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Heat current rectification in segmented XXZ chains
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We study the rectification of heat current in an XXZ chain segmented in two parts. We model the effect of the
environment with Lindblad heat baths. We show that in our system, rectification is large for strong interactions in
half of the chain and if one bath is at a cold enough temperature. For the numerically accessible chain lengths, we
observe that the rectification increases with the system size. We gain insight into the rectification mechanism by
studying two-time correlations in the steady state. The presence of interactions also induces a strong nonlinear
response to the temperature difference, resulting in superlinear and negative differential conductance regimes.
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I. INTRODUCTION

Control of nanoscale heat transport can lead to promising
applications in thermal waste management. An important step
in this direction is devising heat rectifiers (diodes) that allow
heat to flow in a preferential direction. Possible pathways
to thermal rectification were proposed in classical systems
exploiting tailored transport in asymmetric nonlinear chains
[1–7]. In such systems, the rectification mechanism stems
from a temperature-dependent mismatch in the power spec-
trum of portions of the nonlinear chain. These theoretical
results were confirmed in pioneering experimental investiga-
tions of thermal rectification of phonon transport [8,9].

Investigations of rectifiers have been done also at the
quantum level using other energy carriers such as photons
[10], electrons [11–13], and spins [14–21]. In Refs. [17,18],
asymmetric quantum structures and hybrid material junctions
are identified as the main ingredients for thermal rectifica-
tion. From this perspective, spin-boson models (spin chains
connected to bosonic baths) have been extensively studied
[22–25]. In Ref. [25], weak anharmonicities were used to
generate some heat current rectification. In Ref. [24], it was
shown that two spins coupled via Ising interaction can work
as a perfect heat rectifier in the regime of strong spin-spin
coupling. However, studies in longer chains observed mod-
erate rectification. In short, an effective way to construct a
well-performing heat diode for larger systems is an open
challenge. This quest is of utmost practical relevance, since
it is difficult to apply large temperature biases on systems of
small size [26].

Recently, it was shown in Ref. [27] that large interactions
in a segmented XXZ chain can produce strong spin current
rectification when the system is coupled to magnetization
baths (and not heat baths). In particular, the authors showed
that when the system was biased in one direction, a spin

current could flow diffusively, but when the system was biased
in the opposite direction, and the interactions were strong
enough, the current was strongly suppressed and the system
became an insulator. The mechanism at the basis of such
dynamics was recognized to be the emergence of an excitation
gap only in reverse bias and for strong enough interactions.
If a tunneling between the two halves of a segmented chain
is possible at no energy cost, then a current is generated. If,
however, a tunneling between the two halves can occur only
after overcoming an energy gap, then the excitation generated
at the interface is localized, and no current is generated.
The rectification improves with the system size, and both
numerical results and theoretical arguments suggest a perfect
spin diode in the thermodynamic limit. It was also noticed, in
[27], that rectification is significantly stronger when one bath
tends to polarize the chain, so that all spins point down (or up).
The translation of the above results to thermal rectification
is not trivial, as (i) one should consider heat instead of spin
baths, and (ii) it is unclear whether the heat rectification effect
remains sizable when the temperature of the cold heat bath is
not close to zero temperature.

In this work, we show that a segmented XXZ chain can
be a well-performing heat diode. We find that large rectifica-
tion can be observed when the interaction is strong enough,
even for not excessively cold temperatures (i.e., comparable
with the other energy scales in the model). We characterize
the dependence of rectification on the interactions, interface
coupling, and baths temperatures, and we discuss in which
scenarios the rectification is stronger. For the chain lengths
accessible to numerical investigations, we observe that the
rectification increases with the system size. To gain a deeper
insight into the physical mechanism behind thermal rectifica-
tion, we also analyze the two-time correlations of a tunneling
excitation in the middle of the chain. We observe that only
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in reverse bias does the frequency response of the system
depend significantly on the magnitude of the interaction.
Finally, we characterize the nonlinear response of the system
to temperature differences. In this respect, we show that it is
possible to observe both superlinear and negative differential
conductance, the latter being a key feature for building up a
thermal transistor.

This paper is organized as follows: in Sec. II we introduce
the model, in Sec. III we present our results, and in Sec. IV
we draw our conclusions.

II. MODEL

We study a spin-1/2 chain segmented in two parts, de-
scribed by the XXZ Hamiltonian

Ĥ = ĤL + ĤR + ĥN/2(JN/2, 0), (1)

ĤL =
N/2−1∑

n=1

ĥn(J,�), ĤR =
N∑

n=N/2+1

ĥn(J, 0), (2)

ĥn(J,�) = J
(
σ̂ x

n σ̂ x
n+1 + σ̂ y

n σ̂
y
n+1

) + �σ̂ z
n σ̂ z

n+1, (3)

where J and � are the magnitudes of the XX tunneling and
the ZZ coupling, σ̂ α

n , with α = x, y, z, are the Pauli matrices
for the nth spin, and N is the (even) total number of sites in
the chain. The ratio �/J signals the strength of the interaction,
and it is also referred to as the anisotropy parameter. JN/2 is the
magnitude of the coupling between the two half-chains, and,
as we will show later, it plays an important role in determining
the system’s response.

The chain is coupled to heat baths at different temperatures
at its edges. The effect of the heat baths on the system is
modeled by a Lindblad master equation [31,32],

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + D1(ρ̂) + DN (ρ̂) = L(ρ̂), (4)

where ρ̂ is the density operator of the system, h̄ is the
(reduced) Planck constant, and D1 (DN ) is the dissipator due
to the coupling of the first (last) site with the left (right) bath.
Each dissipator is given by global operators, i.e., operators
that, in general, act on the full system [33]. More specifically,

Dn(ρ̂) =
∑

ω>0

J (ω){[1 + nn(ω)][Ân(ω)ρ̂Â†
n(ω)

− 1/2(Â†
n(ω)Ân(ω)ρ̂ + ρ̂Â†

n(ω)Ân(ω))]

+ nn(ω)[Â†
n(ω)ρ̂Ân(ω)

− 1/2(Ân(ω)Â†
n(ω)ρ̂ + ρ̂Ân(ω)Â†

n(ω))]}. (5)

Here, ω = ε j − εi is the energy difference of two eigenstates,
|εi〉 and |ε j〉, of Ĥ , nn(ω) = [exp(h̄ω/kBTn) − 1]−1 is the
Bose-Einstein distribution characterizing the heat baths (n =
1 or N), and kB is the Boltzmann constant. The Lindblad
operators Ân(ω) = ∑

ω |εi〉|〈εi|σ̂ x
n |ε j〉〈ε j | describe the transi-

tions induced by the bath. In the following, we use an Ohmic
bath, with the bath spectral function J (ω) = γω. This master
equation can be justified in the weak-coupling limit, and it
has been shown that it can predict accurately the heat current
exchanged between the system and the baths [28–30]. To

lighten the notations, henceforth we will work in units in
which J = kB = h̄ = 1.

The heat current J is calculated from the continuity equa-
tion,

d〈Ĥ〉
dt

= JL − JR. (6)

It follows from the master equation in Eq. (4) that

d〈Ĥ〉
dt

= Tr[ĤD1(ρ̂)] + Tr[ĤDN (ρ̂)]. (7)

In the steady state, d〈Ĥ〉
dt = 0. Thus, the steady-state heat

current is

J = JL = JR = Tr[ĤD1(ρ̂s)] = −Tr[ĤDN (ρ̂s)], (8)

where ρ̂s = ρ̂(t = ∞) is the steady state. We use the term
forward bias to refer to the case in which the hot bath is
coupled to the first (leftmost) site and the cold one to the last
(rightmost) site, while we use reverse bias for the opposite
case. The magnitude of the rectification is signaled by the
rectification coefficient, which is the ratio between the current
in forward bias J f and that in reverse bias Jr :

R = −J f

Jr
. (9)

The rectification coefficient R is much larger, or much
smaller, than 1 for good rectifiers [34], while R = 1 for no
rectification [35].

III. RESULTS

We now study how the magnitude of the anisotropy �, the
temperature TC (TH ) of the cold (hot) bath, and the interface
coupling JN/2 affect the rectification obtained in the system.
The steady state is calculated from the stationary solution of
the master equation (4),

L(ρ̂s) = 0, (10)

i.e., the zeroth mode of the Lindblad superoperator L, which
in our case is unique. The memory cost of finding the eigen-
vector for the zeroth eigenvalue of L using exact diagonaliza-
tion is 42N . Thus, it is highly nontrivial to go beyond N > 8.
So for larger chains, we employ the Runge-Kutta method to
numerically integrate the master equation and find the steady
state. Although the memory cost is reduced to 22N , long
integration times are required for convergence to the steady
state, and this limits the accessible chain lengths to N ≈ 10.

A. Role of interaction

First, we investigate the effect of interactions on the rectifi-
cation. Figure 1 shows the variation of rectification R with the
interaction strength �. Similar to the spin current in Ref. [27],
rectification increases significantly when � � 2. In Fig. 1(a)
in particular, we show how the rectification changes with
the chain length N . For the system sizes analyzed, we find
that significant rectification can be observed even for small
N . Moreover, we observe an increase of the rectification for
larger N . We are, however, unable to directly explore large
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(a)

(b)

FIG. 1. Role of interaction. (a) Rectification coefficient R as a
function of anisotropy parameter � for different chain lengths N .
Cold bath temperature is TC = 0.1 and hot bath temperature is TH =
10 + TC . (b) Dependence of rectification coefficient R on anisotropy
parameter � with different cold bath temperature TC for a chain of
length N = 8 and TH = 10 + TC . In both panels we used JN/2 = 1.

system sizes, and we cannot predict on analytical grounds
what the behavior would be in the thermodynamic limit.

However, we can conjecture what would happen in the
thermodynamic limit by reverting to results for spin currents
and spin baths as in Ref. [27]. In that system, in fact, we
observed that when the fully polarizing bath was not pushing
the system exactly in the state |↓↓ · · · ↓〉, not only was the rec-
tification reduced, but R would decrease with the system size.
Hence, we expect that also in our setup, as soon as TC > 0, the
system will never be perfectly insulating in reverse bias, hence
the temperature bias per unit length will be reduced as the
system size increases, thus bringing the system toward linear
response where rectification is not possible. This argument
implies that for a given bath temperature, there is an optimal
system size for heat current rectification.

In Fig. 1(b) we shift our focus to the importance of the
temperature of the cold bath TC . Here we show that going
to low values of TC can induce a significant increase in the
observed rectification. This is consistent with [27], in which,
when one of the baths was trying to fully polarize the chain,
the rectification was stronger.

B. Role of �T

In this section, we will detail the importance of the tem-
perature bias in the rectification mechanism. An increase in
�T = TH − TC allows a strong nonlinear response and hence
the possibility of strong rectification. In Fig. 2(a) we plot
the rectification versus �T for different magnitudes of the
anisotropy, while keeping the cold temperature at TC = 0.1.
For small �T , the current increases both in the forward

(a)

(b)

FIG. 2. Role of �T . (a) Variation of rectification coefficient R
with temperature bias �T for different anisotropy parameter �.
Here, the cold bath temperature is TC = 0.1. (b) Dependence of
rectification coefficient R on temperature bias �T for different cold
bath temperature TC . Here the anisotropy � = 4. In both panels, the
chain length N = 8, TH = TC + �T , and JN/2 = 1.

and reverse biases, but in a very similar manner, and the
rectification remains always R ≈ 1. When �T � 1, strong
rectification appears, however it is only for large anisotropy
� that R becomes particularly prominent. We also observe
a decrease of rectification with larger �T , and eventually
a large bias favors reverse current over the forward current,
thus resulting in a rectification coefficient R < 1. Since we
numerically observed that the value of �T where rectification
reversal takes place increases with the system size, we inter-
pret this phenomenon as a proximity effect related to the small
chain length (see Appendix A for more details).

In Fig. 2(b) we instead show the rectification versus the
temperature difference �T but for different values of the cold
temperature TC , while keeping � = 4. Figure 2(b) confirms
that, even for large anisotropy, it is only when the cold temper-
ature TC is low enough that one observes strong rectification.

C. Role of interface tunneling

The tunneling at the interface JN/2 plays a very important
role in determining the amount of current in the system and the
magnitude of the rectification. Smaller JN/2 implies smaller
currents, however it also allows us to recognize more clearly
the differences in the spectrum of the halves of the spin chain,
by separating and distinguishing them more strongly. This
results in stronger rectifications for smaller interface tunneling
JN/2, but also in sharper responses close to resonances, where
there is no energy gap for the propagation of a magnon
excitation created at the interface between the two halves of
the segmented chain, and therefore R ≈ 1 [27]. This is clearly
depicted in Fig. 3, in which we show R versus the anisotropy
� for different values of the interface tunneling JN/2.
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FIG. 3. Interface tunneling. Rectification ratio vs anisotropy �

for different magnitudes of the tunneling at the interface between the
interacting and the noninteracting halves of the chain (purple circles
for JN/2 = 0.1, blue squares for JN/2 = 0.2, red triangles for JN/2 =
0.5, and green diamonds for JN/2 = 1.0). The smaller the interface
tunneling JN/2, the stronger is the rectification effect, however the
larger are the resonance effects due to finite size. Other parameters
are N = 8, TC = 0.1, and TH = 10.

D. Frequency response

To characterize further the rectification system studied
here, we consider the frequency response of a tunneling
excitation at the interface. A tunneling excitation corresponds
to a spin exchange between two nearest-neighbor spins. More
precisely, we consider the two-time correlation function

C(t ) = Tr[σ−
N/2σ

+
N/2+1eLt (σ+

N/2σ
−
N/2+1ρ̂s)]. (11)

This correlation function corresponds to imposing a tunneling
on the steady state, evolving it for a time t with the Lindbla-
dian L and then tunneling back. The Fourier transform of this
two-time correlation, C(ω), gives the frequency response of
the system. We show the dependence of the imaginary part
of Im[C(ω)] on the frequency ω for different values of the
anisotropy � in Fig. 4. In forward bias, Fig. 4(a), the two-time
correlation is almost unaffected by a change in the anisotropy
� [36]. In reverse bias instead, for small values of � we ob-
serve that there is a sizable response at all frequencies, includ-
ing low frequencies. However, for large enough anisotropies,
the low-frequency response is significantly suppressed, and
only at large enough frequencies (i.e., energies in the system)
is it possible to have a sizable response. This is in agreement
with our previous work [27], where we showed that in reverse
bias there is an excitation gap that hinders spin current, while
in forward bias no excitation gap is present. See Appendix B
for further insights.

E. Nonlinear response and negative differential conductance

Due to the presence of strong interactions, our system
offers the opportunity to have nonlinear responses and, in
particular, negative differential conductance (see [37–39] in
the context of spins and hard-core boson transport). Nega-
tive differential conductance, i.e., the counterintuitive phe-
nomenon of decreasing the heat flow despite an increase
of thermal bias, plays a vital role in the performance of

FIG. 4. Frequency response. Im[C(ω)], i.e., the imaginary part
of the Fourier transform of the two-time correlation C(t ) in Eq. (11)
as a function of the frequency ω. We consider different values of
the anisotropy (red diamonds for � = 1, yellow circles for � = 2,
purple squares for � = 3, green downward triangles for � = 4, and
blue upward triangles for � = 5) for forward (a) and reverse bias
(b). Other parameters are N = 8, TC = 1, TH = 100, γ = 1, and
JN/2 = 1.

various thermal devices, such as thermal transistors [40] and
thermal memories [41]. It is a very important subject of
thermal transport research, and targeting the future possibility
of building experimental devices, we want to stress that it
is present in our proposal of a thermal diode. To show this,
we consider again a chain with N = 8 spins, with the first
four of them interacting with anisotropy �. Current in the
system versus the cold temperature is plotted in Figs. 5(a)
and 5(b), respectively, for reverse and forward biases. We
first consider the reverse bias where the first site is set to

FIG. 5. Negative differential conductance. Reverse (a) and for-
ward bias current (b) vs TC for different anisotropies � = 5 (green
triangles), � = 4 (purple squares), � = 3 (yellow circles), and � =
2 (red diamonds). The hot bath temperature is set to TH = 10. Other
parameters are N = 8, γ = 1, and JN/2 = 1. In the inset of panel (a),
the range for the y axis is modified so that for � = 2 the monotonic
behavior of the heat current can be seen down to low values of TC .
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the cold temperature TC and the last site is set to the hot
temperature TH = 10. For TC = 10, the cold bath is at the
same temperature as the hot one, so the current is clearly zero.
As the cold temperature decreases, the current increases until
TC is cold enough and, after that, the current decreases despite
the increase in temperature difference TH − TC . The change of
derivative of the current vs temperature curve occurs at higher
temperatures for larger anisotropies. At low anisotropy �, the
current increases superlinearly for small �T , i.e., the current
increases more than linearly with the change in bias, however
it may show negative differential conductance only for TC

cold enough (e.g., for � = 3) or not at all (e.g., for � = 2,
not shown in the main panel but highlighted in the inset). In
forward bias instead, no negative differential conductance is
observed. On the contrary, for larger anisotropy we observe
superlinear conductance, as is clearly shown in Fig. 5(b).

IV. CONCLUSIONS

Motivated by our findings in Ref. [27], in which it was
shown that a segmented XXZ chain can become a perfect
diode for spin currents, we investigate the heat current rectifi-
cation in the same setup. Using global Lindblad heat baths, we
show that a segmented chain works as a good diode provided
one-half of the chain is strongly interacting and the cold bath
temperature is low enough. We have shown that the spectral
response is significantly suppressed at low frequencies when
the anisotropy is large enough. Our simulations show that, up
to the numerically accessible chain lengths, the rectification
improves with the system size. Unlike the diode for spin
currents in Ref. [27], we find that the heat diode can work
over a wide range of bath parameters, although the peak
performance of the latter is, in general, worse.

The presence of strong interactions can, in general, induce
a nonlinear response to an external bias. Here we show that,
depending on the magnitude of the anisotropy and whether
the system is in forward or reverse bias, both superlinear and
negative differential conductance can emerge, the latter being
a key ingredient for building up a thermal transistor. The pres-
ence of a nonlinear response and of strong rectification can be
used to control the heat flow and could have applications also
in energy conversion from heat to work [42,43].
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APPENDIX A: REVERSAL OF RECTIFICATION

To demonstrate the proximity effect, we study the recti-
fication for different temperature bias �T at different chain
lengths N in Fig. 6. For a chain of spins N = 4 with anisotropy
� = 5, the rectification R is below 1 when �T = 74 whereas
for N = 6 it is after �T = 5000. The temperature required to
reverse the rectification increases to values larger than 104 for
N = 8 and 105 for N = 10. From our numerical data we can

FIG. 6. Scaling of rectification reversal. Variation of rectification
coefficient R with temperature bias �T for different chain lengths
N . The dotted line corresponds to R = 1. Here, the anisotropy is
� = 5, cold bath temperature TC = 0.1, hot bath temperature TH =
TC + �T , and JN/2 = 1.

conclude that, for a longer chain, the increase in the reverse
current takes place at larger bias.

APPENDIX B: SPECTRAL RESPONSE
FOR TWO-TIME CORRELATION

Here, we further show the suppression of the low-
frequency response in the reverse bias at larger anisotropy.
For this, we take the half-chain with uniform anisotropy �

at a temperature T . The corresponding state of the chain is
[ρs]i, j = e−Ei/T δi, j/Z , where Ei are the eigenenergies of the
half-chain and Z = ∑

i e−Ei/T . Next, we attach this chain to
a single thermal bath with temperature T and calculate the
two-time correlation C1(t ) = Tr[σ+

1 eLt (σ−
1 ρs)] and its Fourier

transform C1(ω). The frequency response of the absolute value
of C1(ω) for different anisotropies is plotted in Fig. 7 at tem-
peratures T = 1. This figure shows that, at low temperature,
the zero-frequency response of the chain is highly suppressed
when the anisotropy is large. This is a clear indication of an
opening of an excitation gap, implying small reverse current
and large rectification for large anisotropy.

FIG. 7. Frequency response for a half-chain. |C1(ω)|, i.e., the
absolute value of the Fourier transform of the two-time correlation
C1(t ) as a function of the frequency ω with T = 1, for different
anisotropies �. The length of the chain is N = 4 and γ = 1.
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