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Defining an entropy function out of equilibrium is an outstanding challenge. For stochastic lattice models in
spatially uniform nonequilibrium steady states, definitions of temperature T and chemical potential μ have been
verified using coexistence with heat and particle reservoirs. For an appropriate choice of exchange rates, T and
μ satisfy the zeroth law, marking an important step in the development of steady-state thermodynamics. These
results suggest that an associated steady-state entropy Sth be constructed via thermodynamic integration, using
relations such as (∂S/∂E )V,N = 1/T , ensuring that derivatives of Sth with respect to energy and particle number
yield the expected intensive parameters. We determine via direct calculation the stationary nonequilibrium
probability distribution of the driven lattice gas with nearest-neighbor exclusion, the Katz-Lebowitz-Spohn
driven lattice gas, and a two-temperature Ising model so that we may evaluate the Shannon entropy SS as well
as Sth defined above. Although the two entropies are identical in equilibrium (as expected), they differ out of
equilibrium; for small values of the drive, D, we find |SS − Sth| ∝ D2, as expected on the basis of symmetry.
We verify that Sth is not a state function: changes �Sth depend not only on the initial and final points, but
also on the path in parameter space. The inequivalence of SS and Sth implies that derivatives of SS are not
predictive of coexistence. In other words, a nonequilibrium steady state is not determined by maximizing the
Shannon entropy. Our results cast doubt on the possibility of defining a state function that plays the role of a
thermodynamic entropy for nonequilibrium steady states.
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I. INTRODUCTION

A fundamental question in physics and chemistry concerns
the possibility of formulating a far-from-equilibrium thermo-
dynamics. Since the notions of irreversibility and approach
to equilibrium rest on the postulate that the entropy of a
closed system cannot decrease, it is paradoxical that a general
definition of entropy out of equilibrium is not available. For
systems in local equilibrium, the thermodynamic entropy
Sth is given integrating the equilibrium entropy density over
space, so that Sth becomes a functional of the slowly varying
temperature and chemical potential fields. But this definition
does not apply far from equilibrium. Given the simplicity of
Shannon entropy SS as a functional of the probability distri-
bution on phase space, its equality with Sth in equilibrium,
and the lack of alternatives, SS is often used as the entropy
out of equilibrium as well [1–7]. By contrast, Komatsu et al.
[8], construct extensions of state functions from equilibrium
to nonequilibrium steady states (NESSs), and find that the
entropy for a NESS differs from the Shannon form. We note
however that the approach of [8] is quite different from that
adopted in the present work, which is based on intensive
parameters defined operationally, via coexistence.

By thermodynamics we understand a closed description
using a small number of macroscopic quantities, capable of

*leonardo.ferreira.calazans@gmail.com
†dickman@fisica.ufmg.br

predicting the state of a system when some constraint is
removed [9]. There are currently two main approaches to
this issue: stochastic thermodynamics [5,10–12], and steady-
state thermodynamics (SST) [12–15]. The latter was proposed
by Oono and Paniconi [13], applied to Langevin systems
[16] and driven lattice gases [17], and further developed and
applied to several models by Sasa and Tasaki [14]. General
expressions for intensive parameters were derived by Bertin
et al. [18]. The consistency of the definition of intensive
parameters has been tested numerically and partially verified
[19,20]. The notions of intensive parameters and coexistence
in nonequilibrium steady states were further developed by
Chatterjee et al. [21,22]. Recently, consistent definitions of
temperature and chemical potential were verified for uniform
driven lattice gases in NESSs; the chemical potential correctly
predicts the densities of coexisting steady states [23]. The
approaches to SST mentioned above are based (as is the
present work) on defining intensive parameters; the entropy
would then be obtained via thermodynamic integration. An
alternative approach eschews the use of intensive parameters
far from equilibrium, and is instead based on the (Shannon)
entropy [10–12].

While a complete far-from-equilibrium thermodynamics
should, in principle, include a definition of the entropy, this
is a daunting task, and many studies have focused instead
on defining intensive variables such as temperature T and
chemical potential μ [14,20,23]. Once an intensive variable
has been determined, it is of interest to ask whether the
entropy S can be obtained (up to a constant) by integrating
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one of the standard thermodynamic relations, for example,

Sth(E ) =
∫ E

E0

dE ′

T (E ′)
+ S0(E0, N,V ), (1)

where E , N , and V denote internal energy, particle number,
and volume. We call Sth(E ) the thermodynamic entropy (as
opposed to, say, information entropy), since by construction
its derivative yields an intensive thermodynamic parameter
that can be used to predict coexistence between systems.
Summarizing, we define intensive variables via coexistence,
in a manner consistent with the zeroth law, and attempt to
construct an entropy function via thermodynamic integration
involving the intensive variables so obtained.

In this work we examine the feasibility of this approach
to defining a steady-state entropy in simple lattice models
with stochastic dynamics. The models studied all violate
global detailed balance, so that the stationary probability
distribution on configuration space is not the Boltzmann dis-
tribution. Using an exact (numerical) solution of the master
equation, we obtain the stationary probability distribution, and
then calculate the change �Sth for a given path in parameter
space. Comparing the changes for two paths between the
same initial and final points, we test whether Sth is a state
function. We also examine whether Sth is equal to the Shannon
entropy SS . Information on the latter quantity for NESSs is
extremely limited, since it requires evaluation of the stationary
probability distribution P on configuration space. Here we use
a numerically exact method to calculate P for small systems
of interacting particles or spins. We find that Sth is not a state
function out of equilibrium. While one might be tempted to
attribute this result to our definitions of intensive variables T
and μ, we note that the latter follow directly from the principle
of zero net flux between systems that share the same values of
these variables, which is a cornerstone of thermodynamics.
Since Sth is not a state function out of equilibrium, it cannot
be equal to the Shannon entropy, which is always a state
function. This implies that equating the derivatives SS does
not predict coexistence between nonequilibrium steady states,
or, equivalently, that nonequilibrium steady states are not
determined by maximizing the Shannon entropy. [Different
from equilibrium, it is not possible, for example, to predict
the coexistence energies of systems A and B, with fixed total
energy E = EA + EB, by maximizing SS,A(EA) + SS,B(E −
EA).] Without a state function whose derivatives yield the
intensive parameters associated with coexistence, there is no
thermodynamic steady-state entropy out of equilibrium.

The remainder of this paper is organized as follows. In
Sec. II we define the models to be investigated, and explain
how the relevant intensive parameter (chemical potential or
temperature) is determined. In Sec. III we explain our numer-
ical method for determining the stationary probability distri-
bution. Section IV presents our results, followed in Sec. V by
a summary and discussion.

II. MODELS

We consider the following stochastic lattice models in
order to compare thermodynamic and Shannon entropies. All
the models studied here are implemented on L × L square
lattices with periodic boundaries.

FIG. 1. Schematic of NNE lattice gas. Dark circles denote par-
ticles, white squares, open sites. Grey squares are nonopen vacant
sites. D denotes the drive.

A. Driven lattice gas with nearest-neighbor
exclusion (NNE model) [24]

Each site may be either vacant or occupied by a particle,
with occupation of nearest-neighbor pairs prohibited (see
Fig. 1). All allowed configurations possess the same energy,
marking this as an athermal model; in equilibrium all are
equally probable. A consequence of the athermal nature of
this model is that the only intensive parameter is the di-
mensionless chemical potential, μ∗ = μ/kBT (μ is defined
in Appendix A), which is a function of N and L, or of the
density ρ = N/L2 in the thermodynamic limit. (From here
on, we set Boltzmann’s constant kB = 1.) The configuration
evolves via a particle-conserving, continuous-time Markovian
dynamics of single-particle jumps to first or second neighbor
sites, i.e., displacements of the form �x = σ i + ηj, with σ ∈
{−1, 0, 1}, and similarly for η, excluding σ = η = 0. (Here, i
and j denote unit vectors along the positive x and y directions,
respectively.) Each particle has the same probability (1/N)
to be the next to attempt to hop. In the presence of a drive
D ≡ Di, the displacement probabilities are

Phop(σ i + ηj) = 1 + D · �x
8

= 1 + σD

8
. (2)

Thus D = 0 corresponds to equilibrium, while D = 1 cor-
responds to maximum drive, with jumps in the −x direction
prohibited. Any particle displacement yielding a configuration
satisfying the NNE condition is accepted; otherwise it is
rejected and the system remains in the current configuration.
The stationary probability distribution can be calculated nu-
merically from the master equation for small systems (up
to L = 7 in the present study). For L even and N close to
L2/2 (the maximum particle number), this dynamics admits
frozen configurations, in which no particle is free to move.
(Such configurations are likewise inaccessible from nonfrozen
configurations.) We avoid classes (L, N ) values for which
frozen configurations exist.

In the NNE lattice gas, a site is open if it and all its
nearest neighbors (NNs) are vacant; particles can only be
inserted at open sites. Since we work at fixed volume and all
configurations possess the same energy, the parameter space
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FIG. 2. Schematic of KLS lattice gas. Dark circles denote par-
ticles, D the drive. Hopping probabilities involve the parameter Tn,
associated with a reservoir R. For nonzero drive, there is a steady
transfer of energy from the drive to the lattice gas, and from the latter
to R.

is restricted to the possible values of N , and the issue of path
independence does not arise in this case.

As shown in Appendix A, the thermodynamic and Shannon
entropies can only be equal if

∑
C∈�(L,N )

P(C) ln P(C) −
∑

C∈�(L,N−1)

P(C) ln P(C)

= ln
Nop(L, N − 1)

N
, (3)

where P(C) is the stationary probability distribution,
Nop(L, N ) is the stationary average of the number of open sites
in a system of L2 sites with N particles, and �(L, N ) is the
associated configuration space. Any violation of this relation
implies that the Shannon and thermodynamic entropies are
unequal.

B. Driven lattice gas with nearest-neighbor attractive
interactions or Katz-Lebowitz-Spohn (KLS) model

The KLS model [25–27], is a stochastic lattice gas in which
each site i of a lattice is either vacant (occupation variable
σi = 0) or occupied (σi = 1). The number of particles N is
conserved (see Fig. 2). Hence in this case �(L, N ) consists of
all configurations in which exactly N sites of an L × L lattice
are occupied. The interaction energy is

E = −
∑
〈i, j〉

σiσ j, (4)

where the sum is over NN pairs of sites; each NN particle
pair lowers the energy by one unit. In equilibrium, this sys-
tem is equivalent to the NN ferromagnetic Ising model with
conserved magnetization. Transitions between configurations
in the KLS model occur via hopping of particles to NN sites.
(Each hopping event involves movement of a single particle.)
A nonequilibrium drive D = Di favors displacements along
the +x direction, and suppresses those in the opposite sense.
The acceptance probability for a particle displacement �x is

pa(�x) = min{1, exp[−(�E − Di · �x)/Tn]}, (5)

where Tn is the “nominal” temperature, i.e., that of a reservoir
that exchanges energy with the particle system. (In the steady
state, the particle system gains energy from the drive and
transfers, on average, an equal quantity of energy per unit time
to this reservoir [23].)

We determine the thermodynamic temperature T of a KLS
model S in its stationary state via virtual contact with a heat
reservoir R. (Note that in equilibrium, T = Tn but that for
nonzero drive, T > Tn.) Interaction between S and R does
not involve the drive, only the configurational energy E . Let
w(�E ) be the rate at which the reservoir stimulates transitions
in S with energy change �E . The defining property of the
reservoir is

w(�E ) = e−�E/T w(−�E ). (6)

There are, of course, many functions w(ε) that satisfy
Eq. (6); here we use Sasa-Tasaki (ST) rates [14], since they
lead to a definition of temperature consistent with the zeroth
law [23]. The ST rate for a transition from configuration C to
C ′ depends only on the energy of the hopping particle in the
initial configuration C. This means that if C ′ is accessible from
C via displacement of particle j, then

wST [C → C ′] = w0 exp[Ej (C)/T ], (7)

where w0 is an arbitrary fixed rate, and Ej (C) is the energy
of interaction between particle j and its neighbors in config-
uration C, that is, −mj , with mj the number of occupied NNs
of particle j. (Note that in the KLS model, if C ′ is accessible
from C, then C is accessible from C ′.)

To determine the thermodynamic temperature of system S
we must find the value of T such that the stationary net energy
flux between S and R is zero, that is

JE = w0

2

∑
C,C ′

[E (C ′) − E (C)][eEj (C)/T P(C) − eEj (C ′ )/T P(C ′)]

= 0, (8)

where the sum is over all pairs of configurations C and C ′ such
that C ′ is accessible from C. Then, knowing the internal energy
E (T ) (given, naturally, as an average over the stationary
probability distribution), we can determine Sth using Eq. (1).

The parameter space (Tn, N ) for the KLS model at fixed
volume is two dimensional, so that we may compare entropy
changes associated with different paths between the same
initial and final points. As shown in Appendix B of Ref. [14],
the dimensionless chemical potential of a lattice gas with
attractive NN interactions is

μ∗(β, N ) = ln
g

1 − ρ
, (9)

where g = ∑q
j=0 ρ−( j)e−β j , with ρ−( j) the steady-state av-

erage density (in the system with N particles) of occupied
sites that have exactly j occupied NNs. Here β is the inverse
temperature of the heat reservoir that coexists with the system.
(Recall that for nonzero drive, β 
= 1/Tn.) In a finite system,
the denominator must be taken as 1 − ρ = 1 − (N − 1)/Ld ,
in d dimensions, as shown below in Appendix A. At fixed
temperature, the chemical potential represents the difference
in Helmholtz free energy, A = E − T S, between the system
with N particles and that with N − 1. Thus we write for the
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FIG. 3. Schematic of two-temperature Ising model. Sites in the
sublattices A and B (arranged in a checkerboard pattern) are in
contact with reservoirs at temperature TA and TB.

entropy

S(β, N ) − S(β, N − 1) = −μ(β, N ) + β[E (β, N )

− E (β, N − 1)], (10)

where E (β, N ) and E (β, N − 1) are the mean energies, eval-
uated at the same value of β. Now, the right-hand side (r.h.s.)
of Eq. (10) represents the entropy change on inserting a
particle. The left-hand side (l.h.s.) can be calculated via an
alternative path, i.e., using Eq. (1) for particle numbers N
and N − 1. In the T -N plane, the l.h.s. corresponds to the
sum of entropy changes along three lines: (i) from T to
T = ∞ at fixed particle number, N − 1; (ii) from N − 1 to
N at infinite temperature; (iii) from T = ∞ to T at fixed
particle number N . The r.h.s. corresponds to jumping from
N − 1 to N at fixed temperature T . If the two expressions for
S(β, N ) − S(β, N − 1) disagree, the entropy change is path
dependent.

C. Two-temperature Ising model (TTI)

In the two-temperature Ising model [28,29], the interaction
energy is again given by Eq. (4), but with σi now a spin
variable, taking values ±1 (see Fig. 3). The configuration
space �(L) corresponds to all 2L2

possible assignments of
spin variables. The stochastic evolution proceeds via spin flips
(σi → −σi), with transition rates

w(σi → −σi ) = exp

⎡
⎣−βiσi

∑
j NN i

σ j

⎤
⎦, (11)

where the sum is over the nearest neighbors j of site i.
Since there is no preferred direction, there is no particle

(or spin) current in the TTI. In this case the nonequilibrium
condition arises from having sites in different sublattices in
contact with reservoirs at distinct temperatures. Specifically,
let sublattice A correspond to sites (i, j) such that i + j is
even, and let sublattice B contain those with i + j odd. (On
the square lattice, all neighbors of a site in A lie in B, and
vice versa.) In the transition rate, Eq. (11), βi = βA = 1/TA for
flipping a spin in sublattice A, while the flip rate in sublattice B
involves βB; thus TA = TB corresponds to the equilibrium Ising

model. For TA 
= TB the system cannot reach equilibrium;
there is a net flux of energy from the hotter to the colder
sublattice. Determination of the thermodynamic temperature
and entropy follows the same procedure as in the KLS model.
In this case we probe path independence in the TA-TB plane.

III. METHODS

To implement our definition of Sth, test its path
independence, and compare it with the Shannon entropy, we
require the stationary probability distribution on configuration
space P(C). In this section we provide some details on how
we obtain the stationary solution of the master equation using
the method developed in [30,31].

To reduce the computational effort, in place of configura-
tions, we consider classes of configurations that are equivalent
under lattice translations. Given the periodic boundaries, all
members of such an equivalence class have the same station-
ary probability. Moreover, since we use an initial distribution
that is uniform on configuration space, equality of probability
for all configurations in the same class holds at all times.
Let C1 and C2 be two configurations in �(L, N ). We say that
C2 belongs to the same equivalence class of C1 if there is a
lattice translation, denoted by T , such that C1 = T (C2). For
each class χ , we store a representative configuration and the
number of configurations in the class, ω(χ ).

It is convenient to write the master equation for p(C, t ) in
the form

ṗ(C, t ) = −w(C)p(C, t ) + r(C, t ), (12)

where

r(C, t ) =
∑
C ′

w[C ′ → C] p(C ′, t ) (13)

and

w(C) =
∑
C ′

w[C → C ′]. (14)

Since we work with classes of configurations equivalent under
translations, we can analyze a system of equations of this form
using just one representative of each class, rather than one for
each configuration.

To set up the master equation, we first enumerate all
configurations in �(L, N ) and assign them to equivalence
classes. Then, for each class, we enumerate all possible tran-
sitions (and their corresponding rates) originating from the
representative configuration, determining the class to which
the new configuration belongs. These data, as well as the exit
rates w(C), are stored in lookup tables.

To determine the stationary probability distribution, we
use the iterative numerical method described in [30]. Starting
from a uniform initial distribution, the kth estimate pk (C) is
obtained via

pk (C) = apk−1(C) + (1 − a)
rk−1(C)

w(C)
, (15)

where rk−1 denotes Eq. (13) evaluated using the probability
distribution at step k−1. Here, a is a parameter in the interval
(0, 1). Smaller values of a yield faster convergence, but may
also lead to numerical instability; in the present work we use

032137-4



STEADY-STATE ENTROPY: A PROPOSAL BASED ON … PHYSICAL REVIEW E 99, 032137 (2019)

a = 0.5. As a stopping criterion, we use the stabilization of
the Shannon entropy of p(C). Specifically, we halt the iterative
process when |Sk

S − Sk−1
S | � 10−10.

IV. RESULTS

A. Lattice gas with NNE

We applied the method described above to the driven NNE
lattice gas with L = 4–7. In the present study, the case with
the largest number of configuration classes is L = 7 and
N = 11, for which there are 1 906 532 classes and 58 744 440
transitions. In this case the probability distribution converges
after 115 iterations.

Varying L and N , we verify in all cases that in equilibrium
(drive D = 0), Eq. (3) is satisfied to a precision of one part
in 1010. The identity is violated, however, for D 
= 0. It is
convenient to define

V (L, N ) ≡
∣∣∣∣ ln

Nop(L, N − 1)

N
− �SS (L, N )

∣∣∣∣ (16)

to quantify the difference between changes in Shannon and
thermodynamic entropies. We plot V (L, N ) versus N in Fig. 4
for various drives and system sizes. Evidently, the violation
of Eq. (3) increases in magnitude with increasing drive. For
L even, the violation first increases with density and then its
modulus diminishes. For L odd, the magnitude of the violation
increases monotonically with N .

Figure 5 shows the difference between thermodynamic and
Shannon entropies near equilibrium. The points show values
computed directly from the stationary distribution, while the
curves are fourth-degree polynomial fits. For small values of
the drive, the difference between is ∝ D2, as expected on
grounds of symmetry.

A key question is whether the observed violations persist
in larger systems. A preliminary idea is afforded by plotting
V (L, N ) versus density at fixed drive, for the four system
sizes studied, as in Fig. 6. Evidently, the violation is roughly
independent of system size at low densities, while there
is a tendency for it to grow with system size at higher
densities. Thus, although we are unable to calculate the
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FIG. 4. NNE lattice gas: violation V , Eq. (16) vs density ρ = N/L2, for system sizes L = 4–7 [panels (a)–(d), respectively]. Symbol keys
denote the drive parameter D; there is no violation for D = 0 (equilibrium).
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FIG. 5. NNE lattice gas: difference between Sth and SS for small drive D. System sizes L = 4–7 [panels (a)–(d), respectively]. Symbol keys
denote the particle number N . Curves are fourth-degree polynomial fits to the data.

Shannon entropy for L > 7, we find no evidence that, out of
equilibrium, the difference between it and Sth diminishes with
increasing system size.

B. KLS lattice gas

We study the KLS lattice gas on systems of 4 × 4 sites
with periodic boundaries, obtaining the stationary solution
to the master equation as described in Sec. IV. We verify
equality of the thermodynamic and nominal temperatures,
and of Sth and SS , for zero drive. Under a nonzero drive,
however, they are different. Note that Eq. (1) determines Sth

to within an additive constant. We choose the latter by setting
the two entropies equal in the high-temperature limit, i.e.,
limT →∞ Sth = limT →∞ SS = L2 ln 2, since in this limit the
effect of the drive is null.

In Fig. 7 we compare Sth and SS as functions of the energy.
Evidently, in the presence of a drive, the thermodynamic en-
tropy exceeds its equilibrium value Seq(E ), while the Shannon
entropy is smaller than Seq(E ); the difference grows with
increasing drive. For small drives, the difference between

thermodynamic and Shannon entropies is proportional to D2

(see Fig. 7, inset). The results shown in Fig. 7 are for a system
of N = 8 particles (half filling); we find similar results for
N = 4 and N = 12.

We turn next to a test of path independence, as expressed in
Eq. (10). We denote the l.h.s. of this equation, which expresses
the difference in Sth between systems at the same thermody-
namic temperature, but with different particle numbers, by
�S, and the r.h.s., which represents the entropy difference
calculated using the chemical potential, by �S∗. Figure 8
shows the entropy differences versus inverse thermodynamic
temperature β in a system of eight particles, for D = 0 and
D = 1. While �S and �S∗ agree perfectly in equilibrium,
there are substantial differences for nonzero drive. We verify
that the discrepancy, �S − �S∗, is proportional to D2 for
small drive.

C. Two-temperature Ising model

We study the TTI on systems of 4 × 4 sites, integrating
Eq. (1) (with T the thermodynamic temperature), to obtain
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FIG. 6. NNE lattice gas: violation V vs density ρ for drive
D = 0.75 and system sizes as indicated.

Sth(T, D); the Shannon entropy is calculated directly from the
stationary probability distribution. In these studies we main-
tain TB/TA ≡ α constant over the path of integration. As in the
KLS model, we choose the additive constant in Sth by setting
Sth = SS in the infinite-temperature limit. In this limit we find
E = −C/TA and T = C′TA, where C and C′ are α-dependent
constants, leading to Sth � limT →∞ SS − O(1/T 2).

The two entropies are compared in Fig. 9. For TA = TB

we find Sth = SS as expected, but for unequal temperatures
the thermodynamic and Shannon entropies are unequal. Sur-
prisingly, the Shannon entropy is a nonconcave function of
energy for TB = 5TA (see Fig. 9, inset). By contrast, concavity
of Sth follows from the energy being an increasing function
of the thermodynamic temperature T , as verified numerically.
(We have not observed concavity violations of the Shannon
entropy in the other models studied.) We verify that |Sth −
SS| ∝ (TB − TA)2.

FIG. 7. KLS lattice gas: thermodynamic and Shannon entropies
vs energy for a system of N = 8 particles on a square lattice of 16
sites. Continuous curves: Sth (upper) and SS (lower) for drive D = 10.
Broken curves: Sth (upper) and SS (lower) for drive D = 1. Dotted
line: equilibrium entropy. Inset: �S ≡ Sth − SS vs D2 for E = −10.

FIG. 8. KLS lattice gas: differences �S and �S∗ in thermody-
namic entropy calculated along two paths vs inverse thermodynamic
temperature β, for N = 8 particles on a square lattice of 16 sites. The
labeled curves are for drive D = 1. The superposed dotted and solid
curves are for equilibrium, for which Sth is path independent.

We test path independence in the TA-TB plane. For example,
consider two paths between the points (3,2) and (4,3) shown
in Fig. 10. The change in Sth along path a is found to be
3.209, whereas that along path b is 3.253, corresponding to a
difference of about 1.4%. Thus path independence is violated
in the two-temperature Ising model as well.

It is interesting to note that for a TTI system of just
two sites, the thermodynamic and Shannon entropies are
equal. In this case the thermodynamic inverse temperature
β = (βA + βB)/2, the energy is E = − tanh β, and dSS/dβ =
dSth/dβ = −β cosh−2 β (see Appendix B). In larger systems
β is not simply the mean of βA and βB, and the two entropies
are distinct. For a system of four sites, the exact stationary

FIG. 9. Two-temperature Ising model on a square lattice of 16
sites. Dashed curves: Sth (lower at left) and SS for TB = 2TA. Contin-
uous curves: Sth (lower at left) and SS for TB = 5TA. Short dashed
curve: equilibrium entropy. Inset: entropies less the overall linear
trend, S∗ ≡ S − 0.3251(E + 32) for TB = 5TA; S∗

th is the lower curve
at left.
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FIG. 10. Paths a and b in the TA-TB plane used to calculate �S.

solution of the master equation is obtained in Appendix B.
Evaluating the effective temperature and the change in Sth

along the paths shown in Fig. 10, we find that path indepen-
dence is violated even in this small system, although by only
about 0.006%, suggesting that violation of path independence
increases with system size. Equivalence of thermodynamic
and Shannon entropies is violated in the four-site system.

V. CONCLUSIONS

We attempt to define a nonequilibrium entropy function
Sth via thermodynamic integration. For nonequilibrium steady
states in three models that admit consistent definitions of
temperature and/or chemical potential using coexistence with
a reservoir, Sth differs from the Shannon entropy SS of the
stationary probability distribution; the difference is propor-
tional to the square of the nonequilibrium parameter, be
it drive strength (NNE and KLS models) or the difference
between sublattice temperatures (TTI model). Thus, out of
equilibrium, the derivative of SS with respect to energy does
not yield the temperature defined via coexistence, nor does the
derivative (or finite difference) of SS with respect to particle
number yield a chemical potential predictive of coexistence.
Adopting some other definition of temperature would imply
that equality of temperatures no longer serves as a condition
for coexistence between NESS, which goes against the very
notion of a thermodynamic temperature. The quantity Sth de-
fined via thermodynamic integration is not a state function out
of equilibrium, since it is path dependent. Thus we have failed
to find a state function that plays the role of a thermodynamic
entropy out of equilibrium.

The NNE and KLS models include a drive, hence a steady
particle current, but the TTI has none, so that our findings
cannot be ascribed to the presence of a particle current and
attendant long-range correlations. Although our numerical
technique for determining the stationary probability density
(and thus the Shannon entropy) is limited to small systems,
the results are significant because (1) there is no reason to

expect thermodynamic integration to yield a state function, or
equality of thermodynamic and Shannon entropies, for larger
systems; (2) a violation for small systems is still a violation.
In equilibrium, the thermodynamic entropy is a state function,
equal to the Shannon entropy, and any violation, even for
the smallest systems, would be remarkable. Nevertheless, our
results do not logically exclude equality of Shannon and
thermodynamic entropies in the thermodynamic limit. (Note
that such an equivalence would imply that thermodynamic
integration yields a state function in this limit.) We hope to
address this point in future work.

Our results show that the thermodynamics of nonequilib-
rium systems (even in steady states) is fundamentally different
from that of equilibrium. Indeed, the Shannon entropy can be
a nonconcave function of energy in the two-temperature Ising
model, a fact that calls into question its use in thermodynamic
analyses. (Note that the violation of concavity in no way
depends on our definitions of T or Sth; these quantities are
not involved in calculating SS .) Since the Shannon entropy
provides the link between thermodynamics and information
theory, the nature of this connection for far-from-equilibrium
systems is unclear.

We believe the failure to define a steady-state entropy
stems from the fact that, out of equilibrium, the stationary
probability distribution on configuration space is not of the
canonical form, i.e., P(C) 
= (1/Z ) exp[−E (C)/T ]. It is this
relation (in the canonical ensemble, and analogous ones in the
other ensembles) that leads to equality of thermodynamic and
information entropies. A nonequilibrium drive (essentially by
definition) alters the stationary probability distribution so it
cannot be written in canonical form.

Recently, Guioth and Bertin [32] showed that in the weak-
exchange limit it is possible to define a chemical potential
for NESS, provided the particle-exchange dynamics between
systems takes a factorized form; inconsistencies arise when it
does not [33]. Our study shows that even when the Guioth-
Bertin conditions are satisfied, the entropy obtained via ther-
modynamic integration may not be a state function, and that it
differs from the Shannon entropy.

Summarizing, a simple, physically motivated approach to
defining an entropy for nonequilibrium steady states is found
to be inviable. At the same time, maximization of the Shannon
entropy does not predict coexistence out of equilibrium. The
question of whether a thermodynamic entropy can be defined
far from equilibrium remains unanswered.
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APPENDIX A: CHEMICAL POTENTIAL
FOR SMALL SYSTEMS

The relation between temperature, energy, and entropy
expressed in Eq. (1) can be applied directly to the KLS and
TTI. The case of the lattice gas with NN exclusion demands
more care, since we work with a fixed number of particles
N . In the large-L limit, the chemical potential of an athermal
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lattice gas, driven or not, is defined so [23]

μ = kBT ln
ρ

ρop
, (A1)

where ρ is the fraction of occupied sites, and ρop is the station-
ary average density of open sites (i.e., vacant sites at which
a particle can be inserted without violating excluded-volume
conditions), over configurations with N = ρLd particles. The
above relation follows from coexistence with a particle reser-
voir, is equivalent to the general definition proposed by Sasa
and Tasaki [14], and is consistent with the zeroth law of
thermodynamics, as verified in [23].

The relation between entropy and chemical potential is
(∂S/∂N )E ,V = −μ∗. For a small system, however, the deriva-
tive should be replaced with a finite difference, i.e., �S ≡
S(N, E ,V ) − S(N − 1, E ,V ). Consider an equilibrium ather-
mal system of size L containing a fixed number N of particles.
Denoting the number of distinct configurations by (L, N ),
and noting that in equilibrium all such configurations are
equally probable, we have

S(L, N ) = ln (L, N ), (A2)

and

�S(L, N ) = ln
(L, N )

(L, N − 1)
. (A3)

(Recall that we have set Boltzmann’s constant to unity.)
Let �(L, N ) denote the space of configurations of system

(L, N ), so that (L, N ) = |�(L, N )| where |�| denotes the
cardinality of set �. For each configuration C ∈ �(L, N ), let
Nop(C) be the number of open sites. Given a configuration
C ∈ �(L, N − 1), we can form Nop(C) distinct configurations
in �(L, N ) by inserting a particle at one of the open sites.
Each of these new, N-particle configurations can be obtained
in N distinct manners, since removing a particle from such a
configuration generates a configuration in �(L, N − 1) with
an open site where the particle was removed. Thus,

(L, N ) = 1

N

∑
C∈�(L,N−1)

Nop(C). (A4)

Introducing the mean number of open sites per configura-
tion in �(L, N − 1),

Nop(L, N − 1) ≡ 1

(L, N − 1)

∑
C∈�(L,N−1)

Nop(C), (A5)

we have

�S = −μ∗ = ln
Nop(L, N − 1)

N
, (A6)

which provides the relation between entropy and parti-
cle number in a small athermal system in equilibrium.
Equation (A6) is simply the Widom insertion relation [34]
specialized to athermal systems. [Dividing numerator and
denominator on the r.h.s. by the number of sites, we recover
Eq. (A1) in the large-L limit.]

Now, in an athermal lattice gas, all configurations have the
same energy, so the chemical potential at fixed drive should
depend only on N , Nop, and L. The effect of the drive is to
favor certain configurations over others. Thus we use Eq. (A6)

to define μ∗, but with the mean number of open sites now
given by

Nop(L, N − 1) =
∑

C∈�(L,N−1)

P(C)Nop(C). (A7)

The thermodynamic entropy Sth(L, N ) is obtained by iter-
ating �S = ln[Nop(L, N −1)/N], where we take S(L, 0) ≡ 0,
as in equilibrium. (The drive cannot alter the entropy if there
are no particles for it to act upon.)

We want to know if μ∗ as defined by Eq. (A6) is propor-
tional to the finite difference of the Shannon entropy of the
stationary probability distribution,

SS (L, N ) ≡ −
∑

C∈�(L,N )

P(C) ln P(C), (A8)

that is, if the following relation holds:∑
C∈�(L,N )

P(C) ln P(C) −
∑

C∈�(L,N−1)

P(C) ln P(C)

= ln
Nop(L, N − 1)

N
. (A9)

(Note that in the two terms on the l.h.s. of the expression
above, P(C) refers to two different steady states, one having
N particles, the other, N − 1.) This is the relation that we test
numerically.

For a nonathermal lattice gas with nearest-neighbor inter-
actions on a hypercubic lattice of Ld sites in d dimensions, we
have

μ∗(β, N, L) = − ln
Z (β, N, L)

Z (β, N − 1, L)
, (A10)

where Z denotes the canonical partition function. Now con-
sider the quantity g defined in Sec. II:

g =
q∑

j=0

ρ−( j)e−β j = 1

Ld

q∑
j=0

e−β j

Z (β, N, L)

∑
C∈�(L,N )

e−βE (C)

×
∑

i|σi=1

δn(i), j, (A11)

where the final sum is over occupied sites in configuration C
and n(i) is the number of occupied nearest neighbor of site i.
Noting that when remove a particle with j occupied neighbors
from configuration C ∈ �(L, N ), we obtain a configuration
C ′ ∈ �(L, N − 1) with energy E (C ′) = E (C) + j, we may
write

gZ (β, N, L) = 1

Ld

∑
C∈�(L,N )

q∑
j=0

∑
i|σi=1

δn(i), je
−βE (C ′ )

= N

Ld

∑
C∈�(L,N )

e−βE (C ′ ). (A12)

Finally, we note that each configuration C ′ ∈ �(L, N − 1)
can be obtained in N distinct ways by removing a particle
from a configuration C ∈ �(L, N ), whereas each configura-
tion in �(L, N ) can be generated in Ld − (N − 1) ways by
adding a particle to a configuration in �(L, N − 1). Thus
the sum over C ∈ �(L, N ) in the r.h.s. of Eq. (A12) is
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[Ld − (N − 1)]Z (β, N − 1, L)/N , so that

g =
(

1 − N − 1

L

)
Z (β, N − 1, L)

Z (β, N, L)
, (A13)

and

μ∗(β, N, L) = ln
g

1 − N−1
Ld

. (A14)

APPENDIX B: TWO-TEMPERATURE ISING MODEL:
SYSTEMS OF TWO AND FOUR SPINS

Two-site system. Consider a pair of coupled Ising spins,
σ1 and σ2 coupled to reservoirs at inverse temperatures βA

and βB, respectively. The configurations are C1 = (+,+),
C2 = (+,−), C3 = (−,+), and C4 = (−,−), with energies
E1 = E4 = −1 and E2 = E3 = +1. Letting κi = exp[βi], the
master equation for the probabilities pj ( j = 1, . . . , 4) can be
written

ṗ1 = κB p2 + κA p3 − w1 p1,

ṗ2 = κ−1
A (p1 + p4) − w2 p2,

ṗ3 = κ−1
B (p1 + p4) − w2 p3,

ṗ4 = κA p2 + κB p3 − w1 p4, (B1)

where w1 = κ−1
A + κ−1

B and w2 = κA + κB. Symmetry im-
plies that the stationary probabilities pj satisfy p1 = p4 and
p2 = p3. One readily verifies that

p1 = 1

2
(
1 + κ−1

A κ−1
B

) (B2)

and

p2 = κ−1
A κ−1

B

2
(
1 + κ−1

A κ−1
B

) . (B3)

The mean energy in the stationary state is

E = −1 − e−(βA+βB )

1 + e−(βA+βB )
= − tanh β, (B4)

if we take β = (βA + βB)/2, the average of the two inverse
temperatures. This simple expression for the effective inverse
temperature arises from the fact that the Boltzmann factors
exp[−βA] and exp[−βB] enter the stationary probability dis-
tribution in a multiplicative manner. In this simple case, the
thermodynamic temperature is in fact T = 1/β. To see this,
consider the stationary energy flux JE between the system and
a reservoir at temperature T . Considering all eight possible
transitions, we have

JE = 4p1e−β − 4p2eβ = 0, (B5)

because p1 = e2β p2.
Four-site system. We consider the TTI on a lattice of 2 × 2

sites. Using symmetries, the configurations are found to fall
into five distinct equivalence classes, listed in Fig. 11 along
with their associated configuration numbers ω and the classes
accessible from each class. Consider class a. From the figure,
one sees that a configuration in this class is accessible via
two transitions from configurations in class b, and two in
class c. The associated transition rates are e2βA ≡ κA and

FIG. 11. Configuration classes and transitions for the TTI model
on a lattice of 2 × 2 sites. For each of the five classes, a representative
configuration is shown, followed by the number ω of configurations
in the class. The final column (In/Out) lists the classes accessible
from the given class, and from which it is accessible. The number 2
in parentheses indicates that the are two distinct transitions between
the classes. Squares with light color: sublattice A; white squares:
sublattice B.

e2βB ≡ κB, respectively. A configuration in class a can make
transitions to classes b and c (there are again two distinct
transitions in each case), with associated rates κ−1

A and κ−1
B ,

respectively. Enumerating the transitions in this manner, we
arrive at the following set of equations of motion, in which
the probabilities of a representative configuration of classes
a, b, . . . , e are denoted by α, β, . . . , ε:

α̇ = 2κAβ + 2κBγ − 2
(
κ−1

A + κ−1
B

)
α, (B6)

β̇ = κ−1
A α + κAδ + 2ε − (

2 + κA + κ−1
A

)
β, (B7)

γ̇ = κ−1
B α + κBδ + 2ε − (

2 + κB + κ−1
B

)
γ , (B8)

δ̇ = 2κ−1
A β + 2κ−1

B γ − 2(κA + κB)δ, (B9)

ε̇ = 2γ + 2β − 4ε. (B10)

Using the normalization condition,
∑

i ωi pi = 1, straight-
forward algebra leads to the stationary solution:

α∗ = κAκB
(
κ2

Aκ2
B + κ2

AκB + κAκ2
B + κ2

A − κAκB + κ2
B

)
W (κA, κB)

,

(B11)

β∗ = κA
(
κ3

B + κ2
B + κAκB + κA

)
W (κA, κB)

, (B12)

γ ∗ = κB
(
κ3

A + κ2
A + κAκB + κB

)
W (κA, κB)

, (B13)
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δ∗ = κ2
A − κAκB + κA + κ2

B + κB + 1

W (κA, κB)
, (B14)

ε∗ = κ3
AκB + 2κ2

AκB + κ2
A + κAκ3

B + 2κAκ2
B + κ2

B

2W (κA, κB)
, (B15)

where

W (κA, κB) = 2κ3
Aκ3

B + 2κ3
Aκ2

B + 8κ3
AκB + 2κ2

Aκ3
B − 2κ2

Aκ2
B

+ 12κ2
AκB + 8κ2

A + 8κAκ3
B + 12κAκ2

B − 2κAκB

+ 2κA + 8κ2
B + 2κB + 2. (B16)
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