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Time-averaged mean square displacement for switching diffusion
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We consider a classic two-state switching diffusion model from a single-particle tracking perspective. The
mean and the variance of the time-averaged mean square displacement (TAMSD) are computed exactly. When
the measurement time (i.e., the trajectory duration) is comparable to or smaller than the mean residence
times in each state, the ergodicity breaking parameter is shown to take arbitrarily large values, suggesting an
apparent weak ergodicity breaking for this ergodic model. In this regime, individual random trajectories are
not representative while the related TAMSD curves exhibit a broad spread, in agreement with experimental
observations in living cells and complex fluids. Switching diffusions can thus present, in some cases, an ergodic
alternative to commonly used and inherently non-ergodic continuous-time random walks that capture similar

features.
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I. INTRODUCTION

A continuous-time random walk (CTRW) was originally
proposed to model hopping processes in semiconductors
with randomly distributed heavy tailed waiting times due
to random energetic trapping [1,2]. This model has been
extensively studied and rapidly became an archetypical model
of anomalous diffusion in different contexts, including the
intracellular transport in microbiology [3-5]. This is also
an emblematic model of weak ergodicity breaking (WEB)
and aging phenomena [6-8]. In fact, when the waiting time
distribution has no first moment, there is no characteristic
time scale for waiting events, so that the duration of a single
stalling period may be comparable to the overall measurement
time that prohibits self-averaging needed for ergodic behavior.
Moreover, longer measurement times favor longer waiting
times so that the statistical properties of the system depend
on the measurement time. In the biological context, CTRWs
were applied to mimic molecular caging in an overcrowded
intracellular environment when a diffusing macromolecule,
surrounded by other macromolecules and filaments, may wait
a relatively long time in such an effective molecular “cage”
before being able to jump to a next cage [9-12]. However, the
validity of the considered heavy-tailed distribution of waiting
times in the biological context remains debatable [13]. In
particular, such a distribution may have an exponential cut-off
so that anomalous features are transient, before getting into
normal diffusion at long times [7,14]. Although a CTRW with
cut-off may sound more realistic, the underlying mathematical
formalism is rather difficult.

In this light, a simpler model of random switching between
several diffusion states, characterized by diffusion coefficient
Dy, ..., Dy, is appealing. A particle started in a state i un-
dergoes normal diffusion with diffusivity D; for a random
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time, until it switches to another state j, with the switching
rate k;;, and so on. Diffusion states can represent different
conformations of a large macromolecule (e.g., globular versus
filamentous structures) and thus distinct effective radii. Al-
ternatively, diffusion states can account for eventual temporal
binding of the diffusing particle to other molecules that may
either slow down or even stop its motion. Such switching
diffusions are often employed to describe the dynamics in
biological systems [15-17] and used as simple models of
intermittent processes [18].

In this paper, we mainly focus on the two-state model with
diffusion coefficients D; and D, and the switching rates ki,
and ky;. Note that 1/k, and 1/ky; are the mean residence
times of the particle in the states 1 and 2, respectively. The
molecular caging effect can be modeled by setting D, = 0,
i.e., the particle does not move in the second state. This model
has been extensively studied, in particular, in the nuclear
magnetic resonance literature, in which it is known as the
Kérger model [19-21]. Here, we look at this model from a
single-particle tracking perspective. This simple model will
allow us to investigate the reproducibility of measurements
over individual random trajectories and the effect of their
duration T'. In particular, if both residence times 1/k;, and
1/ky; are small as compared to T, the particle switches
very often between two states and manages to probe these
states reliably during the measurement time. In this limit, the
intermittent process is seen as an ergodic normal diffusion
with some mean diffusivity D (see below). In contrast, if both
residence times are much larger than T, the particle remains
within a single state over the whole measurement with a high
probability. As a consequence, such a single trajectory would
bring information only about one state, whereas another tra-
jectory may bring information only about the other state. In
other words, individual trajectories are not representative of
the whole dynamics and thus, from a practical point of view,
not ergodic. Since the switching model is ergodic, we call this
regime apparent WEB due to insufficient measurement time.
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Finally, the situation when one or both residence times are
comparable to the measurement time is a borderline case. This
model will thus help us to study the transition from one regime
to the other that is quite typical for intracellular transport
measurements.

In order to quantify the reliability of measurements and
an eventual apparent WEB, we investigate the time-averaged
mean square displacement (TAMSD) of a particle undergoing
such an intermittent motion:

. 1 T—t
82(t,T) = T_—z/() dio (X (1 +10) — X (1))*, (1)

where ¢ is the lag time. We compute exactly both the mean
and the variance of the random variable §2(¢, T) to evaluate
the ergodicity breaking (EB) parameter x, also known as the
squared coefficient of variation of the TAMSD [22,23]:

{182z, T)?) var{82(t, T))
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(82(¢, T))? (mean{82(¢t, T)})?

where (---) denotes the expectation, i.e., the ensemble av-
erage over the space of all possible trajectories X (t) of
duration 7T'.

The paper is organized as follows. In Sec. II, we provide
the propagator for multiple successive points in a matrix form
which is then used to derive the mean and the variance of
the TAMSD. Different asymptotic regimes of the resulting
EB parameter are then analyzed. In Sec. III, we discuss an
apparent WEB when the measurement time is comparable
to or smaller than the mean residence times. In particular,
we illustrate a large spread of TAMSD curves obtained via
numerical simulations. We also mention extensions for multi-
state switching diffusion and restricted diffusion in bounded
domains. Section IV summarizes the results and concludes.

II. THEORETICAL RESULTS

A. Propagator

We consider a particle that diffuses on a real axis R and
switches randomly between two diffusivities D; and D, with
rates ko and kp; (see Secs. IIIB and IIIC for extensions).
Let P;,(x, t|xo, o) be the propagator of this particle, i.e., the
probability density of finding the particle at point x in state i
at time ¢ given that it started from point x in state iy at time ;.
These four propagators satisfy four coupled partial differential
equations:

0 92
Epl,io =D @Puo — k2P i + ko1 Pajy, (3a)
d 92
EPZJO =D WPZJO — ka1 Po iy + k1P, (3b)

(with iy = 1, 2), subject to the initial conditions: P ;,(x,t =
tolxo, to) = 8;;,8(x — xo) (a rigorous mathematical formula-
tion of switching models and some their properties can be
found in [24-26]).

The solution of these equations is well known (e.g., see
[19]). Here, we recall the main formulas that will be needed

for the analysis of the TAMSD. In the Fourier space,

dq
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Egs. (3) are reduced to coupled first-order differential equa-
tions whose solution is easily found in a matrix form

Pii(q.1) f’lz(q,t))
Pan=\p p =exp(-My), (5
@ <P21(q,t) Prn(g,t) p( 4 )
where
_ (D1q* + ki —kay
Mo = < —kiz Dyg? + k21>' (6)

The eigenvalues and eigenvectors of the matrix M,

vy O
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are known explicitly:

1
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V(D2 = D) + (= ki) + 4kizkar ) (7)

and
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One gets thus
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with ,u;t =D1q* +kip — yqi. In the special case ¢ = 0, one
has y," = ki + koy and y;” = 0.

To compute the moments of the TAMSD, one needs the
propagator for multiple successive points, which is simply the
product of the above propagators due to the Markov property
of the process:

3 X1, 1, 15 Xo, ig, 0)

=P i Cons talXp—1, tam1) - -+ Py, iy (x1, t11x0, 0)

— / dﬂ - %e_iqn(xn_xn—l)_"' —iqy (x1—xo)
R 27 2

XP, i (Gustn —ta1) - Py io(qi,th). (10)

P(xnv inv Iy Xp—1, in—lv -1

Denoting by p; (respectively, p» = 1 — p;) the probability
of starting in the state 1 (respectively 2) at time 0, the
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marginal propagator averaged over the state variables iy
reads

P(Xu, ths Xn—1, ta—ts -+ - 5 X1, 115 X0, 0)
— / @ . %e_iqn(xn_-xn—l)_"'_iq1(xl—XO)
R" 2T 2

XPn(antn_tnfl;"' ;612,l2—l1;6]1,l‘1), (11)

where

Pulqn, tn —ta—t;- -+ 5q2, 02 — 115 q1, 1) (12)
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B. Mean TAMSD

We first calculate the characteristic function of the dis-
placement between times #; and £, such that 0 < #; < #;:

G(g) = <eiq(x(fz)—x(ll))>

o0 o0 .
= / dxlf dxy €492 P(xy, 1 X1, 113 X0, 0)
—o0 —o0

=Pa(g,tr —11;0,11). (13)

From this characteristic function, one can compute the mo-
ments of the displacement, in particular, the mean square
displacement:

. 9%G
(X(t +10) — X(1))") = — lim # (14)
q—0 8q
_ k12 — paka1)(Dy — D
— 2D+ 2(Pl 12 P2k22])( 1 2)(1 eyt
where
k = kiz + ko (15)
and
_ Dik D>k
- 121-;(- 2K12 (16)

is the mean diffusivity. In particular, the ensemble averaged
MSD is

(p1ki2 — pako1)(D1 — D)
k2

(X%(t)) =2Dt +2 (1—e*y.

a7
From Eq. (14), one can also deduce the mean TAMSD

2(p1kiz — p2k21)(Dy — D7)
K3(T —1)
x (1 —e M) (1 — e KTy, (18)

(82(t, T)) = 2Dt +

If the initial probabilities p; and p, are set to be from the
equilibrium,

eq kot eq  ki2
pi=p= T P2=P2q=7, (19)
then
(82(t,T)) = 2Dt. (20)

One cannot therefore reveal the intermittent character of this
process from the mean TAMSD alone. Moreover, the mean
value does not depend on the measurement time 7', as for
normal Brownian motion.

C. Variance of TAMSD

The computation of the variance of the TAMSD is much
more involved as it requires the four-point correlation func-
tion. In fact, one has

) 2 T—t T—t )
P = =0 [ dto/to i,

X (X(to +1) — X (1)) (X (15 +1) — X (1)))*),
1)

from which the variance follows as usual:
var{8?} = ([6?]%) — (82). (22)

For computing the second moment of the TAMSD, we
introduce the characteristic function

G(q, 61/) = (eiQ(X(to-‘rl)—X(to))+iq’(x(lé+f)—x(fé))>. (23)

Since we have #y < ¢ in Eq. (21), there are two cases:
(i)forty <to+1t <ty <ty+1t, weget

G(q.q)="Palq . 1; 0,10 —to =1, . 1; 0,10);  (24)
(i) fortg <ty < to+1t <ty +1, we get

G(q.q) =Palq . 19— t0s g+ q'. to +1 — 133 q. 1y — 103 0, 1p).
(25)

In the evaluation of the integral in Eq. (21), we consider
separately two cases: t < T /2 andt > T /2.

1. Caset <T/2

In this case, one can split the integral in Eq. (21) into three
parts:

e i [LanE ;
({ ])—m/o fo/() to Fo(t, 1o, 1)

T2t T—2t—ty
+/ dtO/ dty Fi(t, 1o, 1))
0

0
t 0]
+ / dty / dey B(t, T —t — 1o, t())} (26)
0 0
(note that the integration variables ¢y and ¢, were shifted), with

3*Pa(q 15 0,145 g, 15 0, 19)
3q2 86]’2 ’

Fi(t, 1o, 1) = lim
!

*Palq' 139+ ¢ t — 1439, 1530, 19)
an aq/2 :

Fy(t, 10, 1) = lim
4—0

After long and cumbersome computations of these derivatives
and integrals in Eq. (26), we derive the following expression
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for the variance of the TAMSD fort < T /2:

4D 13 (4T — 5t)
3(T —t)2

8ki2ka1 (D1 — Dy)?

Var{S_z} = BT — 1)

* e (1= M2 234+ 2K(T —1))e ™M +KT (B3(kt)?

— 4kt +4) — 2Q2(kt)* — 3(kt)* + Skt —3)}, (27)

where the initial probabilities p; were set to their equilibrium
values p;? in Eq. (19) to get a more compact expression.

J

4D*(T? — 6Tt + 1112)

8ki2ky1 (D) — Dy)?

2. Caset >T/2

In this case, only the second option in Eq. (25) is possible
so that one does not need to split the integral in Eq. (21) into
three parts, and one gets

_ 2 T—t T—1—19
(FF) = s / dy / i Bt o,1}), (28)
- 0 0

where the integration variable was shifted in the second
integral. The evaluation of this integral yields the variance of
the TAMSD fort > T/2:

var{ﬁ} =

3 kS(T —1)?

{ekT(l —2eM) =23 4+ 2k(T —1))e™ (29)

+ 56720 <k3T3 —2K>T?(3kt — 1) + kT (9k*t? — 4kt +2) — 22k 1> — k*t> + kt + 1)) }

where the initial probabilities p; were again set to their equi-
librium values p;? for simplicity.

D. Ergodicity breaking parameter

The expressions (27), (29) for the variance of the TAMSD
present the main computational result of this paper. The first
term in these expressions is the variance of the TAMSD
for Brownian motion with the mean diffusivity D [27-30].
One can check that the second term in Egs. (27), (29) is
non-negative, i.e., the switching between two states can only
increase the variance of the TAMSD.

As Egs. (27), (29) for the variance are provided exclusively
for the case p; = p;%, for which the mean TAMSD in Eq. (20)
is particularly simple, the analysis of the variance is equiva-
lent, up to a simple multiplicative factor (2D¢)?, to that of the
ergodicity breaking parameter y defined by Eq. (2). In the rest
of the paper, we focus on this parameter.

As the trajectory duration 7' goes to infinity (for a fixed lag
time ¢), the EB parameter vanishes asymptotically as

(4t 2kisko (D) — Dy)?
o~ -1 12k21 (1 2
x =T <? + 558 (30)
3(kt)* — 4kt + 4 — 4e™ B
e +0(T7?),

so that the switching process is ergodic, as expected. In con-
trast, in the double limit k; = p{’k — 0 and k1, = p5'k — 0
(with fixed p}* and k — 0), Eq. (27) yields

_ P (D1 = Dy)
— (p1'Dy + py'Dy)?

+O0(T™h. (31)

In this limit, the particle stays infinitely long in either of two
states, i.e., the process is not ergodic, and the variance of the
TAMSD does not vanish in the limit 7 — oo. This singular
situation can also describe two populations of particles with
distinct diffusivities D and D», and the leading term of the EB

parameter in Eq. (31) is a consequence of their mixture with
relative fractions p}? and p3'. This limit could alternatively

(

be obtained by setting §2 = a ¢1 + (1 — &) &, where ¢; is the
TAMSD for the ith population (that differs by the factor D;),
and a random selection between two populations is realized by
a Bernoulli random variable « taking the value 1 with prob-
ability p}? and 0 with probability p5' = 1 — p{. Moreover,
the EB parameter x remains close to the limiting expression
(31) when T « 1/k. In other words, if the measurement time
T is short as compared to the residence time 1/k, the system
exhibits an apparent WEB. Clearly, the order of two limits,
k12, k1 — Oand T — oo, does matter here: sending 7 — oo
for fixed k;, and k; yields the zero variance, as expected.
In the limit # — 0, Eq. (27) gives

2kizky1(Dy — Dy (kT — 1+ e7*7)
X~

D17 o0,

(32)
We first consider the particular case, in which two switching
rates are identical: kjp = k»; = k/2. For our illustrative pur-
poses, we use dimensionless units for all parameters. We set
the measurement time 77 = 1000 (i.e., the trajectory with a
thousand steps). We recall that the EB parameter for Brownian
motion is a monotonously growing function of the lag time ¢,
so that the smallest available lag time ¢+ = 1 provides the most
accurate estimation of the TAMSD (see, e.g., [28]). One can
check that the same property holds for two-state switching
diffusion. As a consequence, we select the lag time ¢ = 1 to
be in the optimal situation. Figure 1 shows the behavior of
the EB parameter as a function of the residence time 1/k.
In the case of equal diffusion coefficients, D,/D; = 1, the
states are identical, and the switching model is reduced to
normal diffusion. The EB parameter does not depend on the
switching rate and is equal (in the leading order) to 4¢/(3T)
according to Eq. (30). In turn, the stronger the difference
between two states (i.e., smaller D,/D;), the larger the EB
parameter at large residence times 1/k. In the extreme case of
one immobile state (with D, = 0), the EB parameter reaches
the value 1 according to Eq. (31). In contrast, a fast switching
even between very distinct states leads again to normal diffu-
sion with the mean diffusivity D and thus the EB parameter
remains close to 4¢/(3T). Note that in the considered case of
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FIG. 1. The EB parameter x as a function of the residence
time 1/k for the case kjp = ky; = k/2, with t =1, T = 1000, and
several values of D,/D; as indicated in the plot. Arbitrary units are
used. Vertical dashed line indicates the measurement time 7'. Dotted
horizontal line corresponding to normal diffusion (D; = D,) is close
to4t/(3T).

equal switching rates, the EB parameter does not exceed 1.
We conclude that, due to slow switching between states, the
distribution of TAMSD even for the smallest lag time (t =
1) can be relatively broad, i.e., the standard deviation can
be comparable to the mean value: x ~ 1. In this situation,
an increase of the trajectory duration 7 can improve the
estimation only when 7" exceeds the mean residence time 1/k.
This is in contrast with the case of normal diffusion, for which
the EB parameter is of the order of /T and can thus be made
very small, allowing for accurate estimations of the diffusion
coefficient for long enough trajectories.

A richer insight on the EB parameter is provided in Fig. 2
that shows the dependence on two residence times 1/kj, and
1/kp;. In this situation, there are four relevant time scales: 7,
T, 1/ky», and 1/k;; and thus various regimes. As previously,
we fix t = 1 and T = 1000. First, we present in Fig. 2(a) the
case of an immobile state with D, = 0 (and Dy = 1). When
1/ky; is the smallest time scale, the particle does not almost
stay in the immobile state, and the EB parameter is close to
its value 47 /(3T ) for normal diffusion. When 1/k;; is getting
comparable to the lag time ¢, the switching is not fast enough
any more, and the presence of the immobile phase increases
the EB parameter. Finally, when 1/k;; increases further, the
EB parameter can become much larger than 1. In fact, in the
limit k;; — 0 (with fixed k), one gets

2A

~ m k2—11 +0Q), (33)
12

X

where

A=e Tl — ey — 23+ 2kin(T —t))e ™ +6
+h1oT (Bkist? + 4 — dkpat) — 10kiat + 6kist?> — 4kt

One can see that the EB parameter can be made arbitrarily

large by decreasing k»;. Indeed, a particle started in the

immobile state mainly remains in this state, whereas a par-

ticle started in the mobile state becomes immobile with the
switching rate k. As a consequence, random trajectories may
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FIG. 2. The EB parameter x as a function of mean residence
times 1/ki, and 1/ky;, for t =1, T = 1000, D, =1, and D, =0
(a) and D, = 0.01 (b). Arbitrary units are used.

have a broad distribution of stalling periods and thus the broad
distribution of TAMSD. We note that the other mean residence
time, 1/kj,, also influences the EB parameter but it is less
relevant than 1/k;;.

The situation is considerably different for a particle un-
dergoing slow diffusion in the second state (i.e., D, is small
but not strictly zero). Figure 2(b) shows an example for D, =
0.01. While the behavior of the EB parameter for small 1/k;
is expectedly similar to the former case with D, = 0, there is
significant difference for large 1/k;;. First, the values of the
EB parameter, which can still be large, are much smaller than
those shown in Fig. 2(a). Second, the EB parameter exhibits
a maximum as a function of the mean residence time 1/k;
for a fixed 1/ky;. When 1/kj, is small (with 1/ky; large), the
particle stays most of the time in the second state and thus
undergoes almost normal diffusion with diffusivity D,, so that
the EB parameter again reaches the small value 4¢/(37"). This
is a significant difference with respect to the case D, = 0.

II1. DISCUSSION

When the measurement time 7" is comparable to or smaller
than the residence times 1/k;, and 1/k,;, the particle does not
have enough time to probe the phase space. An individual ran-
dom trajectory of the particle is thus not representative of the
ensemble, suggesting an apparent weak ergodicity breaking.
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In particular, the EB parameter can be of order of 1 and even
much larger, particularly if the diffusion coefficient in one
of the states is very small (or zero). As a consequence, one
can expect a large spread of TAMSD curves evaluated from
individual trajectories. This feature, which is often observed in
experiments (see, e.g., [11,31,32]), was often interpreted as an
indication of non-ergodicity and thus attributed to CTRW as
a basic non-ergodic model. Here, we showed that the ergodic
two-state model can lead to similar features.

A. Spread of TAMSD curves

In order to illustrate the spread of TAMSD curves, we
perform Monte Carlo simulations. For a prescribed set of
parameters Dy, D», k5, and kp;, we set the trajectory duration
T = 1000 (i.e., the number of steps) and generate 7' random
centered Gaussian increments with unit variance. We also
generate a sequence of successive residence times in two alter-
nating states according to the exponential laws with the rates
ki and ky 1, that results in a random sequence of state variables
i1, o, ... (each i, taking values 1 or 2). All the increments
are rescaled by ,/2D; and then cumulatively summed up
to produce a random trajectory, from which the TAMSD is
computed for all lag times from 1 to T — 1 by discretizing
Eq. (1). This computation is repeated 10 000 times to obtain a
reliable statistics. Fixing D; = 1, we are left with D,, ki,, and
k>1 as the major parameters.

Figure 3 illustrates the spread of TAMSD curves for three
sets of parameters. The first set with D, = 1 corresponds
to normal diffusion (here, switching rates do not matter as
D, = D). In this case, TAMSD curves are close to each other
at small lag times and then getting more spread at larger lag
times because the time average becomes less and less efficient
(Fig. 3a). In the second set (with D, = 0.01, kj5 = kp; = 0.1),
the mean residence times 1/kj, and 1/ky; are chosen to be
much smaller than the measurement time 7. As switching is
rapid enough, TAMSD curves remain close to each (Fig. 3b),
as for normal diffusion. In the third set of parameters, we keep
D, = 0.01 but decrease both switching rates: kjp = 1072 and
ka1 = 1073, While 1/k;, is still much smaller than T, 1/ky;
is equal to T that leads to a wide spread of TAMSD curves
(Fig. 3c), in agreement with large values of the EB parameter
in this case. Similar spreads were observed in single-particle
tracking experiments in living cells (see, e.g., [11,31,32]).

Another way of presenting the spread consists in plotting
the distribution of TAMSD for a fixed lag time. The distri-
bution of TAMSD for ergodic Brownian motion and other
Gaussian processes was studied in [28,29,33,34], while the
analysis of its asymptotic behavior for non-ergodic CTRW
was initiated in [22,35] (see also reviews [5,23]). As our
computation for two-state switching diffusion is limited to
the first two moments, we show in Fig. 4 the empirical
distribution of TAMSD obtained from simulated trajectories
for the same three sets of parameters. The empirical distri-
butions are presented for three lag times: t = 1, t = 10, and
t = 105. As expected, the distribution is getting larger with
the lag time, reflecting less and less efficient time averaging.
For the second set of parameters, the distributions are close
to that for normal diffusion (compare Figs. 4a and 4b). In
contrast, the distribution for the third set of parameters is

(¢, T)

10° 10" 102 103

10° 10" 102 103
t

FIG. 3. Spread of TAMSD curves obtained from a thousand of
simulated trajectories of length T = 1000, with D; = 1, p; = p{%,
and three sets of parameters: (a) D, = 1 (normal diffusion); (b) D, =
0.0l andkj, = ky; = 1071; and (c) D, = 0.01,k, = 1072, and ky; =
1073, Arbitrary units are used.

much broader and almost does not depend on the lag time.
This is the characteristic feature of non-ergodic dynamics
(e.g., the distribution of TAMSD for CTRW is also broad).
To complete this discussion, we outline a subtle difference
in the behavior of the EB parameter between a continuous-
time process and its discrete-time approximation. Let us first
discuss Brownian motion, which is often approximated by
random walks on a lattice or by a sequence of Gaussian jumps.
While such approximations are known to converge to Brow-
nian motion (see, e.g., [36,37]), some functionals involving
integrals along sample trajectories of these processes can be
different. So, the variance of the TAMSD for continuous-time
Brownian motion, given by the first term in Egs. (27), (29), is
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FIG. 4. Empirical distribution of TAMSD, 67(t, T), normalized
by its mean value (87(t, T)), obtained from 10 000 simulated tra-
jectories of length T = 1000, with D, = 1, p; = p;?, and three sets
of parameters: (a) D, = 1 (normal diffusion); (b) D, = 0.01 and
ki = ky; = 107" and (¢) D, = 0.01, ky, = 1072, and ky; = 1073,
Arbitrary units are used.

different from the variance of the TAMSD for a discrete-time
random walk with Gaussian jumps, first derived by Qian
et al. [27] and later analyzed in [28,30]. In particular, when
t K T, the leading term of the EB parameter is 4¢/(37) in
the continuous case, and 2¢/7 in the discrete case. While the
scaling form, 7/T, is identical for both cases, the numerical
prefactor is different. This difference is related to the fact that
an erratic trajectory of Brownian motion between two succes-
sive discrete times is replaced by a jump in the discrete case.
There is a similar distinction between the continuous-
time switching diffusion, studied in Sec. II, and discrete-time

Monte Carlo simulations presented here. In particular, the
variance of the TAMSD, computed via the exact formulas
(27), (29), would differ from its numerical estimation by
Monte Carlo simulations. In spite of this subtle difference be-
tween continuous-time and discrete-time processes, the quali-
tative conclusion on distinct diffusivity states and insufficient
measurement time as eventual causes of the apparent weak
ergodicity breaking remains valid, as confirmed by numerical
results of this section. The exact computation of the EB
parameter for a discrete-time switching diffusion by adapting
the general technique from [28] presents an interesting per-
spective for future research.

B. Extension to multi-state models

The above computation can be formally extended to a
switching model with J states, which is characterized by a
set of diffusion coefficients D; and switching rates k;;. The

propagators satisfy for eachip =1, ..., J:
9 32 !
Epi.io = Diﬁpi,io + ]2:]: kjiPj i, (34)
where k; = — ) k;;. The formula (12) for the marginal prop-
J#i

agator for multiple successive points in the Fourier space
remains practically unchanged:

Pulqn, tn —tats - 3G, ta — 115 q1, 1)

1 f P1

" et P m| 2|, 65
1 pJ

where p; is the probability of starting in the state i, P(g, 1) =
exp(—My?), and M, is now the J x J matrix of the form
Mq = C]ZD - KT with (D),‘j = 8,'J‘D,' and (K)ij = k,‘j. As the
eigenvalues y, of the matrix M, are determined as the zeros
of the polynomial

det(yI —M,) =0, (36)

there is no explicit formula in general. However, as we are
interested in evaluating the limit ¢ — 0 to get the mean square
displacement and other related quantities, one can apply the
standard perturbation theory by treating g>D as a perturbation
of the matrix My = —K. As the matrix My is neither sym-
metric, nor invertible, the analysis is rather involved. While
analytical calculations for a general multi-state model seem
challenging, numerical computations of the propagator and
related quantities (such as the mean square displacement) are
efficient due to the matrix form (35) when the number of
states is not too high (say, below 1000). It is also worth noting
that multi-state switching diffusions can be seen as a discrete
version of diffusing diffusivity models [38—44], in which the
diffusivity D, of a tracer changes continuously in time (see
[45] for details).

C. Extensions to switching diffusion in bounded domains

While we focused on one-dimensional diffusion,
the above computation can be carried on for more
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sophisticated processes. Here, we briefly mention switching
diffusion in an arbitrary bounded domain Q C Rd, for
which the propagator for multiple successive points,
P(xy, iy, s Xn—1, in—1, ta—1; - - X0, 0, 0), and its average
over the state variables iy, P(x,,t;; Xy_1,ta_1; * -+ X0, 0),
can be expressed in analogy to Egs. (10), (11). For instance,
Eq. (11) becomes

P(xna Iy Xp—1sIp—15 * ++

x0,0) = D, (x)

Xty (X U, n— Uy (n—2) - - - ug, (1), (x0)

X P Ays tn — tae1s =+ 54/ Akys 1), 37

where P, is given by Eq. (12) [or Eq. (35) in a multi-
state case], while A; and ui(x) are the eigenvalues and
L-normalized eigenfunctions of the Laplace operator A,
satisfying Auy(x) + Agux(x) = 0 in Q2. Boundary conditions
determine the properties of the boundary in a standard way
[46]: Neumann condition incorporates passive impermeable
walls whereas Dirichlet or Robin conditions allow one to
describe diffusion-controlled reactions and the related first-
passage time statistics, see [42] (note that P;(g,t) corre-
sponds to Y(¢; qz) in [42]). For instance, one can investigate
diffusion-controlled reactions in presence of buffers that can
reversely bind the diffusing molecule and thus affect its
mobility. We emphasize that the above derivation requires
that switching modifies only the diffusivity of the particle
but does not change other properties (e.g., reactivity). In
this case, restricted diffusion in each state is characterized
by the same set of Laplacian eigenmodes. In contrast, this
extension is not applicable to other intermittent processes [47]
such as, e.g., surface-mediated diffusion [48-52], two-channel
diffusion with switching reactivity [53] or switching boundary
conditions [54,55].

From the propagator, one can compute the mean square
displacement, as well as the mean and the variance of the
TAMSD. However, these formulas include multiple infinite
sums over eigenvalues and thus remain formal, so we do not
present these results.

IV. CONCLUSION

We revisited the two-state switching diffusion model from
a single-particle tracking perspective. The exact formulas for

the mean and the variance of the TAMSD were derived,
in order to investigate the behavior of the ergodicity break-
ing parameter. When the mean residence times 1/kj, and
1/ky; are small as compared to the measurement time 7,
switching is fast enough for a particle to probe both states
so that a single trajectory is representative of the ensemble.
In particular, the distribution of the TAMSD is narrow to
allow for an accurate estimation of the mean diffusivity D.
Roughly speaking, the two-state switching diffusion looks
as normal diffusion with diffusivity D. In contrast, when
1/ky» and/or 1/k;; are comparable to or larger than 7', an
individual trajectory is not representative of the ensemble,
the EB parameter may exceed 1, and the distribution of the
TAMSD is broad. As a consequence, TAMSD curves exhibit
a significant spread, in agreement with experimental observa-
tions in living cells. While the two-state switching diffusion
is ergodic (when ky, and k;; are strictly positive), the analysis
of individual trajectories may indicate non-ergodic features.
As this fictitious non-ergodicity is the mere consequence of
insufficient measurement time 7', we called it “apparent weak
ergodicity breaking”. A similar behavior was observed for
CTRW with an exponential cut-off: when the measurement
time is much smaller than the cut-off time, the trajectory
“looks” as that of usual non-ergodic CTRW but when the
measurement time grows and exceeds the cut-off time, the
non-ergodic features disappear [14]. The relative simplicity
of switching diffusions presents their advantage as potential
models for describing some intracellular and on-membrane
transport [16,17]. Moreover, these are natural models for
describing the effect of buffers that can reversely bind the
diffusing particle and thus affect its mobility. More generally,
our results illustrate that a broad spread of TAMSD curves,
often observed in experiments, is not necessarily a signature of
weak ergodicity breaking. It may just be a consequence of the
insufficient duration of acquired trajectories. Statistical tests
of ergodicity breaking need to be systematically performed in
such situations [14,56].
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