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Rényi entropy yields artificial biases not in the data and incorrect updating due to the finite-size data
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We show that the Rényi entropy implies artificial biases not warranted by the data and incorrect updating
information due to the finite size of the data despite being additive. It is demonstrated that this is so because
it does not conform to the system and subset independence axioms of Shore and Johnson [J. IEEE Trans. Inf.
Theory 26, 26 (1980)]. We finally show that the escort averaged constraints do not remedy the situation.
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I. INTRODUCTION

Boltzmann-Gibbs-Shannon (BGS) entropy and its quan-
tum mechanical counterpart von Neumann entropy have found
applications in many diverse fields of science [1–16]. Its use
is rigorously rationalized through, e.g., the coding theorems
[17] or the Khincin axioms [18]. On the other hand, the
entropic functional does not suffice for many practical issues
and one also needs the concomitant equilibrium probability
distribution. This distribution is indeed known in statistical
mechanics for closed systems such as the canonical one.
However, it was Jaynes who obtained the same distribution
through a procedure named entropy maximization procedure
(MaxEnt) by relying on information theory [19]. From then
on, obtaining the equilibrium entropy became an inference
problem in statistical estimation theory.

Whether this inference is consistent or not is warranted by
the Shore-Johnson (SJ) criteria [20]. These criteria consist of
four axioms which ensure choosing the suitable entropic func-
tional if one aims for self-consistent inferences from the data.
It is only afterwards that this functional can be safely max-
imized. In this sense, SJ axioms are related to the premaxi-
mization scheme. If a functional violates one of the SJ axioms,
then it cannot be securely used for the MaxEnt procedure [21].

On the other hand, many entropies have been recently
introduced and applied in diverse fields of research [22–27].
The main and common claim of these entropies is that they are
suitable for the cases where the number of accessible states
does not grow exponentially [28–31]. One of the mostly used
entropy measures is the Rényi measure. It is used extensively
for quantum information, generalized statistical mechanics,
and quantum gravity. Then this begs the question whether the
Rényi entropies conform to some or all of the axioms, thereby
allowing consistent inferences.

There are four axioms forming the SJ criteria [20,32–35].
The first one is the axiom of uniqueness whose requirement
is the concavity (convexity) of the (relative) entropy measure
to warrant a unique maximum. The second one is called
the invariance axiom and requires the inferences to be inde-
pendent of the adopted coordinate system. The third axiom

*thomas.oikonomou@nu.edu.kz

is the subset independence. It states that treatments of an
independent subset of system states in terms of separate
conditional probabilities and in terms of joint probabilities are
equivalent. From a different point of view, it implies that the
MaxEnt procedure should yield the same results whether the
number of states is fully accounted for or not. The last axiom,
i.e., system independence warrants the absence of biases
when the systems are independent if the data do not provide
evidence otherwise. In particular, for systems A and B with
probabilities {ui} and {v j}, respectively, their combination
creates new bins with the joint probability pi j = uiv j .

It is worth emphasis that SJ axioms have precedence to
the MaxEnt, since it is interested in consistent and unbiased
inference, i.e., premaximization [34]. These axioms are about
deriving a functional which is only later to be maximized.
Skipping this vital step implies the failure of both MaxEnt
and postmaximization-related arguments such as extensivity
but not vice versa.

It has recently been shown that the nonadditive q-entropies
violate only the probability independence axiom [32]. It might
be argued that the same result should also hold for the Rényi
entropy, since the nonadditive q- and additive Rényi entropies
are monotonic functions of each other and therefore should
result in the same probability distributions after the maxi-
mization procedure. However, since the SJ axioms are related
to the premaximization scheme and choose the functional
which is later to be maximized, one must consider the Rényi
entropy as a different and important case study compared to
the nonadditive q-entropies.

II. BIASES, UPDATING AND RÉNYI ENTROPY

In order to check the SJ axioms for the Rényi entropy, we
begin with the following functional:

Hq({p}) − λ

(∑
k

pkak − a

)
, (1)

where λ and a are Lagrange multiplier and the measured
average of the quantity a, respectively. The normalization
constraint is omitted for simplicity. The term Hq is the Rényi
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entropy given as

Hq({p}) = 1

1 − q
ln

(
n∑

i=1

pq
i

)
, (2)

where q is the generalization parameter.
The first axiom can be easily checked, since the Rényi

entropy Hq is concave for q ∈ (0, 1). Therefore, the unique-
ness axiom is satisfied by the Rényi entropy in the interval
q ∈ (0, 1).

The second axiom, i.e., the invariance axiom, requires
some clarification. The discrete Rényi entropy (or discrete
BGS entropy for that matter) is not coordinate invariant.
Therefore, one generalizes them to the continuous case in
the form of relative entropy so that one safely optimizes the
associated relative entropy. This relative entropy expression,
if it exists, can be seen to be coordinate invariant. For the
BGS entropy, this is given by the Kullback-Leibler relative
entropy, for example. Therefore, the crux of this axiom is to
obtain the continuous version of the discrete entropy measure
so that it will be coordinate invariant (see Ref. [36] for details).
To this aim, consider the discrete Rényi entropy as the point
of departure and following the Jaynes’ approach, substitute
pi = ρ(xi )�xi = ρ(xi )/[nm(xi )] into the discrete expression
to obtain

lim
n→∞ Hq({p}) = lim

n→∞
1

1 − q
ln

{
n∑

i=1

[
ρ(xi )

m(xi )

]q

m(xi )�xi

}

+ lim
n→∞ ln(n)

so that the continuous Rényi (relative) entropy Hq[ρ‖m] reads

Hq[ρ‖m] = 1

1 − q
ln

{∫ b

a

[
ρ(x)

m(x)

]q

m(x) dx

}
,

where the additive term is omitted exactly as in the BGS case,
since the entropy change is what matters. Note that m(x) is
now a measure on the continuous version of the state space.

The third axiom in the SJ set of criteria is the subset inde-
pendence. For the Rényi entropy to conform to this axiom, the
following expression should be equal to zero [21]:

∂

∂ p�

(
∂

∂ pk
− ∂

∂ p j

)(
Hq − λa

n∑
i=1

piai

)
. (3)

Substituting the Rényi entropy Hq, the expression above reads

∂

∂ p�

[
q
(
pq−1

k − pq−1
j

)
(1 − q)

∑n
i=1 pq

i

− λaak + λaa j

]
, (4)

which, after a little algebra, yields

q
(
pq−1

k − pq−1
j

)
1 − q

∂

∂ p�

(
n∑

i=1

pq
i

)−1

. (5)

Since this expression is not zero in general, we conclude that
the Rényi entropy violates the third SJ axiom, i.e., the subset
independence axiom. The implication of this violation is that
the inference drawn from the updating procedure strongly
depends on the set S ⊂ D of limited data currently available
to us, where D is the maximum state set of the system under
scrutiny.

To check the last axiom, namely, the system independence
axiom, we consider the following functional:

� = 1

1 − q
ln

⎡
⎣∑

i, j

f (pi j )

⎤
⎦ − λa

⎛
⎝∑

i, j

pi jai − a

⎞
⎠

− λb

⎛
⎝∑

i, j

pi jb j − b

⎞
⎠. (6)

The maximization condition δ� = 0 yields

f ′(pi j )

(1 − q)
∑

k,l f (pkl )
− Ki j = 0 , (7)

where Ki j ≡ λaai − λbb j . Summing over all indices, we ob-
tain the relation

K f ′(pi j ) = Ki j

∑
k,l

f ′(pkl ) (8)

with K ≡ ∑
i, j Ki j . Taking first the partial derivative ∂

∂ui
of the

equation above,

K f ′′(pi j )
∂ pi j

∂ui
= Ki j

∑
l

f ′′(pil )
∂ pil

∂ui
, (9)

and then the partial derivative ∂
∂v j

, we obtain

(K − Ki j )

[
f ′′′(pi j )

∂ pi j

∂ui

∂ pi j

∂v j
+ f ′′(pi j )

∂2 pi j

∂ui∂v j

]
= 0. (10)

Since the first term in the parentheses is nonzero, the second
one in the brackets must be equal to zero. Using the mul-
tiplicative joint probability pi j = uiv j , the expression within
the brackets yields

pi j f ′′′(pi j ) + f ′′(pi j ) = 0 . (11)

This differential equation is known to yield the BGS entropy
[see Eq. (5) in Ref. [32]]. Therefore, we conclude that Rényi
entropy also violates the system independence axiom.

A crucial point is that the Rényi entropy is often maximized
through the so-called escort distributions to obtain the aver-

aged quantities. These distributions are of the form
∑n

i=1 pq
i ai∑n

k=1 pq
k

.
As we can show, the use of the escort distribution can not
provide conformity of the Rényi entropy to the SJ axioms nei-
ther. The first two axioms, i.e., the uniqueness and coordinate
invariance are still satisfied by the Rényi entropy, since the
changes in the averaging scheme leave the entropy expression
unchanged. However, the subset independence axiom relies
on how we average the constraints. In fact, with the escort
averaging, Eq. (3) becomes

∂

∂ p�

(
∂

∂ p j
− ∂

∂ pk

)[
Hq − λ

∑
i pq

i ai∑
i pq

i

]
. (12)

In order to check whether the subset independence axiom is
satisfied, the above relation should be equal to zero. After a
little algebra, it reads

(
pq−1

j − pq−1
k

)[ 1

q − 1
+ λ

(
a� − 2

∑
i pa

i ai∑
i pq

i

)]

+ λ
(
pq−1

j a j − pq−1
k ak

)
, (13)
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which is zero only for q → 1, i.e., in the BGS entropy. As
a result, we conclude that the escort averaged constraints
do not prevent the Rényi entropy from violating the subset
independence axiom.

The next and last axiom to be checked is the system
independence axiom. Similar to Eq. (6) but now with escort
averages, we write

� = 1

1 − q
ln

⎡
⎣∑

i, j

f (pi j )

⎤
⎦ − λa

[∑
i, j (pi j )qai∑
k,l (pkl )q

− a

]

− λb

[∑
i, j (pi j )qb j∑

k,l (pkl )q
− b

]
. (14)

Through δ� = 0, we have

0 = q

1 − q

f ′(pi j )∑
k,l f (pkl )

− λaq
(pi j )q−1

[
ai −

∑
i, j (pi j )qai∑
k,l (pkl )q

]
∑

k,l (pkl )q

− λbq
(pi j )q−1

[
b j −

∑
i, j (pi j )qb j∑

k,l (pkl )q

]
∑

k,l (pkl )q
. (15)

Multiplying this equation with pi j and summing over i, j we
see

0 =
∑
i, j

pi j f ′(pi j ), (16)

where again q ∈ (0, 1). Applying now the derivative ∂
∂ui

,

0 =
∑
k,l

[ f ′(pkl ) + pkl f ′′(pkl )]
∂ pkl

∂ui

=
∑

l

[ f ′(pil ) + pil f ′′(pil )]
∂ pil

∂ui
, (17)

and then the derivative ∂
∂v j

, we have

0 = [2 f ′′(pi j ) + pi j f ′′′(pi j )]
∂ pi j

∂v j

∂ pi j

∂ui

+ [ f ′(pi j ) + pi j f ′′(pi j )]
∂2 pi j

∂v j∂ui
. (18)

Substituting the probability multiplication pi j = uiv j we fi-
nally have

0 = f ′(pi j ) + 3pi j f ′′(pi j ) + p2
i j f ′′′(pi j ), (19)

whose solution reads

f (pi j ) = c1 + c2 ln(pi j ) + c3

2
ln2(pi j ) . (20)

Apparently, the Rényi entropy violates the probability in-
dependence axiom, since the measure 1

1−q ln [
∑

i, j f (pi j )]
with the above expression, i.e., f (pi j ) = c1 + c2 ln(pi j ) +
c3
2 ln2(pi j ), is not the Rényi entropy.

Before concluding, one can also consider a related entropy
expression, i.e., the homogeneous entropy [37,38] in terms of
the SJ axioms

SH
q =

[ ∑
i p1/q

i

]q − 1

q − 1
. (21)

The homogeneous entropy can easily be checked to satisfy the
first axiom due to its concavity. However, it fails the second

one: retracing the aforementioned steps regarding the second
SJ axiom, we obtain

SH
q = 1

q − 1

(
nq−1

{∑
i

m(xi )

[
ρ(xi )

m(xi )

]1/q

�xi

}q

− 1

)
. (22)

As can be seen, the expression does not converge as n →
∞. In other words, the homogeneous entropy does not have
a continuous expression and is bound to be used only for
the discrete cases. Regarding the third axiom, i.e., subset
independence, we find

∂

∂ p�

(
∂

∂ pk
− ∂

∂ p j

)(
SH

q − λa

∑
i

piai

)

= q
(
p

1
q −1

k − p
1
q −1

j

)
q − 1

(∑
i

p1/q
i

)q−1
∂

∂ p�

(∑
i

p1/q
i

)
, (23)

which is generally nonzero apart from the well-known limit
q → 1. Thus, the subset independence axiom is also violated
by the homogeneous entropy. The last axiom, i.e., system
independence, yields the relation (1/q − 1)pi j = 0 when one
follows the above procedure. Apparently, this relation is
satisfied only for q = 1, therefore finally showing that the
homogeneous entropy satisfies only the first, i.e., uniqueness,
axiom of the SJ criteria, violating the other three axioms
explicitly. Following similar steps, one can see that SH

q does
not conform to the SJ axioms even with the escort averaging.

III. CONCLUSIONS

To sum up, SJ criteria should be satisfied by any en-
tropy measure if the criteria are to be used for consistent
inferences from the data. The Rényi entropy violates both
system and subset independence axioms, thereby resulting
in the artificial biases not present in the data and updating
information dictated by finite-size effects, respectively. As a
result, it cannot be used to draw inferences in a consistent
manner. On the other hand, the nonadditive q-entropies violate
only the system independence axiom [32]. This might be
surprising at first, since these two entropies are monotonic
functions of one another. After all, they yield the same type
of probability distributions after the entropy maximization
procedure is carried out. The resolution of this apparent
conflict is at the heart of the SJ axioms, since these axioms,
even before the maximization procedure, determine whether
the functional under scrutiny is worth maximizing at all.
Despite the violation of the SJ criteria, one might nevertheless
choose to maximize an entropy measure and obtain the con-
comitant optimum distribution. However, any such violation
is bound to cast doubt on the practical use of the entropy
expression such as yielding artificial biases or inapplicability
for continuous physical systems even before one hopes for
a consistent thermodynamics [39,40]. Since SJ criteria are
related to the premaximization scheme [34], the Rényi en-
tropy is an important case by itself whose features cannot be
deduced from those of the nonadditive q-entropies. Note that
the Rényi entropy is sometimes used together with a different
averaging scheme, i.e., so-called escort averaging. However,
this change in averaging constraints neither prevents the Rényi
entropy from violating these two important axioms. Finally,
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one might try to extend the scope of one of the axioms, for
example, the probability independence axiom [41]. However,
this does not suffice, since the Rényi entropy would still
violate the subset independence axiom. In short, the Rényi
entropy can be used for various purposes but is inadequate
for consistent inferences to be drawn. Having considered also
the homogeneous entropy and shown that it also fails the
SJ criteria, we emphasize that the SJ criteria single out the
Shannon entropy as the unique measure to draw consistent
inferences if one adopts the linear averaging scheme.
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