
of conductivity [23], and the effect of on-site potential [4,5]
have been considered. Moreover, in view of the phonon being
responsible for the transmission of sound and heat, the phe-
nomenon of NDTR can be understood from phonon-phonon
interactions [4] and dynamical localization of phonon modes
[24] in the presence of nonlinearity. It is worth to recall that
by using analytical approaches the necessary ingredients for
the occurrence of NDTR have already been reported [23,25].

Considering the significance of designing the solid-state
thermal functional devices, the various lattice models do
deserve to be intensively taken in the study of NDTR. In
contrast, the gas models representing fluids have not been
adopted to study NDTR yet. Actually, the gas models should
not be neglected since the heat transport properties of the
gas models are different in many respects from those of the
lattice models, implying that the gas models could provide
new perspectives for NDTR. For example, the heat carriers
in the gas models may be the electrons that can be con-
trolled by applying an electromagnetic field, but it is im-
possible to control the phonons in the same way. Therefore,
in order to obtain more comprehensive understanding to
NDTR and to help find new potential applications, it is worth
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FIG. 1. Scheme of the 1D hard-point gas model studied in this
paper. It consists of N hard-point, elastically colliding particles with
mass mi, and two heat baths with different temperature TL and TR.
See text for more details.

to extend the study of NDTR to the gas models. Just like
studying the lattice models, some similar questions can be
raised for the gas models. For instance, does the NDTR effect
exist in the gas models? If it exists, what is the underlying
mechanism and related properties?

In this work we will attempt to answer these questions.
For simplicity, we consider one-dimensional (1D) hard-point
gas models as illustrating examples. Indeed, they are clean
and simple billiard-type systems, which have been widely
used to understand the general transport properties of clas-
sical dynamical systems. Moreover, an important feature of
billiard-type systems is that their dynamical properties do not
depend on the temperature, which makes their analysis even
more simplified. By analyzing the hard-point gas models, we
will show that they exhibit the NDTR effect in both the inte-
grable and non-integrable cases. Importantly, a mechanism for
NDTR observed in gas models will be revealed. In addition,
our numerical results will show that in the non-integrable
cases, the properties of NDTR depend on the particle masses
and the system size.

The paper is organized as follows. The model and numer-
ical details are introduced in Sec. II. Section III is devoted
to analyze the mechanism and properties of NDTR in the
integrable case. In Sec. IV, we show that the mechanism also
works under certain conditions in the non-integrable cases
and the related properties of NDTR are investigated by the
molecular dynamics simulations. Finally, some related issues
will be discussed with a brief summary in Sec. V.

II. 1D HARD-POINT GAS MODEL

Since 1965 when Jepsen proposed the 1D hard-point gas
model [26], by using or transforming this model, researchers
have obtained great achievements for understanding various
aspects of 1D transport [27–33]. Here, it is taken as an
illustrating example to show that NDTR can exist in the gas
models. The model (see Fig. 1) consists of N hard-point,
elastically colliding particles with mass mi, i = 1, . . . , N .
Here, the length of the system is denoted as L, and we fix the
averaged particle number density to be unity so that N = L.
All particles move freely and independently except elastic
collisions with their nearest neighbors. When two particles
meet, the particles’ velocities are updated by the following
formula:

v
′
i = mi − mj

mi + mj
vi + 2mj

mi + mj
v j,

v
′
j = 2mi

mi + mj
vi − mi − mj

mi + mj
v j, (2)

where j denotes i + 1 or i − 1. In order to compute the heat
current of the system, we couple its two ends to two statistical
heat baths at different temperature TL (left) and TR (right).
When the first (last) particle hits the left (right) boundary of
the system, it is reflected back with a new speed |v| given by
the probability distribution [34]

fL,R(v) = |v|m1,N

kBTL,R
exp

(
− v2m1,N

2kBTL,R

)
, (3)

where v � 0 for the left bath and v � 0 for the right bath, and
kB is the Boltzmann constant.

In our numerical simulations, the temperatures of the baths
are set to be TL = T (1 + �) and TR = T (1 − �), where T
is the nominal system temperature and � is the temperature
bias. Before the evolution of the system, each particle is given
initially a random coordinate and a random velocity according
to the Boltzmann distribution at the temperature T . Then the
system is evolved by using an effective event-driven algorithm
[35]. After the system reaches the steady state, we compute
the steady heat current J according to the heat current defini-
tion [27], i.e., the averaged energy exchanged in the unit time
between a boundary particle and the heat bath. In addition, the
distribution function of temperature T (x) and particle density
ρ(x), where x is the space variable, are measured as well. For
calculating T (x) and ρ(x), we divide the space of the system
into the Na = L

a bins of equal size a. The total kinetic energy
and the total number of particles observed in the ith bin in a
unit time are denoted by Ei and Ni, thus T (ia) and ρ(ia) are
respectively defined as T (ia) = 〈Ei/a〉 and ρ(ia) = 〈Ni/a〉,
where 〈·〉 represents the time average. We emphasize that in
our simulations, we set T = kB = a = 1 throughout and long
enough integration times (>108) so that the error bars for
all the measured values of J are much smaller than the data
symbols representing them.

III. THE PROPERTIES OF NDTR IN
THE INTEGRABLE CASE

Here, we show that NDTR exists in the integrable 1D hard-
point gas model and reveal its mechanism. If all particles have
the same mass m, mi = m, then the model is integrable and,
considering the heat bath given by Eq. (3), the heat current J
that crosses the system can be written as (see Appendix for
the derivation)

J = N

L

√
2k3

B

mπ

√
TLTR(

√
TL − √

TR). (4)

By substituting TL = T (1 + �) and TR = T (1 − �), Eq. (4)
can be rewritten as

J = N

L

√
2k3

BT 3

mπ

√
1 − �2(

√
1 + � − √

1 − �). (5)

Note that the temperature difference �T , �T = TL − TR =
2T �, is a linear function of �. Based on Eq. (5), the heat
current is equal to zero when � = 0 or � = 1 and the heat
current maximum, Jmax, is reached at the critical value �cr =√

5/3, which means that the heat current increases to the
maximum and then decreases to zero with increasing � from
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FIG. 2. The heat current as a function of � for the integrable
case. The symbols are for the numerical results, and the companying
green curve is the analytical result given by Eq. (5). For reference the
blue-dashed line is the best linear fit, J ∝ �. Here, the particle mass
is set to be unity.

zero to one. Based on the above analysis, we conclude that the
system affirmatively exhibits the NDTR effect.

To confirm the above arguments, we turn to the help of
numerical simulations. In Fig. 2, we show the heat current J as
a function of �, where the symbols are obtained by the numer-
ical simulations. It can be seen that for small � (� < 0.25),
the heat current J follows the linear response prediction by
the Fourier law, but as � is increased further, the heat current
J increases to the maximum and then decreases to zero in a
way that is no longer linear, and the NDTR effect (the region
with a green frame) is clearly seen. These numerical results
are compared with the analytical result given by Eq. (5) and
the agreement is perfect. Note that for the integrable case, the
existence of NDTR does not depend on the particle number
N , the temperature T , and the particle mass m as shown in
Eq. (5).

Here, we would like to point out that for having NDTR,
it does not suffice to increase the temperature gradient, but
in doing so one has to lower temperature at either of the
sides. If the temperatures of the baths are set to be T and
T (1 + �), it can be seen from Eq. (4) that the NDTR effect
can be observed when keeping T fixed and lowering �.
Moreover, one point that need to be stressed is that due to the
dynamical properties of this system, the heat current follows
the scaling relation J (cT, c�) =

√
c3J (T,�). Note that this

scaling relation applies not only to the integrable case but also
to the non-integrable case.

Why does the NDTR effect exist in the integrable gas
model? To understand the mechanism, it is helpful to consider
an extreme case that the system consists of only one particle
and the temperature of the cold bath tends to zero, i.e., TR →
0. In this extreme case, the particle will be reflected back
with a very slow speed (v → 0) when it collides with the
right boundary of the system, which could be imagined that
this particle is frozen by the cold bath. As a result, there
will be no heat current between the baths when � → 1 as
shown in Fig. 2. Similarly, for more particles, the reason for
zero current at � → 1 could be explained as follows: The

first particle reaching the cold bath is stopped immediately;
Then the next particle colliding with the first one is stopped
after the collision, since when two particles with same mass
collide they simply exchange their velocities; So all particles,
by a chain of the collision events, are stopped one by one and
no current remains. With decreasing the temperature of the
cold bath, the motion of gas particles is restricted gradually
by the cold bath, leading to the heat exchange between the
baths is impeded. Note that this mechanism is different from
that observed in the lattice models. This is because, unlike gas
particles, the phonons that do not possess the mass are quasi-
particles representing mechanical vibration, hence the heat
current features of phonons are distinct from that of matter
current. This may be the reason why the NDTR effect can be
found in the integrable gas model but not in the integrable
lattice model.

It is worth pointing out that the integrable case is special
since there is no temperature gradient between the baths
and the heat transport is ballistic. Now, the more important
question is whether the mechanism is also applicable to the
more general case where the system is non-integrable. This
will be studied in the next section.

IV. THE PROPERTIES OF NDTR IN THE
NON-INTEGRABLE CASES

In the nonlinear response regime, a rigorous analytical
approach to study the properties of this non-integrable model
has been so far unavailable. One usually has to rely on the
molecular dynamics simulations. In the following, by using
the method of simulation, we will show that the mechanism
presented above may also work in the more general non-
integrable cases where the heat transport is not ballistic. For
illustrative purposes, the diatomic chain and the mass gradient
chain are investigated, respectively.

A. The diatomic chain

If the particles shown in Fig. 1 are alternatively arranged
with two different masses m and M (for odd- and even-
numbered particles, respectively), we obtain a 1D diatomic
chain. For convenience, we set m ≡ 1 so that M also refers to
the mass ratio M/m. In the following, the dependence of heat
current J on the temperature bias � is numerically studied for
various mass ratio M.

The simulations results are shown in Fig. 3(a). It can be
seen that the system does exhibit the NDTR effect, although
the region of NDTR decreases and finally disappears with
increasing M. In Fig. 3(b), we plot the temperature, particle
density, and pressure profiles for different values � with M =
1.2. It can be seen that the pressure is uniform, which obeys
the ideal gas law P(x) = ρ(x)T (x). It can also be seen that the
particle density at the right side of the system increases with
increasing �, implying that when the temperature of the cold
bath is colder, the more particles will be frozen by the cold
bath. Moreover, we plot in Fig. 3(c) the collision rate that the
boundary particle collides with the hot bath for different val-
ues �. It can be seen that for M = 1.2, the rate decreases with
increasing �, as expected since the time that the boundary
particle reflecting back to hot bath will be increased when the
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FIG. 3. (a) The heat current as a function of � for various mass ratio M. The green curve is the analytical result given by Eq. (5). (b) The
temperature, particle density, and pressure profiles for different values � with M = 1.2. (c) The collision rate that the boundary particle collides
with the hot bath as a function of � for integrable and non-integrable cases. The green dashed is the analytical result given by Eq. (6). Here,
the data are obtained for N = 101.

cold bath is colder. This is a strong indication that the motion
of gas particles is gradually restricted by the cold bath when
lowering the temperature of the cold bath.

For the integrable case, the collision rate that the boundary
particle collides with the bath can be written as (see Appendix
for the derivation)

f = N

L

√
2kB

mπ

/(
1√
TL

+ 1√
TR

)
. (6)

In Fig. 3(c), this analytical expression is in good agreement
with our numerical results. It shows that the collision rate
decreases with decreasing TR (or increasing �), which is the
same as that for the non-integrable case. Based on the above
analysis, we conclude that the mechanism for the NDTR effect
is applicable to both the integrable and non-integrable cases.

Besides, we are curious about how the system size affects
the NDTR effect when the mass ratio is fixed. In Fig. 4, we
show the numerical results for various system size N when
M = 1.2. It can be seen that the region of NDTR decreases
and finally disappears when N is increased, suggesting that
the properties of NDTR depend on the system size.

B. The mass gradient chain

Next, we consider the mass gradient chain, where the par-
ticle masses of the system form a gradient. In our simulations,

FIG. 4. The heat current as a function of � for various system
size N . The mass ratio is M = 1.2.

the mass of ith particle is set to be mi = m1 + (i − 1)ξ , where
ξ is the mass gradient of the system and m1 is set to be
unity. Moreover, considering the system is asymmetric, we
will exchange the temperatures of the baths, i.e., � ∈ [−1, 1]
will be taken into account. Note that when � > 0, the left end
of the system is coupled to the hot bath, implying that the heat
current is in the direction of increasing particle masses, and
vice versa when � < 0. In the following, we will focus on
how the heat current J depends on the temperature bias � and
on the mass gradient ξ .

The simulations results are shown in Fig. 5(a). As a ref-
erence, the result for the integrable case (ξ = 0) is plotted as
well. Again, it can be seen clearly that the system presents the
NDTR effect for both � > 0 and � < 0. In order to show that
the mechanism also works here, the particle density profiles
for different values � when ξ = 0.1 is plotted in Fig. 5(b).
Our results suggest that no matter � > 0 or � < 0, the more
particles will remain in the cold side when the temperature of
the cold bath is decreased. This result is the same as that for
the diatomic case.

In Fig. 5(a), it can also be seen that the properties of
NDTR are different between � < 0 and � > 0. For � < 0,
the region of NDTR increases and always exists when ξ

is increased. In contrast, for � > 0, the region of NDTR
decreases and finally disappears when ξ is increased. Note
that the heat current is not equal to zero when � → 1, which
is also different from that for the integrable case. The reason
is that a light-mass particle can be reflected back to the hot
bath when it collides with a heavy-mass particle, thus the heat
energy transmission between the baths is not zero. However,
the situation is different for � → −1 (TL → 0): The first
particle reaching the cold bath is stopped immediately; Then
the next particle colliding with the first one keeps a positive
but smaller speed after the collision, the first one is stopped
immediately after colliding with the heat bath, so the second
one collides again and loses more speed and by a chain of
these events in fact is stopped instantaneously as well; So
all particles are stopped one by one and no current remains.
Therefore, the different properties for NDTR between � < 0
and � > 0 are induced by the mass gradient.

Finally, for the mass gradient ξ = 1, the dependence of
the NDTR effect on the system size is studied as well. The
numerical results are shown in Fig. 5(c). For � < 0, the region
of NDTR increases and always exists when N is increased. In
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FIG. 5. (a) The heat current as a function of � for various mass gradient ξ . The symbols are for the numerical results, and the green curve
is the analytical result given by Eq. (5). (b) The particle density profiles for different values � when ξ = 0.1. In (a) and (b), the system size
is N = 101. (c) The heat current as a function of � for various system size N . In (c), the mass gradient is ξ = 1. Dashed lines are drawn for
reference.

contrast, for � > 0, the region of NDTR decreases and finally
disappears when N is increased. The same property of NDTR
for both � > 0 and � < 0 is that the smaller the system size,
the more obvious the NDTR effect.

V. SUMMARY AND DISCUSSIONS

In conclusion, we have presented a mechanism for the
NDTR effect that can work in both the integrable and non-
integrable 1D hard-point gas models. This mechanism is fairly
simple. It is based on the fact that with decreasing the tem-
perature of the cold bath, the motion of the gas particles will
be weakened gradually by the cold bath, thus leading to the
heat exchange between the baths being impeded. Furthermore,
our numerical results suggest that in the non-integrable cases,
the region and existence of NDTR are found to depend on
the particle masses and the system size. While we have con-
sidered for illustrative purposes a 1D hard-point gas models,
we conjecture the same mechanism also works in other gas
models, also of higher dimensions. This is mainly because
the interactions between gas particles and heat baths are not
limited by the spatial dimensions. Finally, we conjecture that
the NDTR effect of the gas model might be observed and find
applications in the context of cold atomic gases, where the
thermoelectric effects have already been observed for weakly
interacting particles [36].

APPENDIX: DERIVATION OF EQS. (4) AND (6)

First, let us consider the case that the system consists of one
particle only. When the particle hits the left (right) boundary

of the system, the average kinetic energy EL (ER) reflecting
back to the system can be written as

EL,R =
∫ ∞

0

1

2
mv2 fL,R(v)dv = kBTL,R. (A1)

The average time that a particle moves from the left boundary
to the right boundary can be written as

tL→R =
∫ ∞

0

L

v
fL(v)dv = L

√
mπ

2kBTL
. (A2)

Similarly, we can obtain tR→L as well. The heat current, J (1),
can thus be obtained according to the heat current definition
J (1) = (EL − ER)/(tL→R + tR→L ), which reads as

J (1) = 1

L

√
2k3

B

mπ

√
TLTR(

√
TL − √

TR). (A3)

It can be seen from Eq. (2) that when two particles with
same mass collide, they simply exchange their velocities.
Thus, if the model consists of N particles with same mass,
it is equivalent to a system with N noninteracting particles,
the heat current can then be written as

J = NJ (1) = N

L

√
2k3

B

mπ

√
TLTR(

√
TL − √

TR). (A4)

The collision rate that one particle collides with the bath is
defined as f (1) = 1

tL→R+tR→L
, thus if the model consists of N

particles, the collision rate is

f = N f (1) = N

L

√
2kB

mπ

/(
1√
TL

+ 1√
TR

)
. (A5)
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