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Ring frustration and factorizable correlation functions of critical spin rings
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Tackling the critical transverse Ising ring with or without ring frustration, we establish the concept of
nonlocality in a many-body system in the thermodynamic limit by calculating the nonlocal factors embedded
in the factorizable correlation function. Through this exactly solvable prototype, we clearly show the intriguing
difference between the periodic chains with odd and even numbers of lattice sites even in the thermodynamic
limit. In the context of nonlocality, we also address the important application of finite-size scaling analysis by
numerically working out the nonlocal factors of the isotropic XY model and the spin-1/2 Heisenberg model.
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I. INTRODUCTION

In quantum spin systems, highly entangled ground state
can arise from geometrical frustration [1] as well as quantum
frustration [2]. Quantum frustration means the frustrationlike
effect may arise due to noncommutativity and entanglement
in the quantum systems without geometrical frustration [3–7].
But it is usually not easy to discern the contributions of
the two different sources [5]. Recently, the effect of ring
frustration aroused much attention due to the exotic ground
state it induced [8–16]. A nonlocal factor in its correlation
function can be extracted, which represents the pure effect of
geometrical frustration [13–15]. Ring frustration is a kind of
geometrical frustration that occurs for a closed chain (Fig. 1),
in which no unique Ising-like state can prevail in the ground
state and minimize the system’s energy alone. Unlike the
usual local geometric frustration on the triangular or Kagomé
lattices, the ring frustration is of a nonlocal nature in that (i)
one must walk all the way round the ring to make sure of the
presence of spin frustration, i.e., the frustration is somewhat
weak [16] and (ii) it can significantly change the bulk property
of the low-energy states [13,14]. Frustrations in spin rings
have also been studied in [17–19].

On the other hand, the concept of thermodynamic limit
resides in the central part of statistical mechanics, with which
the critical phenomena must associate [20]. In theoretical
calculations, we manage to match the physical systems of
Avogadro’s number of spins by setting the number of spins in
the models to a mathematical infinity, N → ∞. In traditional
treatment, we often take this limit at the very beginning stage
of calculations, which facilitates us to employ useful trans-
forms, such as the substitution of the sum of momentum num-
ber q with an integral (in D dimensions), (1/N )

∑
q[· · · ] =∫

dDq/(2π )D[· · · ], to work out desired quantities. Thus N
will disappear in the final results. For example, critical spin
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chains have been found to exhibit algebraically decaying
correlation functions [21,22] like

C∞(r) ∼ b

rη
, (1)

where b and η are real numbers and r is the distance between
the two spins.

Can we defer the setting of the limit, N → ∞, till the end
of calculation? And if so, what can we get from it? In this
work, we shall demonstrate that the concepts of locality and
nonlocality can be well distinguished and defined for a ring
system in the limit N → ∞. We establish the full framework
for extracting the nonlocal factors in the correlation function
basing on an exactly solvable prototype—the transverse Ising
ring at its phase transition point. Then we reappraise the
usefulness of the finite-size scaling analysis in this framework
and apply it to the isotropic XY and Heisenberg rings with
emphasis on the effect of ring frustration. Note that in this
paper we only consider the nonlocal behavior of correlation
functions [23], which is quite different from the nonlocal
behavior observed in the quantum measurements or quantum
information.

We consider the spin correlation function of the ground
state |E0〉,

Ca
r,N = 〈E0|σ a

j σ
a
j+r |E0〉, (2)

where σ a
j (a = x, y, z) are Pauli matrices. Throughout the

whole paper, we only consider the x component of the cor-
relation function Cx

r,N . To ease the notation, we will drop the
superscript and simply denote it as Cr,N .

Obviously, the correlations should satisfy the following
cyclic relation (Fig. 1):

Cr,N = CN−r,N . (3)

The main idea is that the results may be different if the
limit, N → ∞, is made at two different occasions, as follows.

(i) If setting N → ∞ at the beginning stage of calculation,
we denote the resulting correlation function as C∞(r). The
example in Eq. (1) falls into this case.
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FIG. 1. Periodic spin chain. Ring frustration occurs if the num-
ber of spins is odd and the nearest-neighbor interactions are
antiferromagnetic.

(ii) If setting N → ∞ at the end of calculation, we get

C(O)(r, α) = lim
L→∞

Cr,2L+1, (4)

C(E )(r, α) = lim
L→∞

Cr,2L, (5)

for N = 2L + 1 ∈ Odd and N = 2L ∈ Even, respectively,
where we have defined a parameter

α = lim
N→∞

r

N
, (6)

whose value can be restricted to the range 0 � α < 1/2 due
to the ring geometry and the cyclic relation Eq. (3). The
surprising difference between C(O)(r, α) and C(E )(r, α) will
be exemplified.

It is natural to put the distances into three categories in the
limit N → ∞, as follows.

(i) The distance is local if r ≈ 1.
(ii) The distance is near local if r 	 1 and α = 0, just

like Eq. (1). Here the condition r 	 1 is required to avoid
the short-range and unstable behaviors.

(iii) The distance is nonlocal if α 
= 0.
In this work, we shall first present a clear prototype,

the transverse Ising ring at its phase transition point, to
demonstrate the differences among C∞(r), C(O)(r, α), and
C(E )(r, α). More importantly, we propose three nonlocal fac-
tors defined as ratios. The first two of them are for the measure
of nonlocality for N = 2L + 1 ∈ Odd and N = 2L ∈ Even,
respectively:

R(O)(α) = C(O)(r, α)

C∞(r)
, (7)

R(E )(α) = C(E )(r, α)

C∞(r)
. (8)

These definitions are possible only if the r dependence of the
right hand sides of the above equations cancels out, as will be
exemplified later. The third is for the measure of the effect of
ring frustration,

R(α) = R(O)(α)

R(E )(α)
. (9)

However, many models in the limit N → ∞ cannot be
solved as exactly as the transverse Ising ring at its phase tran-
sition point. So, instead of Eqs. (7)–(9), we have to conjecture
the trends of the finite-size version of the ratios,

R(O)
r,2L+1 = Cr,2L+1

C∞(r)
−→ R(O)(α), (10)

R(E )
r,2L = Cr,2L

C∞(r)
−→ R(E )(α), (11)

Rr,2L+1 = R(O)
r,2L+1

R(E )
r,2L

−→ R(α), (12)

with the system’s size increasing. This is coincident with
the famous finite-size scaling (FSS) hypothesis. In fact, as
a scaling function, R(E )

r,2L has been studied tremendously by
numerical methods for many models in the past decades [24],
while the other two, R(O)

r,2L+1 and Rr,2L+1, have been somewhat
overlooked so far, till the effect of ring frustration makes
them prominent [13]. And as one of the most important
inferences, the scaling function observed in FSS analysis can
truly approximate the nonlocal factor of an infinite system.
This conclusion brings us an opportunity to utilize FSS as a
valuable method for exploring the nonlocality in many-body
systems. We address this by figuring out the nonlocal factors
of the isotropic XY and spin-1/2 Heisenberg rings.

In the following, we present the analyses of three popular
critical spin chains. As a prototype, the transverse Ising model
at its transition point is exactly solved in Sec. II. The isotropic
XY model is investigated numerically in Sec. III. In Sec. IV,
the spin-1/2 Heisenberg model is investigated by the Bethe
ansatz. At last, we give a conclusion.

II. CRITICAL TRANSVERSE ISING RING

In this section, we are concerned with a simple critical
model, the transverse Ising model at its critical point (TIC),

HTIC =
N∑

j=1

σ x
j σ

x
j+1 −

N∑
j=1

σ z
j , (13)

which is a special case of the general XY Hamiltonian
(γ = 1, h = 1),

H (γ , h) =
N∑

j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1

)
− h

N∑
j=1

σ z
j ,

(14)
where γ and h are parameters for anisotropy and transverse
field.

A. General formulas

For the general Hamiltonian, Eq. (14), we have the stan-
dard diagonalization procedure [25]. Here, we abbreviate the
main formulas that will be used later. In the context of the
so-called a-cycle problem of Jordan-Wigner fermions [26,27],
we introduce the Jordan-Wigner transformation [28],

σ+
j = (

σ x
j + iσ y

j

)
/2 = c†

j exp

⎛
⎝iπ

∑
l< j

c†
l cl

⎞
⎠, (15)
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and Fourier transformation

cq = 1√
N

N∑
j=1

c j exp (iq j), (16)

and diagonalize the fermionic Hamiltonian with Even(E ) or
Odd(O) number of lattice sites in the even(e) or odd(o)
channels as (we use the same notations as those in Ref. [13])

H (E ,o) = ε(0)(2c†
0c0 − 1) + ε(π )(2c†

πcπ − 1)

+
∑

q∈q(E ,o),q 
=0,π

ω(q)(2η†
qηq − 1), (17)

H (E ,e) =
∑

q∈q(E ,e)

ω(q)(2η†
qηq − 1), (18)

H (O,o) = ε(0)(2c†
0c0 − 1)

+
∑

q∈q(O,o),q 
=0

ω(q)(2η†
qηq − 1), (19)

H (O,e) = ε(π )(2c†
πcπ − 1)

+
∑

q∈q(O,e),q 
=π

ω(q)(2η†
qηq − 1), (20)

where

q(E ,o) =
{
−N − 2

N
π, . . . ,− 2

N
π, 0,

2

N
π, . . . ,

N − 2

N
π, π

}
,

(21)

q(E ,e) =
{
−N − 1

N
π, . . . ,− 1

N
π,

1

N
π, . . . ,

N − 1

N
π

}
,

(22)

q(O,e) =
{
−N − 2

N
π, . . . ,− 1

N
π,

1

N
π, . . . ,

N − 2

N
π, π

}
,

(23)

q(O,o) =
{
−N − 1

N
π, . . . ,− 2

N
π, 0,

2

N
π, . . . ,

N − 1

N
π

}
.

(24)

In the above, we have defined

ηq = uqcq − ivqc†
−q (q 
= 0, π ), (25)

with

u2
q = 1

2

(
1 + ε(q)

ω(q)

)
, v2

q = 1

2

(
1 − ε(q)

ω(q)

)
,

2uqvq = 	(q)

ω(q)
,

ε(q) = cos q − h, 	(q) = γ sin q,

ω(q) =
√

ε(q)2 + 	(q)2. (26)

And in all of the four cases, fermion vacuums share the same
form of BCS-type wave function,

|φ(E/O,e/o)〉 =
∏

q ∈ q(E/O,e/o)$0 < q < π )

(uq + ivqc†
qc†

−q )|0〉, (27)

above which quasiparticles are created. To restore the exact
degrees of freedom of the original spin system, we erase the

nonphysical states by projections. For N = 2L ∈ Even, we
use

H (γ , h) = P+H (E ,e)P+ ⊕ P−H (E ,o)P−, (28)

and for N = 2L + 1 ∈ Odd, we use

H (γ , h) = P+H (O,e)P+ ⊕ P−H (O,o)P−, (29)

where the projectors P± = 1
2 [1 ± ∏N

n=1 (1 − 2c†
ncn)].

In such a tedious but faithful mapping, we clearly see the
resemblance and difference between the spin Hamiltonian,
Eq. (14), and the fermionic Hamiltonians, Eqs. (17)–(20). For
bipartite lattice, i.e., N = 2L ∈ Even, the ring frustration is
absent, so the discrepancy is small and may be neglected.
But when N = 2L + 1 ∈ Odd, the system’s bulk property
is largely changed, because the ring frustration rumples the
ground state and low-energy excited states [13,14].

B. Longitudinal correlation functions

1. N = 2L ∈ Even

The ground state is∣∣E (E ,e)
0

〉 = |φ(E ,e)〉 (30)

and its energy reads

E (E ,e)
0 = −

∑
q∈q(E ,e)

ω(q) (31)

for all h including the critical point h = 1. The correlation
function turns out to be a Toeplitz determinant that can be
reduced to (Appendix A)

Cr,N =
(

− 1

N

)r

det

[
csc

(μ j + νk )π

2N

]
0� j,k�r−1

, (32)

where

μ j = 2 j + 1, νk = −2k. (33)

Then, by making use of the identity (Appendix B),

det
[ 1

sin(ai + b j )

]
0�i, j�n−1

=
∏

0�i< j�n−1 sin(ai − a j ) sin(bi − b j )∏
0�i, j�n−1 sin(ai + b j )

, (34)

we find an exact result (notice N ∈ Even),

Cr,N = (−1)rSr,N , (35)

where

Sr,N =
∏

0� j<k�r−1 sin (μ j−μk )π
2N sin (ν j−νk )π

2N

Nr
∏r−1

j=0

∏r−1
k=0 sin (μ j+νk )π

2N

. (36)

2. N = 2L + 1 ∈ Odd

The ground state is∣∣E (O,o)
0

〉 = c†
0|φ(O,o)〉, (37)

and its energy is

E (O,o)
0 = |1 − h| + (1 − h) −

∑
q∈q(O,o)

ω(q) (38)
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for all h including the critical point h = 1. Its longitudinal cor-
relation function is also represented by a Toeplitz determinant
that can be reduced to (Appendix A)

Cr,N =
(

1

N

)r

det

[
1 − cot

(μ j + νk )π

2N

]
0� j,k�r−1

. (39)

And by making use of another identity (Appendix B),

det

[
cos(ai + b j + φ)

sin(ai + b j )

]
0�i, j�n−1

=
∏

0�i< j�n−1 sin(ai − a j ) sin(bi − b j )∏
0�i, j�n−1 sin(ai + b j )

× cos

[
n−1∑
i=0

(ai + bi ) + φ

]
cosn−1 φ, (40)

we find another exact result (notice N ∈ Odd),

Cr,N = (−1)rB1(α)Sr,N , (41)

where

B1(α) = cos
απ

2
− sin

απ

2
. (42)

C. Nonlocal factors

It is helpful to review the traditional treatment at this
moment. If we set N → ∞, both Eqs. (35) and (41) will
become the Cauchy determinant that leads to the well-known
asymptotic formula [29–31],

C∞(r) ≈ (−1)r b1

r1/4
, (43)

where b1 = e1/421/12A−3 ≈ 0.645002448; A is the Glaisher’s
constant. However, this approximation obliterates the im-
portant difference between the systems with odd and even
numbers of lattice sites N .

To get accurate results, let us focus on Eqs. (35) and (41).
By denoting θ = π

2N , we rewrite Sr,N in Eq. (36) as

Sr,N =
∏

1�m�r−1(cos2 θ − cot2 mθ sin2 θ )m−r

(N sin θ )r . (44)

Then, noticing the identity (only exact for N = 2L + 1),

1

N sin θ
=

∏
1�m�L

(cos2 θ − cot2 mθ sin2 θ ), (45)

we find that

ln Sr,N =
r−1∑
m=1

m ln(cos2 θ − cot2 mθ sin2 θ )

+ r
L∑

m=r

ln(cos2 θ − cot2 mθ sin2 θ ). (46)

Next, by substituting the Taylor expansion,

ln(cos2 θ − cot2 mθ sin2 θ )

= ln

(
1 − 1

4m2

)
− 1

3
θ2 − 1 + 24m2

90
θ4 − · · · , (47)

FIG. 2. Nonlocal factors of the transverse Ising ring at its phase
transition point.

into Eq. (46) and accomplishing the summations with the
index m, we arrive at

ln Sr,N = −1

4
ln r + ln b1 + h(α) + O

(
1

N

)
, (48)

where h(α) is a sum containing two convergent expansions
(for more terms, please see Appendix C):

h(α) = α

2
−

(
π2α2

24
+ π4α4

240
+ · · ·

)

−
[
π2α(1 − 2α)

24
+ π4α(1 − 8α3)

1440
+ · · ·

]
. (49)

At this last moment, we are able to keep the parameter α = r
N

after ignoring the terms in order of O( 1
N ), and get

lim
N→∞

Sr,N = b1

r1/4
eh(α). (50)

Now we can reap the accurate nonlocal factor,

R(O)(α) = eh(α)B1(α). (51)

And it is easy to verify numerically that there holds an
infinitesimal difference (N = 2L + 1),

Sr,N − Sr,N−1 ∼ 1

N5/4
→ 0, (52)

and the above calculation is also true for N = 2L → ∞. Thus
we get the other two nonlocal factors,

R(E )(α) = eh(α), (53)

R(α) = B1(α). (54)

The nonlocal factors are illustrated in Fig. 2. We see that
R(O)(α) and R(α) are quite close since R(E )(α) deviates not
far from 1.

III. ISOTROPIC XY RING

The isotropic XY model is given by

HXY = 1

2

N∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
, (55)
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which is also a special case of Eq. (14) as HXY = H (0, 0). In
this model, we cannot compute its nonlocal factor analytically.
However, its correlation functions can also be represented by
Toeplitz determinant, which facilitates us to calculate systems
as large as thousands of spins so that nonlocal factors can be
deduced via convincing numerical evidence. The solution of
its a-cycle problem is quite delicate [13,25,26]. It turns out
that the systems with N = 4K, 4K + 2 ∈ Even and N = 4K +
1, 4K + 3 ∈ Odd should be solved separately (Appendix A).
For simplicity and without loss of generality, we demonstrate
the numerical results of N = 4K ∈ Even and N = 4K + 1 ∈
Odd here.

A. Nonlocal factor for N = 4K ∈ Even

For N = 4K ∈ Even the ground state is unique and the
excitations are gapless. The correlation function is expressed
by a Toeplitz determinant (Appendix A),

Cr,N = det[T j−k,N ]1� j,k�r, (56)

where the element reads

Tn,N =
{

0 (n = 1),
− 2

N csc π (n−1)
N sin π (n−1)

2 (other n).
(57)

Again, at this moment, if setting the limit, N → ∞, before
the evaluation of the Toeplitz determinants, the element in
Eq. (57) becomes the same one that was obtained originally
by Lieb et al. [26],

Tn,∞ ≈
{

0 (n ∈ odd),
2

π (n−1) cos nπ
2 (n ∈ even). (58)

Basing on it, McCoy found an asymptotic formula [30],

C∞(r) ≈ (−1)r b2

r1/2
, (59)

where b2 = e1/222/3A−6 ≈ 0.588 352 664. It is easy to verify
the original observation by Kaplan et al. that the numerical
result of Eq. (56) deviates from Eq. (59) by a factor [24]

R(E )(α) = 1 + 0.28822 sinh2(1.673α). (60)

This factor was ascribed to the finite-size effect. Now in the
context of nonlocality, we can reasonably say it truly reflects
the nonlocal property when the system’s size approaches
infinity.

B. Nonlocal factor for N = 4K + 1 ∈ Odd and the effect of ring
frustration

While for N = 4K + 1 ∈ Odd, there are four degenerate
ground states, without loss of generality, we deduce the corre-
lation function for one of them as (Appendix A)

Cr,N = det

[
T j−k,N + 2βQo

N
ei( j−k)Qo

]
1� j,k�r

, (61)

where βQo = sgn(cos Qo)e−iQo, Qo = N−1
2N π , and

Tn,N =
{

− 1
N (n = 1),

− 2
N csc (n−1)π

N sin (1+N )(n−1)π
2N (other n).

(62)

FIG. 3. Rr,N with N = 101, 1001, and 10001 for the isotropic
XY model. The data collapse to the proposed scaling curve B2(α)
very accurately. The ratios, Rr,N

B2(α) , in the inset demonstrate how the
data approach the curve B2(α) with N increasing.

We directly work out the data of Rr,N = Cr,N

Cr,N−1
with N =

101, 1001, 10001 according to Eq. (12). We found the data
collapse to the curve,

B2(α) =
(

cos
απ

2

)2

−
(

sin
απ

2

)2

, (63)

very accurately (Fig. 3), which suggests the nonlocal factor
due to pure ring frustration is

R(α) = lim
N→∞

Rr,N = B2(α). (64)

The nonlocal factor R(O)(α) can be inferred from Eqs. (60)
and (64) easily.

IV. SPIN-1/2 HEISENBERG CHAIN WITH RING
FRUSTRATION

In this section, we turn to the isotropic spin-1/2 Heisenberg
model with ring frustration. The Hamiltonian is

HH = J
N∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

)
. (65)

Similar to the XY model, here we impose the periodic bound-
ary condition Sa

N+1 = Sa
1 for a = x, y, z and only consider the

antiferromagnetic interacting J > 0 with odd number of sites.
It is well known that the Heisenberg model can be ex-

actly solved by the Bethe ansatz. Here we only present the
results we need for the calculations of ground state correlation
functions; detailed derivation can be found in [22,32]. First
the number of down spins N↓ is conserved in the Heisenberg
model; thus we can diagonalize the Hamiltonian in each sub-
Hilbert space with fixed number of down spins. Since J > 0
and N is odd, the ground states occur in the subspace with
N↓ = (N − 1)/2 or N↓ = (N + 1)/2. These two subspaces
can be mapped to each other by a spin flip of all spins.
Therefore, we only need to consider the case with N↓ =
(N − 1)/2.
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The eigenfunction can be expressed as

|ψ〉 =
∑

n1,...,nN↓

f (n1, n2, . . . , nN↓ )|n1, n2, . . . , nN↓〉. (66)

Here |n1, n2, . . . , nN↓〉 denotes the spin state with N↓ down
spins located at lattice site n1 to nN↓ , while all other sites are
spin up.

The ground state wave function f (n1, . . . , nM ) can be
obtained by the exact solution of Bethe ansatz or direct nu-
merical digonalization. Because the computation complexity
increases exponentially with the number of spins, in both
cases, one can only compute the ground state wave function
with the number of spins up to around N = 30. For our
demonstration purpose, we have only computed the ground
state and correlations Cr,N for lattices with number of spins
from N = 10 to 21. The method of Bethe ansatz for odd
number of spins is briefly reviewed in Appendix D.

Once the ground state wave function is obtained, the
ground state correlation is given by

Cr,N = 〈
Sz

1Sz
r

〉 =
∑∏N↓

j=1(−1)
δn j 1 (−1)

δn j r | f (n1,...,nN↓ )|2
4

∑ | f (n1,...,nN↓ )|2 . (67)

For a periodic chain with even number of lattice sites, the
asymptotic formula of correlation function is

C∞(r) = b(−1)r

√
ln r

r
, (68)

with b ≈ 0.56. The nonlocal factors have been obtained in
[33] as follows:

R(E )(α) = [1 + 0.288 22 sinh2(1.673α)]1.805, (69)

which fits well our data for an even number of lattice sites. To
see clearly the effect of ring frustration due to the odd number
of lattice sites, we directly produce new sequences of data
from the ones by the Bethe ansatz according to

Rr,N = Cr,N

Cr,N−1
. (70)

The result is shown in Fig. 4. We see the data also collapse
to the curve B2(α) quite well although our data are too few

FIG. 4. Rr,N with N from 11 to 21 for the spin-1/2 Heisenberg
model. The data collapse to the proposed scaling curve B2(α) very
well.

(N = 11 to 21), which suggests that B2(α) is the true nonlocal
factor R(α) in the thermodynamic limit.

V. CONCLUSION

In this paper, we propose a well-defined concept of non-
locality in the infinite spin rings. Three popular critical spin
models are presented as cases in point. The transverse Ising
ring serves as a prototype since it is exactly solvable. Basing
on it, we establish the framework for extracting the nonlocal
factors in the correlation functions with emphasis on the
effect of ring frustration. The usefulness of FSS analysis is
demonstrated by numerical solutions of the nonlocal factors
in the correlation functions of isotropic XY and spin-1/2
Heisenberg rings.

In brief, both C(E )(r, α) and C(O)(r, α) of the three typical
critical models considered in this work are factorizable in the
limit N → ∞,

C(E )(r, α) = R(E )(α)C∞(r), (71)

C(O)(r, α) = R(O)(α)C∞(r) = R(α)R(E )(α)C∞(r), (72)

which demonstrate clearly that N ∈ Even → ∞ and N ∈
Odd → ∞ render different nonlocal factors R(E )(α) and
R(O)(α), respectively. Furthermore, R(E )(α) and R(α) are re-
sponsible for the quantum frustration [2,4–7] and pure geo-
metrical frustration, respectively.

The observed algebraically decaying C∞(r) is a standard
outcome of the continuous conformal field theories [22].
Through FSS analysis, R(E )(α) has been revealed in many
works [24,33]. The effects of odd number of spins have also
been considered by many authors previously. For example,
the ground state energy and short-ranged correlations of the
XXZ model with odd number of spins were computed in
[34]. The scaling properties of ground state energy and zero-
temperature susceptibility of the same model are also studied
in [35]. The long-range correlation function for the antifer-
romagnetic (noncritical) phase of the transverse Ising chain
with ring frustration were studied in [11,13,14], which present
a consistent nonlocal factor, R(α) = 1 − 2α. Now we can also
think that the model in the same parameter region exhibits the
other two trivial nonlocal factors, R(E )(α) = 1 and R(O)(α) =
R(α). To capture the physical effects of odd number of spins
in a continuum field theory model, one possible approach
is to introduce a generalized boundary condition in a free
fermion model. It may generate the kink states [13] appearing
in the antiferromagnetic phase of the transverse Ising chain.
However, how to quantitatively account for all the nonlocal
factors by a continuum field theory is still unknown. We may
explore these questions in the future.
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APPENDIX A: TOEPLITZ DETERMINANT
REPRESENTATION FOR THE CORRELATION

FUNCTIONS

1. Transverse Ising ring at its critical point

The transverse Ising model at its critical point reads (γ =
1, h = 1)

H (1, 1) = HTIC =
N∑

j=1

σ x
j σ

x
j+1 −

N∑
j=1

σ z
j . (A1)

a. N = 2L ∈ Even

When N = 2L ∈ Even, the ground state is∣∣E (E ,e)
0

〉 = |φ(E ,e)〉 (A2)

and its energy reads

E (E ,e)
0 = −

∑
q∈q(E ,e)

ω(q), (A3)

according to Eq. (28). By introducing the notations Aj =
c†

j + c j and Bj = c†
j − c j , applying the Wick’s theorem in

respect of |φ(E ,e)〉, and retaining the nonzero contractions,
〈φ(E ,e)|BlAm|φ(E ,e)〉 = D (E ,e)

l−m+1, the longitudinal correlation
function is rewritten in a Toeplitz determinant,

Cr,N = 〈φ(E ,e)|BjAj+1 . . . Bj+r−1Aj+r |φ(E ,e)〉

=

∣∣∣∣∣∣∣∣∣

D (E ,e)
0 D (E ,e)

−1 · · · D (E ,e)
−r+1

D (E ,e)
1 D (E ,e)

0 · · · D (E ,e)
−r+2

· · · · · · · · · · · ·
D (E ,e)

r−1 D (E ,e)
r−2 · · · D (E ,e)

0

∣∣∣∣∣∣∣∣∣
, (A4)

where

D (E ,e)
n = 1

N

∑
q∈q(E ,e)

D(eiq)e−iqn, (A5)

D(eiq) = eiq
(
1 − 2u2

q + 2iuqvq
)
. (A6)

Since (due to γ = 1, h = 1)

D(eiq) = i sgn(q)eiq/2, (A7)

we have

D (E ,e)
r = − 1

N
csc

(1 − 2r)π

2N
. (A8)

Thus, for N = 2L ∈ Even, we get the abbreviated correlation
function in the paper [Eq. (32)],

Cr,N =
(

− 1

N

)r

det

[
csc

(μ j + νk )π

2N

]
1� j,k�r

, (A9)

where μ j = 2 j + 1 and νk = −2k.

b. N = 2L + 1 ∈ Odd

When N = 2L + 1 ∈ Odd, the ground state is∣∣E (O,o)
0

〉 = c†
0|φ(O,o)〉 (A10)

and its energy is

E (O,o)
0 = −

∑
q∈q(O,o)

ω(q), (A11)

according to Eq. (29). For the ground state |E (O,o)
0 〉, we need

to apply the Wick’s theorem in respect of |φ(O,o)〉,
Cr,N = 〈φ(O,o)|c0BjAj+1 . . . Bj+r−1Aj+rc†

0|φ(O,o)〉. (A12)

We can choose to eliminate the operators c0 and c†
0

by nonzero contractions, 〈φ(O,o)|c0c†
0|φ(O,o)〉 = 1 and

〈φ(O,o)|Amc†
0|φ(O,o)〉 = −〈φ(O,o)|Bmc†

0|φ(O,o)〉 = 1√
N

, to
deduce an expression like

Cr,N = 〈φ(O,o)|BjAj+1 . . . Bj+r−1Aj+r |φ(O,o)〉

+ 2

N
〈φ(O,o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(O,o)〉

+ 2

N
〈φ(O,o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(O,o)〉

+ · · · . (A13)

Then by nonzero contractions, 〈φ(O,o)|BlAm|φ(O,o)〉 =
D (O,o)

l−m+1, with

D (O,o)
n = − 1

N
+ 1

N

∑
q ∈ q(O,o), q 
= 0

D(eiq )e−iqn, (A14)

we can deduce the result as

Cr,N =

∣∣∣∣∣∣∣∣∣∣

D (O,o)
0 D (O,o)

−1 · · · D (O,o)
1−r

D (O,o)
1 D (O,o)

0 · · · D (O,o)
2−r

· · · · · · · · · · · ·
D (O,o)

r−1 D (O,o)
r−2 · · · D (O,o)

0

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

2
N

2
N · · · 2

N

D (O,o)
1 D (O,o)

0 · · · D (O,o)
2−r

· · · · · · · · · · · ·
D (O,o)

r−1 D (O,o)
r−2 · · · D (O,o)

0

∣∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣∣

D (O,o)
0 D (O,o)

−1 · · · D (O,o)
1−r

D (O,o)
1 D (O,o)

0 · · · D (O,o)
2−r

· · · · · · · · · · · ·
2
N

2
N · · · 2

N

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

D (O,o)
0 + 2

N D (O,o)
−1 + 2

N · · · D (O,o)
1−r + 2

N

D (O,o)
1 + 2

N D (O,o)
0 + 2

N · · · D (O,o)
2−r + 2

N

...
...

...
...

D (O,o)
r−1 + 2

N D (O,o)
r−2 + 2

N · · · D (O,o)
0 + 2

N

∣∣∣∣∣∣∣∣∣∣∣∣
. (A15)
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And since (due to γ = 1, h = 1)

D(eiq ) = i sgn(q)eiq/2, (A16)

we have

D (O,o)
r = − 1

N
− 1

N
cot

(1 − 2r)π

2N
. (A17)

Thus for N = 2L + 1 ∈ Odd, we get the Toeplitz determi-
nant representation of the correlation function in the paper
[Eq. (39)]

Cr,N =
(

1

N

)r

det

[
1 − cot

(μ j + νk )π

2N

]
0� j,k�r−1

.

(A18)

2. Isotropic XY ring

The isotropic XY model reads (γ = 0, h = 0)

H (0, 0) = HXY = 1

2

N∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
. (A19)

The situation in the XY ring is more delicate than that in the
transverse Ising ring. The solutions for the ground state ought
to be put into four categories, as follows.

(a) For N = 4K (K = 1, 2, 3, . . .), the ground state is
unique, which reads |φ(E ,e)〉.

(b) For N = 4K + 2, the ground state is unique, which
reads c†

π |φ(E ,o)〉.
(c) For N = 4K + 1, the ground states are fourfold degen-

erate due to the presence of ring frustration. Two of them come
from the odd channel,∣∣E (O,o)

±Qo

〉 = η
†
±Qo

|φ(O,o)〉, (A20)

and two of them from the even channel,∣∣E (O,e)
±Qe

〉 = η
†
±Qe

c†
π |φ(O,e)〉, (A21)

where the characteristic wave vectors are

Qo = N − 1

2N
π, Qe = N + 1

2N
π. (A22)

(d) For N = 4K + 3, the ground states are fourfold degen-
erate due to the presence of ring frustration. They are also
expressed by Eqs. (A20) and (A21), but the characteristic
wave vector swaps

Qo = N + 1

2N
π, Qe = N − 1

2N
π. (A23)

Let us demonstrate their correlation functions in Toeplitz
determinant representation one by one.

a. N = 4K ∈ Even

In this case, because the ground state is |φ(E ,e)〉, the
correlation function shares the same expressions as that in
Eqs. (A4)–(A6), but the elements are different and read

D (E ,e)
r =

{
0 (r = 1),
− 2

N csc π (r−1)
N sin π (r−1)

2 (other r),
(A24)

since now we have

D(eiq ) = − sgn(cos q)eiq. (A25)

b. N = 4K + 2 ∈ Even

In this case, the ground state is c†
π |φ(E ,o)〉. We need to apply

the Wick’s theorem in respect of |φ(E ,o)〉,
Cr,N = 〈φ(E ,o)|cπBjAj+1 . . . Bj+r−1Aj+rc†

π |φ(E ,o)〉. (A26)

We can choose to eliminate the operators cπ and c†
π first

by using nonzero contractions, 〈φ(E ,o)|cπc†
π |φ(E ,o)〉 = 1 and

〈φ(E ,o)|Amc†
π |φ(E ,o)〉 = −〈φ(E ,o)|Bmc†

π |φ(E ,o)〉 = (−1)m√
N

, to get
an expression like

Cr,N = 〈φ(E ,o)|BjAj+1 . . . Bj+r−1Aj+r |φ(E ,o)〉 − 2

N
〈φ(E ,o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(E ,o)〉

− 2

N
〈φ(E ,o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(E ,o)〉 + · · · . (A27)

Then, by nonzero contractions, 〈φ(E ,o)|BlAm|φ(E ,o)〉 = D (E ,o)
l−m+1, with

D (E ,o)
n = − 1

N
+ 1

N

∑
q ∈ q(E ,o), q 
= π

D(eiq)e−iqn, (A28)

D(eiq) = eiq
(
1 − 2u2

q + 2iuqvq
)
, (A29)

we get

Cr,N =

∣∣∣∣∣∣∣∣∣∣∣∣

D (E ,o)
0 − 2

N D (E ,o)
−1 − 2

N e−iπ · · · D (E ,o)
−(r−1) − 2

N e−i(r−1)π

D (E ,o)
1 − 2

N eiπ D (E ,o)
0 − 2

N · · · D (E ,o)
−(r−2) − 2

N e−i(r−2)π

...
...

...
...

D (E ,o)
r−1 − 2

N ei(r−1)π D (E ,o)
r−2 − 2

N e−i(r−2)π · · · D (E ,o)
0 − 2

N

∣∣∣∣∣∣∣∣∣∣∣∣
. (A30)
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For the isotropic XY model (γ = 0, h = 0), we have

D(eiq) = − sgn(cos q)eiq, (A31)

so we get

D (E ,o)
n =

{− 2
N (n = 1),

− 2
N − 4

N csc π (n−1)
N sin π (n−1)

2

[
sin (N−2)(n−1)π

4N

]2
(other n).

(A32)

c. N = 4K + 1 ∈ Odd

The ground states are of four degeneracy. For simplicity and without loss of generality, let us choose the state |E (O,o)
Qo

〉 =
η

†
Qo

|φ(O,o)〉. The starting point is

Cr,N = 〈φ(O,o)|ηQoB jA j+1 . . . Bj+r−1Aj+rη
†
Qo

|φ(O,o)〉. (A33)

Likewise, the strategy is to eliminate the operators ηQo and η
†
Qo

first. Except for 〈φ(O,o)|ηQoη
†
Qo

|φ(O,o)〉 = 1, we find the combined
nonzero contractions are very useful

〈φ(O,o)|ηQoBl |φ(O,o)〉〈φ(O,o)|Amη
†
Qo

|φ(O,o)〉 = βQo

N
eiQo (l−m+1), (A34)

βQo = −D(e−iQo ), (A35)

so we could write down

2Cr,N =
[
〈φ(O,o)|BjAj+1 . . . Bj+r−1Aj+r |φ(O,o)〉 + 2βQo

N
〈φ(O,o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(O,o)〉

+ 2βQoe
−iQo

N
〈φ(O,o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(O,o)〉 + · · ·

]

+
[
〈φ(O,o)|BjAj+1 . . . Bj+r−1Aj+r |φ(O,o)〉 + 2β−Qo

N
〈φ(O,o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(O,o)〉

+ 2β−Qoe
iQo

N
〈φ(O,o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(O,o)〉 + · · ·

]
. (A36)

The terms are grouped into two square brackets. Thus the correlation function can be represented by the sum of two Toeplitz
determinants,

Cr,N = 1
2

[
�(O,o)

(
r, N, βQo, eiQo

) + �(O,o)
(
r, N, β−Qo, e−iQo

)] = Re
[
�(O,o)

(
r, N, βQo, eiQo

)]
, (A37)

where Re[ ] means taking the real part of the number and the determinant �(O,o)(r, N, βQo, eiQo ) reads

�(O,o)(r, N, βQo, eiQo ) =

∣∣∣∣∣∣∣∣∣∣∣∣

D (O,o)
0 + 2βQo

N D (O,o)
−1 + 2βQo

N e−iQo · · · D (O,o)
1−r + 2βQo

N ei(1−r)Qo

D (O,o)
1 + 2βQo

N eiQo D (O,o)
0 + 2βQo

N · · · D (O,o)
2−r + 2βQo

N ei(2−r)Qo

...
...

...
...

D (O,o)
r−1 + 2βQo

N ei(r−1)Qo D (O,o)
r−2 + 2βQo

N ei(r−2)Qo · · · D (O,o)
0 + 2βQo

N

∣∣∣∣∣∣∣∣∣∣∣∣
, (A38)

with

βQo = −D(e−iQo ) = sgn(cos Qo)e−iQo. (A39)

D (O,o)
n is defined in Eq. (A14) and we have

D (O,o)
n =

{
− 1

N (n = 1),

− 2
N csc (n−1)π

N sin (N+1)(n−1)π
2N (other n).

(A40)
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d. N = 4K + 3 ∈ Odd

We also choose the state |E (O,o)
Qo

〉 = η
†
Qo

|φ(O,o)〉. It turns out the deduction is almost the same as that for N = 4K + 1, except
for the final expression for D (O,o)

n ,

D (O,o)
n =

{ 1
N (n = 1),
− 2

N csc (n−1)π
N sin (N−1)(n−1)π

2N (other n).
(A41)

APPENDIX B: DERIVATION OF EQS. (34) AND (40)

We will first prove the identity Eq. (40) by mathematical recursion. For convenience, we repeat Eq. (40) here:

Dn(φ) = det

[
cos(ai + b j + φ)

sin(ai + b j )

]
1�i, j�n

=
∏

1�i< j�n sin(ai − a j ) sin(bi − b j )∏
1�i, j�n sin(ai + b j )

cos

[
n∑

i=1

(ai + bi ) + φ

]
cosn−1 φ. (B1)

Write out Dn(φ) explicitly as

Dn(φ) =

∣∣∣∣∣∣∣∣∣∣∣

cos(a1+b1+φ)
sin(a1+b1 )

cos(a1+b2+φ)
sin(a1+b2 ) · · · cos(a1+bn+φ)

sin(a1+bn )
cos(a2+b1+φ)

sin(a2+b1 )
cos(a2+b2+φ)

sin(a2+b2 ) · · · cos(a2+bn+φ)
sin(a2+bn )

...
...

. . .
...

cos(an+b1+φ)
sin(an+b1 )

cos(an+b2+φ)
sin(an+b2 ) · · · cos(an+bn+φ)

sin(an+bn )

∣∣∣∣∣∣∣∣∣∣∣
. (B2)

Subtracting the last column from all previous columns, we find

Dn(φ) =

∣∣∣∣∣∣∣∣∣∣∣

− cos φ sin(b1−bn )
sin(a1+b1 ) sin(a1+bn )

− cos φ sin(b2−bn )
sin(a1+b2 ) sin(a1+bn ) · · · cos(a1+bn+φ)

sin(a1+bn )
− cos φ sin(b1−bn )

sin(a2+b1 ) sin(a2+bn )
− cos φ sin(b1−bn )

sin(a2+b2 ) sin(a2+bn ) · · · cos(a2+bn+φ)
sin(a2+bn )

...
...

. . .
...

− cos φ sin(b1−bn )
sin(an+b1 ) sin(an+bn )

− cos φ sin(b2−bn )
sin(an+b2 ) sin(an+bn ) · · · cos(an+bn+φ)

sin(an+bn )

∣∣∣∣∣∣∣∣∣∣∣

= (− cos φ)n−1

∏n−1
i=1 sin(bi − bn)∏n
j=1 sin(a j + bn)

∣∣∣∣∣∣∣∣∣∣∣

1
sin(a1+b1 )

1
sin(a1+b2 ) · · · cos(a1 + bn + φ)

1
sin(a2+b1 )

1
sin(a2+b2 ) · · · cos(a2 + bn + φ)

...
...

. . .
...

1
sin(an+b1 )

1
sin(an+b2 ) · · · cos(an + bn + φ)

∣∣∣∣∣∣∣∣∣∣∣
. (B3)

In the above determinant, multiply the last row by − cos(ai+bn+φ)
cos(an+bn+φ) and add to the ith row for i = 1, . . . , n − 1. For the element at

(i, j), we have

1

sin(ai + b j )
+ 1

sin(an + b j )

− cos(ai + bn + φ)

cos(an + bn + φ)
= − cos(ai + b j + an + bn + φ) sin(ai − an)

sin(ai + b j ) sin(an + b j ) cos(an + bn + φ)
. (B4)

Making use of this identity, extracting the common factor for each row and column, and defining φ′ = φ + an + bn, we find

Dn(φ) =
(

cos φ

cos φ′

)n−1 ∏n−1
i=1 sin(bi − bn) sin(ai − an)∏n

j=1 sin(a j + bn)
∏n−1

j=1 sin(an + b j )

∣∣∣∣∣∣∣∣∣∣

cos(a1+b1+φ′ )
sin(a1+b1 )

cos(a1+b2+φ′ )
sin(a1+b2 ) · · · 0

cos(a2+b1+φ′ )
sin(a2+b1 )

cos(a2+b2+φ′ )
sin(a2+b2 ) · · · 0

...
...

. . .
...

1 1 · · · cos φ′

∣∣∣∣∣∣∣∣∣∣
= cosn−1 φ

cosn−2 φ′

∏n−1
i=1 sin(bi − bn) sin(ai − an)∏n

j=1 sin(a j + bn)
∏n−1

j=1 sin(an + b j )
Dn−1(φ′). (B5)

By mathematical recursion assumption, we have

Dn−1(φ′) =
∏

1�i< j�n−1 sin(ai − a j ) sin(bi − b j )∏
1�i, j�n−1 sin(ai + b j )

cos

[
n−1∑
i=1

(ai + bi ) + φ′
]

cosn−1 φ′. (B6)

Plugging Eq. (B6) into Eq. (B5), we get back Eq. (B1), which finishes the proof of Eq. (40).
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We then prove the identity Eq. (34) again by mathematical recursion. For convenience, we repeat Eq. (34) here:

An = det

[
1

sin(ai + b j )

]
1�i, j�n

=
∏

1�i< j�n sin(ai − a j ) sin(bi − b j )∏
1�i, j�n sin(ai + b j )

. (B7)

Write out An explicitly as

An =

∣∣∣∣∣∣∣∣∣∣∣

1
sin(a1+b1 )

1
sin(a1+b2 ) · · · 1

sin(a1+bn )
1

sin(a2+b1 )
1

sin(a2+b2 ) · · · 1
sin(a2+bn )

...
...

. . .
...

1
sin(an+b1 )

1
sin(an+b2 ) · · · 1

sin(an+bn )

∣∣∣∣∣∣∣∣∣∣∣
. (B8)

In the above determinant, multiply the last column by − sin bn
sin bi

and add to the ith column for i = 1, . . . , n − 1. For the element at
(i, j), we have

1

sin(ai + b j )
+ 1

sin(ai + bn)

− sin(bn)

sin(b j )
= sin ai sin(b j − bn)

sin(ai + b j ) sin(ai + bn) sin b j
. (B9)

Making use of this identity and extracting a common factor for each row and column, we find

An =
∏n−1

i=1 sin(bi − bn)∏n
j=1 sin(a j + bn)

∣∣∣∣∣∣∣∣∣∣∣

sin a1
sin b1 sin(a1+b1 )

sin a1
sin b2 sin(a1+b2 ) · · · 1

sin a2
sin b1 sin(a2+b1 )

sin a2
sin b2 sin(a2+b2 ) · · · 1

...
...

. . .
...

sin an
sin b1 sin(an+b1 )

sin an
sin b2 sin(an+b2 ) · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

(B10)

Subtracting the last row from all previous rows and extracting common factors, we find

An =
∏n−1

i=1 sin(bi − bn) sin(ai − an)∏n
j=1 sin(a j + bn)

∏n−1
j=1 sin(an + b j )

∣∣∣∣∣∣∣∣∣∣∣

1
sin(a1+b1 )

1
sin(a1+b2 ) · · · 0

1
sin(a2+b1 )

1
sin(a2+b2 ) · · · 0

...
...

. . .
...

sin an
sin b1 sin(an+b1 )

sin an
sin b2 sin(an+b2 ) · · · 1

∣∣∣∣∣∣∣∣∣∣∣
=

∏n−1
i=1 sin(bi − bn) sin(ai − an)∏n

j=1 sin(a j + bn)
∏n−1

j=1 sin(an + b j )
An−1. (B11)

By mathematical recursion assumption, we have

An−1 =
∏

1�i< j�n−1 sin(ai − a j ) sin(bi − b j )∏
1�i, j�n−1 sin(ai + b j )

. (B12)

Plugging Eq. (B12) into Eq. (B11), we get back Eq. (B7), which finishes the proof of Eq. (34).

APPENDIX C: ASYMPTOTIC ANALYSIS OF EQ. (44)

For N = 2L + 1, we have an exact identity (for N = 2L, it is approximate),

1

N sin θ
=

∏
1�m�L

(cos2 θ − cot2 mθ sin2 θ ), (C1)

so we find

ln Sr,N = Ur,N + Vr,N , (C2)

Ur,N =
r−1∑
m=1

m ln(cos2 θ − cot2 mθ sin2 θ ), (C3)

Vr,N = r
(N−1)/2∑

m=r

ln(cos2 θ − cot2 mθ sin2 θ ). (C4)
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Introducing the Taylor expansion,

ln(cos2 θ − cot2 mθ sin2 θ ) = ln

(
1 − 1

4m2

)
− 1

3
θ2 − 1 + 24m2

90
θ4 − 2(1 + 60m2 + 240m4)

2835
θ6 − · · · , (C5)

substituting it into Eq. (C3), and accomplishing the summation, we get

Ur,N = g1(α) +
r−1∑
m=1

m ln

(
1 − 1

4m2

)
+ O

(
1

N

)
, (C6)

where g1(α) is a convergent series,

g1(α) = −π2α2

24
− π4α4

240
− π6α6

2268
− π8α8

21600
− π10α10

207900
− 691π12α12

1393119000
− π14α14

19646550
− 3617π16α16

694702008000
− · · · . (C7)

The second term turns out to be [29,31]

r−1∑
m=1

m ln

(
1 − 1

4m2

)
≈ 1

4
− 1

4
ln r + ln b1, (C8)

where b1 = e1/421/12A−3 ≈ 0.645002448; A = 1.28242713 is the Glaisher constant.
Likewise, by substituting Eq. (C5) into (C4) and accomplishing the summation, we get

Vr,N = g2(α) + r
(N−1)/2∑

m=r

ln

(
1 − 1

4m2

)
+ O

(
1

N

)
, (C9)

where g2(α) is another convergent series,

g2(α) = − π2

24
α(1 − 2α) − π4

1440
α[1 − (2α)3] − π6

60480
α[1 − (2α)5] − π8

2419200
α[1 − (2α)7] − π10

95800320
α[1 − (2α)9]

− 691π12

2615348736000
α[1 − (2α)11] − π14

149448499200
α[1 − (2α)13] − 3617π16

21341245685760000
α[1 − (2α)15] − · · · ,

(C10)

and, as the leading order, the second term is tackled as

r
(N−1)/2∑

m=r

ln

(
1 − 1

4m2

)
≈ − r

4

∫ (N−1)/2

r

1

m2
dm ≈ −1 − 2α

4
. (C11)

Compared with the traditional result, − 1
4 , our result shows that an extra factor α

2 was dropped in the leading order in the previous
works [29,31]. At last, we finish the analysis by summing up all the essential terms and writing down [just Eq. (50) in the text]

S(α) ≡ lim
N→∞

Sr,N = b1

r1/4
eh(α), (C12)

where we have defined

h(α) = α

2
+ g1(α) + g2(α). (C13)

APPENDIX D: BETHE ANSATZ FOR HEISENBERG
MODEL WITH ODD NUMBER LATTICE SITES

For completeness, in this section we briefly review the
method of the Bethe ansatz. The basic idea of the Bethe
ansatz is to assume that the eigenfunction can be written as
a superposition of plane waves as

f (n1, n2, . . . , nN↓ ) =
∑

P

A(P)
M∏

j=1

(
xP j + i

xP j − i

)n j

. (D1)

Here x j for j = 1, . . . , N↓ are usually called Bethe roots,
which will be determined later. P denotes the permutation
of Bethe roots. The requirement that |ψ〉 be an eigenstate of
HH determines the amplitude A(P) in terms of Bethe roots as

follows:

A(P) = A0ε(P)
∏
j<l

(xP j − xPl + 2i). (D2)

Here ε(P) = 1 if P is an even permutation and ε(P) = −1 if
P is an odd permutation. A0 is the overall normalization factor.

The periodic boundary condition gives rise to the following
Bethe equation:(

x j + i

x j − i

)N

=
∏
l 
= j

(
x j − xl + 2i

x j − xl − 2i

)
, (D3)

which determines the Bethe roots. To solve the above equa-
tion, it is more convenient to take the logarithm of both sides
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and find

2N arctan x j = 2π I j + 2
N↓∑
l=1

arctan
x j − xl

2
, (D4)

where I j for j = 1, . . . , N↓ are integers if N − N↓ is odd and
are half-odd integers if N − N↓ is even. All eigenfunctions
of HH can be obtained by solving Eq. (D4) with all possible
choices of different sets of I j . Substitute the solved Bethe roots
into Eq. (D2) and Eq. (D1) and then the exact eigenfunction
is obtained.

The ground state corresponds to the most symmetric and
uniform distribution of I j . For odd N , if N↓ = (N − 1)/2 is
even, we can take the following two choices for I j :

{I j} =
{
−M

2
+ 1, . . . ,−1, 0, 1, . . . ,

M

2

}
,

{I j} =
{
−M

2
, . . . ,−1, 0, 1, . . . ,

M

2
− 1

}
.

If N↓ is odd, we take I j as

{I j} =
{
−M

2
+ 1, . . . ,−3

2
,−1

2
,

1

2
,

3

2
, . . . ,

M

2

}
,

{I j} =
{
−M

2
, . . . ,−3

2
,−1

2
,

1

2
,

3

2
, . . . ,

M

2
− 1

}
.

Note that in both cases there is a hole either located at the
left end or the right end. One can verify that these two sets
of I j give the two degenerate ground states. Recall that we
can flip all spins to find another two degenerate states with the
same energy in the subspace with N↓ = (N + 1)/2. Therefore,
the total ground state degeneracy of the antiferromagnetic
Heisenberg model with odd number of sites is four, the same
as the isotropic XY model. By taking one of the above sets of
I j , we numerically solve Bethe equations to obtain the Bethe
roots, then plug into Eqs. (D1) and (D2) to find the ground
state wave function.
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