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We study the dynamics of a one-dimensional run-and-tumble particle subjected to confining potentials of the
type V (x) = α |x|p, with p > 0. The noise that drives the particle dynamics is telegraphic and alternates between
±1 values. We show that the stationary probability density P(x) has a rich behavior in the (p, α) plane. For p > 1,
the distribution has a finite support in [x−, x+] and there is a critical line αc(p) that separates an activelike phase
for α > αc(p) where P(x) diverges at x±, from a passivelike phase for α < αc(p) where P(x) vanishes at x±.
For p < 1, the stationary density P(x) collapses to a delta function at the origin, P(x) = δ(x). In the marginal
case p = 1, we show that, for α < αc, the stationary density P(x) is a symmetric exponential, while for α > αc,
it again is a delta function P(x) = δ(x). For the harmonic case p = 2, we obtain exactly the full time-dependent
distribution P(x, t ), which allows us to study how the system relaxes to its stationary state. In addition, for this
p = 2 case, we also study analytically the full distribution of the first-passage time to the origin. Numerical
simulations are in complete agreement with our analytical predictions.
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I. INTRODUCTION

There has been a surge of interest in understanding the
statics and dynamics of a class of nonequilibrium systems,
commonly called “active matter.” Such systems appear in a
variety of contexts, ranging from self-catalytic colloids [1],
living cells, biological processes, the growth of microbial
colonies [2], the physics of self-motile systems [2], active
gels [3], and motility-induced phase transition [4] to flocking
of birds [5]. While the collective properties of such systems
are of great interest [1,4,6], they exhibit a rich static and
dynamical behavior even at a single-particle level. This is
due to the fact that the single-particle stochastic dynamics is
typically non-Brownian: The effective noise in the Langevin
equation of an active particle is typically “colored,” i.e.,
the autocorrelation of the noise decays exponentially ∼e−t/τ

with a finite correlation time τ [7]. The limit τ → 0 would
correspond to the Brownian motion, while the τ → ∞ limit
corresponds to purely ballistic motion.

The most common example of such an active particle
dynamics is the well-known “persistent Brownian motion,”
renamed recently as the “run-and-tumble particle” (RTP). In
one dimension, the overdamped stochastic dynamics of an
RTP, starting at x = x0, is governed by the Langevin equation

dx

dt
= v0 σ (t ), (1)

where the noise η(t ) = v0 σ (t ) is a dichotomous or tele-
graphic noise which takes values ±v0 and flips its sign with
a constant rate γ , as shown in Fig. 1. The autocorrelation
function of this telegraphic noise is given by

〈η(t1)η(t2)〉 = v2
0 e−2γ |t1−t2|. (2)

In the limit γ → ∞, v0 → ∞ keeping the ratio v2
0/(2γ ) = D

fixed, the noise η(t ) becomes a white noise with correla-
tor 〈η(t1)η(t2)〉 = 2D δ(t1 − t2) and, consequently, x(t ) repre-
sents the position of a Brownian particle. Several properties of
the RTP motion in one dimension, with or without boundaries
(absorbing or reflecting), have been studied [8–16].

What happens if this RTP is subjected to an external
potential V (x)? The corresponding Langevin equation now
reads

dx

dt
= f (x) + v0 σ (t ), (3)

where f (x) = −V ′(x) is the external force. Once again, in
the Brownian limit, when γ → ∞, v0 → ∞ keeping the
ratio v2

0/(2γ ) = D fixed, the probability distribution P(x, t )
converges at long times to the equilibrium Boltzmann-Gibbs
distribution P(x) ∝ e−V (x)/D. However, when the correlation
time of the noise τ = 1/(2γ ) is finite, i.e., the noise has a
finite memory, the stationary state P(x) is nontrivial and is
typically non-Boltzmann. While an explicit formula is known
for this P(x), originally derived in the quantum optics litera-
ture [17–21] and rederived more recently in the active-matter
literature (see, for instance, the Appendix in Ref. [22]), the
structure of the stationary state has not been analyzed in detail
for different types of potentials. One of the goals of this
paper is to study this stationary state for a class of confining
potentials of the type V (x) = α |x|p with p > 0 and α > 0.
Indeed, keeping γ fixed, and varying p and α, we uncover an
interesting phase diagram in the (p, α) plane. For p > 1, we
show that while the stationary solution has finite support for
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FIG. 1. A typical realization of the telegraphic noise σ (τ ), which
alternates its value between ±1 at random times τi’s. The time
intervals between two successive reversals of the sign of σ (τ ) are
statistically independent and each is distributed exponentially as
p(τ ) = γ e−γ τ .

any α, there is a critical line αc(p),

α = αc(p) =
(

v0

p

)2−p[
γ

p(p − 1)

]p−1

, (4)

such that for α < αc(p) the stationary-state distribution van-
ishes at the edges, while for α > αc(p) the distribution di-
verges at the edges. Thus, while for α > αc(p) the particle
behaves more like an “active” one, it behaves more as a
“passive” particle for α < αc(p). We call this transition from
the active phase to the passive phase across α = αc(p) a
“shape transition” of the stationary profile. The behavior of
P(x) around x = 0 depends on p and is also interesting. We
find that for 1 < p < 2, the function P(x) near the origin is
convex (i.e., there is a local minimum at x = 0) while for
p > 2 it is concave (i.e., there is a local maximum at the
origin), irrespective of whether α > αc or α < αc. A weak
fingerprint of activeness is thus manifest, for 1 < p < 2, even
in the passive phase, leading to bimodal distributions (see, for
instance, Fig. 7). For p < 1, we show that the RTP collapses
to the origin at long times, leading to trivial stationary state
P(x) = δ(x). The case p = 1 turns out to be the marginal
case. In this case there is a nontrivial stationary state only for
α < v0, while the stationary distribution is again P(x) = δ(x)
for α > v0. These results lead to the phase diagram shown in
Fig. 2.

In the presence of the external confining potential V (x), it
is also equally interesting to study the dynamics of the system
away from the stationary state, i.e., how the system relaxes to
the stationary state at long times. For a simple hard-box poten-
tial, where the RTP is confined inside a finite box, e.g., when
V (x) = 0 for x ∈ [−1, 1] while V (x) = +∞ outside the box,
this relaxation to the stationary state was recently studied in
Ref. [16]. This case corresponds to the p → ∞ limit of the po-
tential V (x) = α |x|p. It is thus interesting to study the relax-
ational dynamics for a finite value of p. In this paper, we pro-
vide a detailed study of the relaxational dynamics for the case
p = 2, i.e., the harmonic potential V (x) = α x2 with α = μ/2.
Interestingly, our results show that if the particle starts exactly
at the origin, i.e., x0 = 0, the inverse relaxation time λ0 char-
acterizing the exponential decay of P(x, t ) − P(x) ∼ e−λ0 t

FIG. 2. Phase diagram in the (p, α) plane. For p > 1, the blue
dashed line αc(p) separates an activelike phase for α > αc(p) and
a passivelike phase for α < αc(p). The stationary solution P(x) is
divergent at the edges in the activelike phase while it goes to zero in
the passivelike phase. Exactly on the marginal line p = 1, there is a
critical value αc = v0: For α < αc = v0, P(x) has a symmetric expo-
nential decay while for α � αc = v0, the stationary state collapses to
a δ function at the origin, i.e., P(x) = δ(x). For p < 1, for all α > 0,
the stationary state is again given by a δ function, P(x) = δ(x). To
obtain this phase diagram we have chosen γ = 1. However, for other
values of γ the phase diagram is qualitatively the same.

to its stationary distribution undergoes a transition at α = γ :
For α > γ (passive phase) λ0 = μ + 2γ , while for α < γ

(active phase) we show that λ0 = 2μ (see Fig. 9). For a
generic starting point x0 
= 0, the inverse relaxation time is
always given by μ. Thus if one wants to detect the signature
of active to passive transition in the relaxational dynamics,
one needs to start at the special initial position x0 = 0.

Another related interesting observable is the first-passage
probability Ffp(t, x0) which denotes the probability density
that the RTP, starting at x0 > 0, crosses the origin for the
first time at time t . For arbitrary confining V (x), there exist
extensive results in the literature on the mean first-passage
time [23,24]. However, there is hardly any result on the full
distribution of the first-passage time. Only very recently were
exact results obtained for a free RTP, i.e., for f (x) = 0, as well
as for the box potential [16]. In this paper, we present exact
results for Ffp(t, x0) for two cases, p = 2 and p = 1.

The rest of the paper is organized as follows. In Sec. II, we
provide a derivation of the steady-state probability density for
arbitrary confining potential V (x) and then discuss the form of
the stationary distribution for potentials of the form V (x) =
α |x|p, with p > 0. We show that there is a shape transition
in the (p, α) plane from an active profile to a passive profile
across a critical line αc(p). The resulting phase diagram is
shown in Fig. 2. In Sec. III, we discuss the relaxation to the
steady-state for the harmonic potential p = 2. First-passage
properties for this harmonic case are discussed in Sec. IV.
We conclude in Sec. V with a summary and open questions.
Some details have been relegated to two Appendices.
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II. STEADY-STATE DISTRIBUTION

We consider the Langevin equation (3) for a particle mov-
ing in an arbitrary confining potential V (x) with the force
f (x) = −V ′(x) and subjected to the telegraphic noise v0 σ (t ).
We focus on a particular family of confining potentials, of the
type V (x) = α |x|p with p > 1, such that the system reaches a
normalizable stationary state at long times. This steady-state
distribution is actually known for generic confining potential
V (x). It was initially derived in the quantum optics literature
[17–20], and later to study the role of colored noise in dynam-
ical systems [21], and more recently it has been rederived in
the context of active particles systems [22]. Even though an
explicit formula existed for the stationary state, the physical
consequences of this formula has not been analyzed in detail
in the literature, to the best of our knowledge [see, however, a
recent article [25] that discusses the behavior of the stationary
distribution for a general class of potentials, including V (x) =
α|x|p, but only for integer p]. Our purpose in this section is to
focus on this particular family of potentials V (x) = α |x|p with
arbitrary p > 1 and derive the detailed behavior of the shape
of the stationary distribution in the full (p, α) plane. We show
that the existence of a shape transition in the (p, α) plane (for
fixed γ ) across a crossover line αc(p) for p > 1 that separates
the active and the passive phases. The exact formula for αc(p)
for p > 1 is given in Eq. (32). For the full phase diagram in
the (p, α) plane, see Fig. 2.

We start by deriving the Fokker-Planck equation associated
to the Langevin equation (3). Since the telegraphic noise
v0 σ (t ) in (3) takes only two values ±v0, it is natural to define
P+(x, t ) and P−(x, t ) denoting the probability densities for
the particle to be at position x at time t with velocity +v0

and −v0, respectively. Clearly, the main object of interest is
the full probability density P(x, t ) = P+(x, t ) + P−(x, t ). It is
quite easy to see that these two densities P+(x, t ) and P−(x, t )
evolve according to

∂P+
∂t

= − ∂

∂x
[( f (x) + v0)P+] − γ P+ + γ P− , (5)

∂P−
∂t

= − ∂

∂x
[( f (x) − v0)P−] + γ P+ − γ P− , (6)

where the first term in both the equation appear from the drift
term f (x) ± v0 in the Langevin Eq. (3), while the remaining
terms appear due to the stochastic change in the direction of
the velocity with rate γ . For sufficiently confining potentials,
we expect the system to reach a stationary state which is
obtained by setting the time derivative to be zero on the
left-hand side in Eqs. (5) and (6). We denote the stationary
distributions P±(x) (dropping the t dependence) which then
satisfy a pair of coupled first-order differential equations

d

dx
[( f (x) + v0)P+] + γ P+ − γ P− = 0, (7)

d

dx
[( f (x) − v0)P−] − γ P+ + γ P− = 0. (8)

To solve these differential equations, we need to specify the
boundary conditions for P+(x) and P−(x). For that, we first

FIG. 3. Illustration of the confinement of the particle within the
finite box [x−, x+], where f (x±) = ∓v0 [see Eq. (9)]. The red arrows
represent the direction of the drift felt by the particle outside of the
box [see Eq. (3)].

need to know where the boundaries are. In fact, it turns out
that in the steady-state, for sufficiently confining potentials,
these active particles accumulate over a finite region of space
around the minimum of the confining potential (assuming that
it has a single minimum, such as in a harmonic potential). This
can be easily seen by examining the Langevin equation (3).
We first note that the right-hand side of Eq. (3) has two fixed
points x± such that

f (x−) = v0, f (x+) = −v0, with x+ > x−. (9)

For example, for a harmonic potential V (x) = μ x2/2, f (x) =
−μ x and hence x± = ±v0/μ. Consider a particle with po-
sition x > x+. Then the drift is always toward the center
of the trap, no matter what the sign of σ (t ) is, as long as
x > x+ (see Fig. 3). Thus, even if the particle starts with initial
position x0 > x+, it will eventually arrive at a position x < x+.
Similarly, for any particle with position x � x−, the drift is
always toward the center, irrespective of the sign of σ (t ).
Hence, eventually, the position of the particle will be larger
than x−, even if it starts to the left of x− (see Fig. 3). Thus
it is clear that, in the steady-state, the probability distribution
will have a finite support [x−, x+] where it is nonzero, while it
vanishes outside this box (see Fig. 3). Therefore, the steady-
state equations in (7) and (8) are valid for x ∈ [x−, x+] and
we need to specify the boundary conditions at x = x±. To find
these boundary conditions, we note that if the particle is at
x+ with a negative velocity, it always moves to the left of x+.
Therefore, in the stationary state, there cannot be any particle
at x+ with a negative velocity, indicating that

P−(x+) = 0. (10)

Note that P+(x) remains unspecified at x = x+. A similar
argument at x− shows that

P+(x−) = 0, (11)

while P−(x) remains unspecified at x = x−. With this pair of
boundary conditions (10) and (11), the differential equations
in Eqs. (7) and (8) admit a unique solution that we determine
below.

To proceed, we add and subtract these two equations (7)
and (8). Defining

P(x) = P+(x) + P−(x), (12)

Q(x) = P+(x) − P−(x), (13)

032132-3



ABHISHEK DHAR et al. PHYSICAL REVIEW E 99, 032132 (2019)

they satisfy, respectively, the equations

d

dx
[ f (x) P + v0 Q] = 0, (14)

d

dx
[ f (x) Q + v0 P] + 2γ Q = 0. (15)

Equation (14) implies

[ f (x) P + v0 Q] = C, (16)

where C is a constant. To determine this constant, we now in-
voke the boundary conditions (10) and (11). Clearly, Eq. (16)
holds for all x ∈ [x−, x+]. Setting x = x− we get

[ f (x−) + v0]P+(x−) + [ f (x−) − v0]P−(x−) = C. (17)

Using f (x−) = v0 from Eq. (9), and the boundary condi-
tion P+(x−) = 0 from Eq. (10), we get C = 0. Hence, from
Eq. (16) we get

Q(x) = − 1

v0
f (x)P(x). (18)

We now substitute this equation into Eq. (15) and obtain

d

dx

[(
v2

0 − f 2(x)
)
P(x)

] − 2γ f (x) P(x) = 0. (19)

Solving this equation, we get

P(x) = A

v2
0 − f 2(x)

exp

[
2γ

∫ x

0
dy

f (y)

v2
0 − f 2(y)

]
, (20)

valid for x− � x � x+. The overall constant A in (20) is deter-
mined from the normalization

∫ x+
x−

P(x) dx = 1. This provides
the general steady-state solution for arbitrary f (x), provided
P(x) is normalizable. Below, we analyze this formula for the
stationary distribution (20) for confining potentials of the type
V (x) = α |x|p, i.e., with f (x) = −α p sgn(x) |x|p−1. We will
see below that the situation is quite different for p > 1 and
p < 1, including the marginal case p = 1. We first start with
the p = 2 case, which corresponds to a harmonic potential
V (x) = αx2.

A. Harmonic potential (p = 2)

To analyze the implications of this solution in Eq. (20),
let us first focus on the specific example of a harmonic
potential V (x) = αx2 and for using the standard notations
of the harmonic oscillator we set α = μ/2, where μ is the
standard spring constant. In this case, using f (x) = −μx and
x± = ±v0/μ, one gets from Eq. (20)

P(x) = 2

4γ /μB(γ /μ, γ /μ)

μ

v0

[
1 −

(
μx

v0

)2
]φ

, (21)

where B(α, β ) is the beta function and the exponent

φ = γ

μ
− 1 = γ

2α
− 1, (22)

where we used α = μ/2. Clearly, this solution is symmetric
around x = 0 and has a finite support over −v0/μ � x �
v0/μ. We have verified this prediction in Eq. (21) numerically
for two different values of γ (see Fig. 5). Interestingly, the
shape of the solution in Eq. (21) depends on the exponent φ.

If φ > 0, then the solution vanishes at the two ends ±v0/μ

of the support, while for φ < 0, the solution diverges at the
two ends. This shape transition occurs at φ = 0 which corre-
sponds to a critical value γc = μ = 2α. Indeed, the solution
is concave shaped for γ > γc and convex shaped for γ < γc.
To appreciate this shape transition, it is instructive to compare
this solution for the active particle to that of a passive particle
described by the Langevin equation (3) with the same force
f (x) = −μx but driven by a δ-correlated white noise. In this
passive case, Eq. (3) just describes an Ornstein-Uhlenbeck
(OU) process, whose steady-state has the Boltzmann
distribution

POU(x) =
√

μ

2πD
e− μ

2D x2
, (23)

valid over the full space. It is easy to check that the active
solution in Eq. (21) actually approaches the Boltzmann dis-
tribution in (23) in the limit γ → ∞, v0 → ∞ but keeping
the ratio v2

0/γ = 2 D fixed. Indeed, in the γ → ∞ limit, the
telegraphic noise approaches the δ-correlated noise and natu-
rally the two stationary solutions also coincide. However, for
finite γ , the active noise has an exponentially decaying mem-
ory and this leads to highly non-Boltzmann distributions in
Eq. (21). While for γ > γc the stationary distribution P(x) still
retains a single peak structure (as in the γ → ∞ Boltzmann
case), it undergoes a “shape transition” at γ = γc. For γ < γc,
the stationary distribution has a double-peaked structure (with
diverging peaks at x = ±v0/μ), with a minimum at the center
of the trap at x = 0. Thus, the single-peak structure is a
signature of a passive phase, while the double-peak structure
signifies an active phase. By reducing γ , one crosses over
from this passive phase (γ > γc) to an active phase (γ < γc).
Alternatively, this shape transition can also be viewed as a
function of α (for fixed γ ). There is a critical value αc = γ /2
at which the exponent φ in Eq. (22) changes sign. The active
phase γ < γc (where φ < 0) corresponds to α > αc and the
passive phase γ > γc (where φ > 0) corresponds to α < αc.

Finally, we note that Eq. (21) gives the expression for
the total probability distribution P(x) = P+(x) + P−(x). It is
also instructive to compute P+(x) and P−(x) separately, as
they have rather different behaviors because the boundary
conditions they satisfy are quite different [see Eqs. (10) and
(11)]. Indeed, from Eq. (18), for f (x) = −μx, we have

P+(x) − P−(x) = Q(x) = μ x

v0
P(x). (24)

This, along with P(x) = P+(x) + P−(x), allows us to express
P+(x) and P−(x) in terms of P(x) in Eq. (21). This gives

P±(x) = A

2

(
1 ± μx

v0

) γ

μ
(

1 ∓ μx

v0

) γ

μ
−1

, (25)

where A is the normalization constant appearing in Eq. (21),
fixed by

∫ x+
x−

[P+(x) + P−(x)] dx = 1. Note that the these dis-
tributions satisfy the boundary conditions in Eqs. (10) and
(11), respectively. In Fig. 4 we verify these expressions of
P±(x) numerically and observe a nice agreement.
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FIG. 4. Numerical verification of the theoretical results of the
distributions P±(x) in (25) for the harmonic potential V (x) = α x2 =
μ x2/2, setting v0 = 1 and μ = 1, i.e., α = 1/2. In this case x+ =
+1 and x− = −1. The filled black squares correspond to P+(x),
whereas the filled black circles correspond to P−(x) obtained from
the simulation for γ = 1.5. The red points correspond to another
value of γ = 0.5. The solid lines are obtained from the theoretical
expression in Eq. (25), respectively, for γ = 1.5 and γ = 0.5. We
observe that, as in the case of P(x), the distributions P±(x) also
undergo a shape transition as one varies γ across γc = 2α = 1.
Thus γ = 1.5 > γc = 1 corresponds to the passivelike regime, while
γ = 0.5 < γc = 1 corresponds to the activelike regime. Moreover in
the activelike regime (γ < γc) the distributions P±(x) have diverging
(integrable) behavior at the edges x = x±, whereas they satisfy the
boundary conditions in Eqs. (10) and (11) on the other edges x = x∓,
respectively.

B. Anharmonic confining potentials V (x) = α |x|p with p > 1

We now analyze the general stationary solution in Eq. (20)
for the case V (x) = α |x|p, with p > 1. In this case f (x) =
−V ′(x) = −α p|x|p−1sgn(x). Since the general solution in
Eq. (20) is symmetric around x = 0, i.e., P(x) = P(−x), it
is sufficient to consider P(x) for x � 0. Substituting f (x) =
−α pxp−1 with x > 0 in Eq. (20), we get

P(x) = Bp

b2
p − x2p−2

exp

[
− 2γ

α p

∫ x

0

yp−1

b2
p − y2p−2

dy

]
, (26)

where the parameter bp is given by

bp = v0

α p
(27)

and the overall normalization constant Bp is such that∫
P(x) dx = 1. The solution is actually symmetric around

x = 0 with a finite support [−b
1

p−1
p ,+b

1
p−1
p ]. We next analyze

Eq. (26) to see how the solution behaves near the upper

support end at x = x+ = b
1

p−1
p . Clearly, by symmetry, it has the

same behavior at the lower support x− = −b
1

p−1
p . To proceed,

we set x = b
1

p−1
p − ε, where ε > 0 is small. The integral inside

the exponential in Eq. (26) then reads

I (ε) =
∫ b

1
p−1
p −ε

0

yp−1

b2
p − y2p−2

dy. (28)

We next make a change of variable y → b
1

p−1 − z in the
integral in Eq. (28) and expand the integrand to leading order
for small z. Performing the integral gives, to leading order for
small ε,

I (ε) ≈ − b
2−p
p−1
p

2(p − 1)
ln ε. (29)

Substituting this result in Eq. (26), we then find that the
stationary solution behaves, near the upper edge, as

P(x = b
1

p−1
p − ε) ∼ εφ, (30)

with a nonuniversal (i.e., parameter-dependent) exponent

φ = b
2−p
p−1
p

α p(p − 1)
γ − 1 = 1

p(p − 1)

(
v0

p

) 2−p
p−1 γ

α
1

p−1

− 1.

(31)

Clearly, for p > 1, the exponent φ > −1, indicating that P(x)
in Eq. (30) is integrable near the edge. For p = 2, setting α =
μ/2, we recover φ = γ /μ − 1 as in Eq. (22). For any p > 1,
clearly there is a shape transition in the (p, α) plane (see
Fig. 2) across the line

α = αc(p) =
(

v0

p

)2−p(
γ

p(p − 1)

)p−1

(32)

such that φ > 0 for α < αc and −1 < φ < 0 for α > αc.
Thus, as in the p = 2 case, there is a shape transition (from
converging edges to diverging edges) for generic p > 1 as
α increases through αc. The existence of this critical line
αc ≡ αc(p) in the (p, α) plane, separating an active and a
passive phase, is indeed the main result of this section.

Indeed the shape transition for p > 1, where the exponent
φ in Eq. (31) changes sign, can be accessed by varying
either α or γ . Indeed, from Eq. (31), the exponent φ only
depends on the ratio γ /α

1
p−1 . Thus, small (respectively, large)

γ corresponds to large (respectively, small) α for the same
value of φ. While the phase diagram in Fig. 2 is presented
in the (p, α) plane, for p > 1, we can equivalently probe this
transition by varying γ with α fixed. In fact, in the numerical
simulations for p = 2 (Fig. 5) and p = 4 (Fig. 6), we indeed
kept α fixed, while varying γ . In both cases, one clearly sees
the transition and an excellent agreement between theoretical
predictions and simulations.

The behavior near x = 0 is also interesting. Performing an
analysis around x = 0, in the same was as was done near the

right edge at x = x+ = b
1

p−1
p , one finds for p > 1 and small ε,

P(ε) � Bp

b2
p

[
1 − 2γ

αp2b2
p

|ε|p + 1

b2
p

|ε|2(p−1) + O(|ε|3p−2)

]
.

We see that, as ε → 0, the dominant subleading term is either
the second (if p > 2) or the third term (if 1 < p < 2). In the
former case, the sign of the subleading term is negative, while
in the latter case it is positive. Consequently, the distribution
P(x), near x = 0, is convex for 1 < p < 2, whereas for p > 2
it is concave, irrespective of whether α is greater or less than
αc(p). The behavior for 1 < p < 2 is demonstrated in Fig. 7
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FIG. 5. Numerical verification of the theoretical result of the
steady-state distribution in (21) for the harmonic potential V (x) =
α x2 = μ x2/2, setting v0 = 1 and μ = 1, i.e., α = 1/2. In this case,
the shape transition can be accessed by varying the parameter γ (as
discussed in the text), for fixed α = 1/2. The critical value of γ is
γc = 2α = 1. For γ < γc = 1, the theory predicts an activelike phase
where P(x) is U shaped, while for γ > γc = 1, a passivelike phase
with a bell-shaped P(x) [more appropriately an inverted U shaped
P(x)]. Exactly at the critical point γ = γc = 1, one would obtain a
flat distribution P(x) as predicted in (21) with φ = 0. We performed
simulations for three different values of γ = 1/2 (red), 1 (blue), and
3/2 (black) to probe these three different cases. The agreement with
the theoretical predictions in (21) is excellent.

where the distribution P(x) is convex near x = 0 for both α >

αc and α < αc.

C. The marginal case p = 1, where V (x) = α |x|
In this case, setting f (x) = −α sign(x) in Eq. (20), we find

that a nonlocalized stationary solution exists only for α � v0

FIG. 6. Numerical verification of the theoretical result of the
steady-state distribution in (26) for V (x) = α x4. We set the parame-
ter values α = 1 and v0 = 1 and vary γ to probe the shape transition,
as done for the harmonic case in Fig. 5. In this case, the critical
value of γc, from Eq. (32) with p = 4, is given by γc = 12 × 4−2/3 ≈
4.7622. We considered two representative values of γ = 3.5 < γc

(black) and γ = 5 > γc (blue) corresponding respectively to the ac-
tive and passivelike phases. We find an excellent agreement between
the numerical simulations and the theoretical predictions in Eq. (26).

FIG. 7. Numerical verification of the theoretical result of the
steady-state distribution in (26) for V (x) = α x3/2. We set the pa-
rameter values γ = 1 and v0 = 1 and vary α to probe the shape
transition, as done for the harmonic case in Fig. 5. In this case,
the critical value of αc, from Eq. (32) with p = 3/2, is given by
αc = 2

√
2

3 = 0.942809. We considered two representative values of
α = 0.5 < αc (main plot) and α = 1.5 > αc (inset) corresponding
respectively to the passive and activelike phases. We find an excellent
agreement between the numerical simulations (blue points) and the
theoretical predictions (solid red lines) in Eq. (26).

where it is given by

P(x) = γα

v2
0 − α2

exp

(
− 2γα

v2
0 − α2

|x|
)

, −∞ � x � ∞.

(33)

Note that, unlike in the p > 1 case, the stationary solution is
no longer supported on a finite interval but extends over the
full space. From this solution in Eq. (33), we also see that,
when α approaches v0 from below, the stationary distribution
approaches a δ function P(x) = δ(x) centered at the origin
x = 0. Indeed, for any α � v0, the system collapses to a δ

function at x = 0 at long times. This can be seen by analyzing
the Langevin equation (3) which reads, in this case,

dx

dt
= −α sgn(x) + v0 σ (t ). (34)

Imagine that the particle starts at some position x0 > 0 with
positive velocity σ (0) = +1. If this velocity stays at +1, and
α > v0, then the particle gets driven toward the origin with
x(t ) = x0 − (α − v0) t . Thus, in a finite time, it will arrive at
the origin and subsequently it cannot escape the origin and
eventually collapses to the origin, giving rise to a δ function
at x = 0. If the initial velocity is negative σ (0) = −1, then it
arrives at the origin even faster and, consequently, the same
collapse phenomenon to the origin occurs.

D. The case p < 1

This case is very similar to the marginal case p = 1 with
α > v0, as discussed above. Indeed, in the large time limit,
the stationary solution is given by a δ function at the origin
P(x) = δ(x) for all p < 1 and arbitrary α > 0. To see this, we
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FIG. 8. Numerical verification of the theoretical prediction for
the stationary distribution P(x) = δ(x) for V (x) = α |x|p, with p =
1/2, α = 2, γ = 1, and v0 = 1, for different choices of the initial
position x0.

again consider the Langevin equation that now reads

dx

dt
= −α p sgn(x)|x|p−1 + v0 σ (t ). (35)

We now consider a similar argument as in the marginal case.
We first assume that the particle starts at 0 < x0 < x+ =
b1/(p−1)

p with bp = v0/(αp). In this case, irrespective of the
sign of σ (t ), the particle feels a force toward the origin, which
gets stronger and stronger as x → 0. Thus, in this case, the
particle eventually collapses to x = 0. If the initial position
x0 > x+ and if the initial noise is positive the particle initially
feels a force away from the origin. However, when the noise
changes sign, it reverses the direction. Since the walk, at
long times, is expected to be recurrent, at some time, it will
definitely arrive at x = x+, and with probability 1 it will cross
to the other side. Once x(t ) < x+, then again the particle gets
strongly attracted to the origin, leading to an eventual collapse
to the origin. A similar argument can be made for x0 < 0.
Thus, in all cases, we would expect that, for p < 1, no matter
what the starting position is, the stationary solution is just
P(x) = δ(x). We have verified this numerically for different
values of p < 1 and different values of x0. In Fig. 8 we show
the stationary P(x) for p = 1/2 and for different values of x0

(setting α = 2, v0 = 1, in which case x+ = 1 since p = 1/2).
Thus all the cases p > 1, p < 1, and p = 1 can be summa-

rized succinctly in the phase diagram in the (p, α) plane as
shown in Fig. 2.

III. RELAXATION TO THE STEADY-STATE

After having discussed the stationary state in the previous
section, it is natural to ask next how the time-dependent
probability distribution relaxes to this stationary state at long
times. In principle, this relaxation dynamics can be studied for
arbitrary confining potentials V (x). However, for simplicity
we focus here on the simple harmonic case with V (x) =
μx2/2, i.e., f (x) = −μx for which Eqs. (5) and (6) can be
solved explicitly, as we see later.

Before computing the full time-dependent solution P(x, t ),
it is useful and simpler to compute the time evolution of
the moments of the distribution. This already provides a

FIG. 9. Plot of λ0 as a function of γ for x0 = 0 [see Eq. (42)].

clue as to how the system relaxes to the stationary state.
In particular, it determines the leading relaxation timescale.
In fact, just the first two moments, e.g., the mean and the
variance, are enough for this purpose. The first two moments
of x(t ) can be computed directly from the Langevin equation
dx/dt = −μx + v0σ (t ), where 〈σ (t )〉 = 0 and 〈σ (t )σ (t ′)〉 =
exp(−2γ |t − t ′|). Integrating this Langevin equation, one gets

x(t ) = x0 e−μ t + v0 e−μt
∫ t

0
dt1σ (t1) eμt1 . (36)

Computing the first two moments gives

〈x(t )〉 = x0 e−μt , (37)

〈x(t )2〉 − 〈x(t )〉2 = v2
0

[
1

2γμ + μ2
+ 2e−t (μ+2γ )

4γ 2 − μ2

+ e−2μt

μ(μ − 2γ )

]
, (38)

where μ 
= 2γ in the second equation. For μ = 2γ , we get

〈x(t )2〉 − 〈x(t )〉2 = v2
0

8γ 2
[1 − e−4γ t − 4γ t e−4γ t ]. (39)

Thus the variance, unlike the mean, is independent of the
initial position x0.

For generic x0 
= 0 the first moment decays as ∼e−λ0 t , with
λ0 = μ, indicating that the largest relaxation time is μ−1.
For x0 = 0, the average 〈x(t )〉 remains zero at all times by
symmetry. Hence the lowest nonzero cumulant is the variance
Var(t ) = 〈x(t )2〉 − 〈x(t )〉2. We see from Eqs. (38) and (39)
that the variance decays to its stationary value Var(∞) at large
times as

d (t ) = Var(∞) − Var(t ) ∼ e−λ0 t , (40)

where the slowest relaxation mode is given by

λ0 = min(μ + 2γ , 2μ). (41)

Hence, to summarize (see Fig. 9),

λ0 =
{
μ if, x0 
= 0

min[μ + 2γ , 2μ] if, x0 = 0
. (42)

Thus for x0 = 0, there is a transition in the relaxation
behavior as one increases the jump rate γ for fixed μ. At
small γ the relaxation is given by μ + 2γ . When γ becomes
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FIG. 10. Relaxation in the harmonic potential V (x) = μ/2 x2

with choices of parameters μ = 2.0 and v0 = 1 and for two different
values of γ = 0.5 (red) and γ = 1.5 (black). The left panel shows
the decay of 〈x(t )〉 as a function of time, starting from x0 = 0.53.
Clearly, the relaxation is a pure exponential, as predicted in Eq. (37),
independently of γ . In the right panel, we plot d (t ) = Var(∞) −
Var(t ), where Var(t ) = 〈x(t )2〉 − 〈x(t )〉2 is the variance at time t .
According to the theoretical prediction in Eqs. (40) and (41), d (t ) ∼
e−λt with λ = min(μ + 2γ , 2μ). Since μ = 2.0, we expect a change
of behavior in the decay exponent λ at γ = 1: λ = 2 + 2γ if γ < 1
while λ = 4 if γ > 1. The simulations for γ = 0.5 < 1 and γ =
1.5 > 1 are in excellent agreement with this theoretical prediction.

larger than μ/2, the relaxation is given by 2μ [see Fig. 9
and Fig. 10 for a numerical verification of this change of
behavior at γ = γc = μ/2]. Note that for a passive Brownian
particle (i.e., γ → ∞ and v0 → ∞ limit keeping v2

0/γ = 2D
fixed) in a harmonic potential (Ornstein-Uhlenbeck case), the
relaxation behavior is ∼e−μ t for a generic x0 
= 0 and ∼e−2μ t

for x0 = 0, consistent with the γ → ∞ limit of Eq. (42).
Having computed the temporal behavior of the first two

moments, we now consider the full time-dependent proba-
bility distribution P±(x, t ). From the discussion above, we
have seen that the initial condition x0 = 0 is special and in
some sense more interesting, since the relaxation timescale λ0

undergoes a transition as a function of γ . Hence, in the fol-
lowing, we focus on the solution of the pair of Fokker-Planck
equations (5) and (6) with f (x) = −μx and the following
boundary and initial conditions:

P±(|x| → ∞, t ) = 0, and P±(x, t = 0) = 1
2δ(x). (43)

Note that this choice of initial condition ensures that
the particle, initially at the origin at t = 0, always remains

confined in the finite box [−v0/μ, v0/μ]. This can be easily
seen by solving (3) for the extreme cases, σ (t ) = 1 or −1
for 0 � t � ∞, which yields the deterministic solution x(t ) =
±(v0/μ)[1 − exp(−μt )]. So the distributions P±(x, t ) have
a finite support x ∈ [−v0/μ, v0/μ] for all time t . The total
probability density at time t is given by P(x, t ) = P+(x, t ) +
P−(x, t ). To see how P±(x, t ) and their sum P(x, t ) approach
their respective steady-state forms given in Eqs. (25) and (21),
we first provide the results from simulations in Fig. 11. In
this figure, P±(x, t ) are plotted as a function of x at two dif-
ferent times t = 0.5 and t = 1.0 (shown by black circles and
black squares), with parameters γ = 1/2, μ = 2, and v0 = 2.
Hence, the distribution has the support over [−1/2, 1/2].
Also, their sum P(x, t ) is plotted by red triangles and the green
polygons denote the steady-state P(x). We see clearly from
this figure that as time increases, P(x, t ) approaches the sta-
tionary P(x). Below, we compute analytically this relaxation
of P±(x, t ) to the steady-state at late times.

To solve the time-dependent equations Eqs. (5) and (6),
with f (x) = −μx, it is convenient to first take their Laplace
transforms with respect to time. We thus define

P̃±(x, s) =
∫ ∞

0
e−st P±(x, t ) dt . (44)

Taking Laplace transforms of Eqs. (5) and (6), integrating by
parts the left-hand side using the initial conditions in Eq. (43),
we get

(μx − v0)
∂P̃+
∂x

+ (μ − γ − s)P̃+ + γ P̃− = −1

2
δ(x),

(45)

(μx + v0)
∂P̃−
∂x

+ (μ − γ − s)P̃− + γ P̃+ = −1

2
δ(x),

for x ∈ [−v0/μ, v0/μ]. It is convenient to first make a change
of variable

x = v0

μ
(1 − 2z) , (46)

that transforms the domain x ∈ [−v0/μ, v0/μ] to z ∈ [0, 1].
We get [

z
∂

∂z
+ (1 − γ̄ − s̄)

]
P̃+ = −γ̄ P̃− − 1

4v0
δ

(
z − 1

2

)
,

[
(z − 1)

∂

∂z
+ (1 − γ̄ − s̄)

]
P̃− = −γ̄ P̃+ − 1

4v0
δ

(
z − 1

2

)
,

(47)

where P̃±(z, s) ≡ P̃±(v0(1 − 2z)/μ, s) and

γ̄ = γ /μ, and s̄ = s/μ. (48)

Let us remark that the original normalization condition∫ v0/μ

−v0/μ

[P+(x, t ) + P−(x, t )] dx = 1 (49)

translates, in terms of the z coordinate defined in Eq. (46), as∫ 1

0
[P+(z, t ) + P−(z, t )] dz = μ

2v0
. (50)
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FIG. 11. Plots of the probability distributions P±(x, t ) and P(x, t ) at times t = 0.5 and t = 1.0. The green filled polygons represent the
steady-state obtained at large times. At finite time there are δ function peaks at the edges of P(x, t ), i.e., at x±(t ) = ±(v0/μ)[1 − exp(−μt )]
(not shown in the figure) whose strength decreases to zero as e−γ t . Other parameters of the plot are x0 = 0, γ = 0.5, μ = 2.0, and v0 = 1.0.

Taking the Laplace transform with respect to t yields∫ 1

0
[P̃+(z, s) + P̃−(z, s)] dz = μ

2v0s
= 1

2v0s̄
, (51)

with s̄ = s/μ. We further choose, for convenience and without
any loss of generality,

v0 = 1.

We now solve these equations separately for z < 1/2 and
z > 1/2. Due to the presence of the δ function on the right-
hand side of Eq. (47), the solutions in these two disjoint
regions are related via the matching condition at z = 1/2,

P̃+(z = 1/2 + ε, s̄) − P̃+(z = 1/2 − ε, s̄) = −1/2,
(52)

P̃−(z = 1/2 + ε, s̄) − P̃−(z = 1/2 − ε, s̄) = 1/2,

where ε → 0+. Note that these jump discontinuities at z =
1/2 in the Laplace transforms P̃±(z, s) originates from the
δ function at x = 0 in the initial condition of P±(x, 0) in
Eq. (43). However, these jumps at z = 1/2 or x = 0 in the
Laplace transforms do not mean that the P±(x, t ) in real time
also have discontinuities at x = 0. Indeed, at all times t , the
function P±(x, t ) are both continuous at x = 0, as seen, e.g., in
Fig. 11. In addition, from Eqs. (47), it is clear that the solution
has the following symmetry property:

P̃±(z, s̄) = P̃∓(1 − z, s̄), (53)

and hence it is sufficient to solve Eqs. (47) in one region only,
say, 0 � z � 1/2. Using this symmetry (53), we can further
replace P̃+(z = 1/2 + ε, s̄) by P̃−(z = 1/2 − ε, s̄) in the first
line of Eq. (52), which then reads

P̃−(z = 1/2 − ε, s̄) − P̃+(z = 1/2 − ε, s̄) = −1/2. (54)

We now focus on the z < 1/2 case with the boundary
condition as in Eq. (54). From the two first order differential
equations in (47) one can eliminate P̃− (respectively P̃+) to get
a second-order differential equation for P̃+ (respectively, P̃−),

z(1 − z)
∂2P̃±
∂z2

+
[

c± − (1 + a + b)z

]
∂P̃±
∂z

− a bP̃± = 0,

(55)

where

a = 1 − s̄, b = 1 − 2γ̄ − s̄, (56)

c+ = 2 − γ̄ − s̄, and c− = 1 − γ̄ − s̄. (57)

Equation (55) is a standard hypergeometric differential
equation which has two linearly independent solutions. We
show in Appendix that the solution to this differential equa-
tion can be uniquely determined by using the normalization
condition in Eq. (51) (setting v0 = 1) and the jump conditions
in Eq. (52). Skipping details, the final solution for P̃(z, s) =
P̃+(z, s) + P̃−(z, s) reads

P̃(z, s) = B(s) zγ̄+s̄−1F (1 − γ̄ , γ̄ , γ̄ + s̄, z), (58)

where F (a, b, c, z) ≡ 2F1(a, b; c; z) is a standard hypergeo-
metric function. The amplitude B(s) is given by

B(s) = 22(γ̄+s̄)−3 �(s̄/2)�[γ̄ + (1 + s̄)/2]√
π�(γ̄ + s̄)

, (59)

and we recall s̄ = s/μ and γ̄ = γ /μ.
As a first check of this result, we note that in the s → 0

limit we get

P̃(z, s) → 1

s

μ

2
P(z), where P(z) = [z(1 − z)]γ̄−1

B(γ̄ , γ̄ )
, (60)

with B(α, β ) being the beta function. Expressing z in terms of
x using Eq. (46), and inverting the Laplace transform trivially,
we then recover the steady-state distribution given in Eq. (21).

In the opposite limit s → ∞, the Eq. (58) along with
Eq. (59) reduces to P̃(z, s) → (2z)γ̄+s̄−1/2 where we recall
that 0 � z � 1/2. By inverting the Laplace transform and
using the transformation in Eq. (46), one finds that at small
times P(x, t ) ∼ e−γ t

2 δ(x − x̄(t )) for x > 0, where

x̄(t ) = 1

μ
(1 − eμt ).

A similar analysis for 1/2 � z � 1 shows that P(x, t ) has a δ

function at position −x̄(t ) of strength e−γ t for x < 0. Hence,
at small times the distribution is

P(x, t ) ∼ e−γ t

2
[δ(x − x̄(t )) + δ(x + x̄(t ))].

To derive the relaxation to this steady-state, one needs to
investigate the poles of B(s) in Eq. (59) in the complex-s
plane. The poles in B(s) are either the poles of �(s̄/2) or that
of �(γ̄ + (1 + s̄)/2). This gives rise to two families of poles:
the first one occurs when s̄ = s

μ
= −2n for n = 0, 1, 2, . . .,

while the second one occurs when s̄ = s
μ

= −(1 + 2γ̄ + 2m)
for m = 0, 1, 2, . . .. The solution corresponding to n = 0, i.e.,
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a pole at s = 0, corresponds to the steady-state solution, while
the slowest relaxation mode to the steady-state is decided by
the zero closest to s = 0 on the negative s axis. This can be
either s = −2μ (corresponding to n = 1 in the first family)
or to s = −(μ + 2γ ) (corresponding to m = 0 in the second
family). Thus, comparing these two, we see that the slowest
relaxation mode corresponds to

s = − min(μ + 2γ , 2μ), (61)

and hence, we get

P(z, t ) − P(z) ∝ e−λ0t , for t → ∞, (62)

with λ0 = min[μ + 2γ , 2μ], as given in the second line of
Eq. (42), corresponding to x0 = 0. This result is, therefore,
completely consistent with the results from the moments.
Of course, it is straightforward also to evaluate the residues
at these poles, and obtain a formal infinite series of P(x, t )
providing the full time-dependent solution. While this is
straightforward, it is a bit cumbersome, and hence, we do not
give the explicit expression here.

IV. FIRST-PASSAGE PROPERTIES

In this section, we investigate the first-passage properties of
the active particle in a confining potential. The first-passage
probability density Ffp(t, x0) is defined as follows: For a
particle starting at x0 > 0, Ffp(t, x0) dt denotes the probability
that the particle crosses the origin x = 0 for the first time in the
interval [t, t + dt] [26–28]. It is conveniently computed from
the time derivative Ffp(t, x0) = −∂t Q(x0, t ), where Q(x0, t ) is
the survival probability of the particle up to time t , starting at
x0, in the presence of an absorbing wall at the origin x = 0.
Let Q±(x0, t ) denote the survival probability of the particle
starting at x0 with, respectively, positive or negative velocity.
Assuming that, initially, positive and negative velocities occur
with equal probability 1/2, we have Q(x0, t ) = (Q+(x0, t ) +
Q−(x0, t ))/2. To analyze these survival probabilities, it is well
known that studying their backward Fokker-Planck equations
is more convenient than the corresponding forward Fokker-
Planck equations [28]. In this backward Fokker-Planck ap-
proach, one treats the initial position x0 as a variable and by
analyzing the stochastic moves in the first time step using the
Langevin equation dx/dt = f (x) + v0 σ (t ), one can easily
write down the backward Fokker-Planck equations as

∂t Q+(x0, t ) = − γ Q+(x0, t ) + γ Q−(x0, t )

+ [ f (x0) + v0] ∂x0 Q+(x0, t ), (63)

∂t Q−(x0, t ) =γ Q+(x0, t ) − γ Q−(x0, t )

+ [ f (x0) − v0] ∂x0 Q−(x0, t ). (64)

These equations have to be solved in the regime x0 ∈ [0,+∞)
with the following boundary conditions: (a) Q−(x0 = 0, t ) =
0. This is because if the particle starts at the origin with a
negative velocity, then it cannot survive up to any finite time t .
However, if it starts at x0 = 0 with a positive velocity, then
it can survive up to any finite time t . Hence Q+(x0 = 0, t )
is not specified. (b) Q±(x0 → ∞, t ) = 1, which follows from
the fact that, if the particle starts initially at x0 = +∞, then,

irrespective of its initial velocity, it will survive with probabil-
ity 1 up to any finite time t . Furthermore, we specify the initial
conditions Q±(x0, t = 0) = 1.

To solve Eqs. (63) and (64), it is convenient to take
the Laplace transform with respect to t , Q̃±(x0, s) =∫ ∞

0 e−st Q±(x0, t ). Using the initial condition Q±(x0, t = 0) =
1 we find

−1 + sQ̃+(x0, s) = − γ Q̃+(x0, s) + γ Q̃−(x0, s)

+ [ f (x0) + v0] ∂x0 Q̃+(x0, s), (65)

−1 + sQ̃−(x0, s) = γ Q̃+(x0, s) − γ Q̃−(x0, s)

+ [ f (x0) − v0] ∂x0 Q̃−(x0, s). (66)

The boundary conditions (a) and (b) translate, respectively,
to Q̃−(x0 = 0, s) = 0 and Q̃±(x0 → ∞, s) = 1/s. Making a
shift,

Q̃±(x0, s) = 1/s + q̃±(x0, s), (67)

these inhomogeneous equations (65) can be transformed to a
homogeneous form,

[ f (x0) + v0] ∂x0 q̃+(x0, s)r

− (γ + s) q̃+(x0, s) + γ q̃−(x0, s) = 0,
(68)

[ f (x0) − v0] ∂x0 q̃−(x0, s)

+ γ q̃+(x0, s) − (γ + s) q̃−(x0, s) = 0,

with the boundary conditions q̃−(x0 = 0, s) = −1/s and
q̃±(x0 → ∞, s) = 0.

While these equations hold for a general force f (x) =
−V ′(x), they are hard to solve for arbitrary potentials. How-
ever, for the harmonic case V (x) = (μ/2) x2, they can be
explicitly solved as we show below. Substituting f (x) = −μ x
in these equations, they can be rewritten in the following
convenient form:

L̂+ q̃+(x0, s) = −γ q̃−(x0, s), (69)

L̂− q̃−(x0, s) = −γ q̃+(x0, s), (70)

where the pair of operators L̂± are given by

L̂± = [−μx0 ± v0] ∂x0 − (γ + s) (71)

and the boundary conditions are as before,

q̃−(x0 = 0, s) = −1/s (72)

q̃±(x0 → ∞, s) = 0. (73)

Applying L̂− on both sides of Eq. (69) and using Eq. (70),
one can eliminate q̃−(x0, s) and obtain a closed equation
for q̃+(x0, s) only. Similarly, applying L̂+ on both sides of
Eq. (70) and using Eq. (69), one obtains a closed equation
for q̃−(x0, s) only. These equations read, for x0 ∈ [0,+∞),(

μ2x2
0 − v2

0

)
∂2

x0
q̃± + [μ(μ + 2γ + 2s)x0 ± μv0]∂x0 q̃±

+ (s2 + 2sγ )q̃± = 0. (74)

We now make the customary change of variable μx0 = v0

(1 − 2z) (we will see that this change of variable transforms
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the differential equations in standard hypergeometric differen-
tial equations). The domain 0 � x0 < ∞ transforms to −∞ <

z � 1
2 for z. The equations in the z variable read

z(1 − z)∂2
z q̃± + [c′

± − (a′ + b′ + 1)z]∂zq̃± − a′b′q̃± = 0,

(75)

where

a′ = s

μ
, b′ = s + 2γ

μ
, and (76)

c′
+ = 1 + γ + s

μ
, c′

− = γ + s

μ
. (77)

Note that the parameter v0 is completely eliminated in
Eq. (75). It is sufficient to solve the equations (75) for one
of them, either q̃+ or q̃−. It turns out to be more convenient
to solve for q̃−, for which the boundary conditions, using (72)
and (73), are simply

q̃−(z = 1/2, s) = −1

s
(78)

q̃−(z → −∞, s) = 0. (79)

Identifying the equation for q̃−(z, s) (75) as a standard hy-
pergeometric differential equation, its general solution can be
written as

q̃−(z, s) = C1 F (a′, b′, c′
−, z) + C2 z1−c′

− F (1 + a′ − c′
−, 1

+ b′ − c′
−, 2 − c′

−, z), (80)

where F (a′, b′, c′, z) =2F1(a′, b′, c′, z) is a standard hyperge-
ometric function (the same as before). The constants C1,2

are fixed from the two boundary conditions (78) and (79).
Simplifying, we finally get

q̃−(z, s) = −1

s

F
(

s
μ
,

s+2γ

μ
,

s+γ

μ
, z

)
F

(
s
μ
,

s+2γ

μ
,

s+γ

μ
, 1

2

) . (81)

From Eq. (70), we can then obtain the solution for q̃+(z, s).
Using some identities of hypergeometric functions, one can
simplify and obtain the following result:

q̃+(z, s) = −γ

s

F
(

s
μ
,

s+2γ

μ
,

s+γ+μ

μ
, z

)
D(s, γ , μ)

, (82)

where the denominator D(s, γ , μ) is given by

D(s, γ , μ)

= (γ + s) F

(
s

μ
,

s + 2γ

μ
,

s + γ + μ

μ
,

1

2

)

+1

2

s(s+2γ )

(s+γ+μ)
F

(
s+μ

μ
,

s+2γ+μ

μ
,

s+γ+2μ

μ
,

1

2

)
.

(83)

Using Eq. (67), we can then express the Laplace transform of
the survival probability Q̃−(x0, s) as

Q̃−(x0, s) = 1

s

[
1 −

F
(

s
μ
,

s+2γ

μ
,

s+γ

μ
, 1

2 (1 − μx0

v0

)
F

(
s
μ
,

s+2γ

μ
,

s+γ

μ
, 1

2

)
]
. (84)

Similarly, Q̃+(x0, s) can be expressed as

Q̃+(x0, s) = γ

s

[
1 −

F
(

s
μ
,

s+2γ

μ
,

s+γ+μ

μ
, 1

2 (1 − μx0

v0

)
D(s, γ , μ)

]
.

(85)

Inverting these Laplace transforms in Eqs. (84) and (85)
and obtaining explicitly the survival probabilities Q±(x0, t )
from Eq. (67) at any arbitrary time t seems to be extremely
hard. However, one can make progress at late times. Since the
particle moves in a confining potential, we would expect that
the survival probability Q(x0, t ) decays exponentially in time
for large t ,

Q(x0, t ) ∼ e−θ t , (86)

with a decay exponent θ . For an active particle, with symmet-
ric initial conditions, we anticipate that both Q±(x0, t ) decay
exponentially with the same exponent θ , i.e., Q±(x0, t ) ≈
e−θ t . For a passive Ornstein-Uhlenbeck particle [correspond-
ing to the harmonic potential V (x) = (μ/2) x2], we recall that
the corresponding decay exponent is given simply by

θOU = μ. (87)

In this case, it simply coincides with the inverse relaxation
time μ, as discussed in the previous section. However, for
an active particle, we show below that the decay exponent
θ associated to the survival probability (or, equivalently, for
the first-passage probability) is highly nontrivial and different
from the inverse relaxation time discussed in the previous
section [see Eq. (42)].

To extract the decay exponent θ from the Laplace trans-
forms q̃±(z, s) in Eqs. (85) and (84), we again note that the
exponential decay in real time corresponds to having a pole on
the negative s axis in the Laplace space. Hence, from Eq. (84),
the denominator must vanish at s = −θ . Hence the exponent
θ is given by the lowest positive root of

F

(−θ

μ
,

2γ − θ

μ
,
γ − θ

μ
,

1

2

)
= 0. (88)

Similarly, setting the denominator in Eq. (85) to 0 gives
another equation for θ , D(−θ, γ , μ) = 0, which can be shown
to coincide with Eq. (88), on using certain identities of hyper-
geometric functions. Clearly, from Eq. (88), the solution θ can
be expressed in a scaling form

θ = μU

(
γ

μ

)
, (89)

where the scaling function U (x) can be evaluated numerically,
e.g., with Mathematica (as shown by the solid line in Fig. 12).
It is easy to derive the asymptotic behaviors of the scaling
function U (x). Consider first the limit μ → ∞ [which corre-
sponds to x → 0 limit of U (x) in Eq. (89)]. In this case the
position of the particle gets slaved to the noise v0σ (t ). To see
this, we note the Langevin equation dx/dt = −μ x + v0σ (t )
indicates that, as μ → ∞, one can ignore the term dx/dt
and the solution is effectively x(t ) ≈ (v0/μ) σ (t ). The noise
field σ (t ) is just a Poisson process with rate γ and hence the
probability that it does not change sign up to time t is simply
∼e−γ t . This indicates that θ → γ as μ → ∞. Hence the
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FIG. 12. We measure the decay exponent θ , characterizing the
exponential decay of the survival probability Q(x0, t ) ∼ e−θ t for the
harmonic potential V (x) = μx2/2 with parameters μ = 1, v0 = 1,
as a function of γ . The solid line corresponds to the root of the hy-
pergeometric function in Eq. (88) while the filled red dots correspond
to the numerically obtained values, showing excellent agreement.

scaling function in (89) must behave as U (x) ≈ x as x → 0.
In the opposite limit x → ∞, which corresponds to γ → ∞,
the noise σ (t ) flips sign extremely rapidly and the process x(t )
reduces to the passive Ornstein-Uhlenbeck process for which
θ = μ, as discussed earlier. Hence, we expect U (x) → 1 as
x → ∞. Summarizing,

U (x) =
{

x for x → 0
1 for x → ∞ . (90)

We also performed numerical simulations for μ = 1 (and
setting v0 = 1) and determined θ as a function of γ , as
shown by the filled black dots in Fig. 12. The results of the
simulations are in excellent agreement with the theoretical
result shown by the solid line.

The exponential decay of the survival probability
Q(x0, t ) ∼ e−θt for large t in Eq. (86) indicates that the first-
passage probability density also decays exponentially with the
same rate, Ffp(t, x0) = −∂t Q(x0, t ) ∼ e−θt , where θ is given
by the lowest positive root of Eq. (88) and plotted as a function
of γ in Fig. 12. Indeed the mean first-passage time, which is
finite, was already computed exactly in Ref. [23]; however, the
full first-passage-time distribution was not studied in detail.

We note that for the harmonic potential, the leading inverse
relaxation time λ0 = μ starting from a generic initial point
x0 
= 0 in Eq. (42) and the first-passage exponent θ in Eq. (89)
are different from each other. Indeed for a general γ , the first-
passage exponent θ � λ0 = μ. One way to think about these
two inverse timescales is as follows. Consider a stochastic
Markov process in a confining potential in the presence of
an absorbing boundary at x = a. When a → ∞, the spectrum
of the Fokker-Planck operator will have the lowest eigen-
value E0(a → ∞) = 0 and the first excited state E1(a → ∞)
(which is also the gap) gives the inverse relaxation time, i.e.,
λ0 = E1(a → ∞). Now imagine bringing the absorbing wall
from ∞ to a finite value a. The spectrum of the Fokker-Planck
operator will change continuously with a. As a becomes finite,
the ground state E0(a) is precisely the first-passage exponent

θ (a). There exists an interlacing theorem [29] that predicts,
among other things, that E0(a) � E1(∞), i.e., θ (a) � λ0. Our
result for the active RTP in a harmonic well for a = 0, namely
θ (0) � λ0, seems to also satisfy this inequality.

V. CONCLUSION

To summarize, we have studied the static and dynamics
of an RTP in one dimension in the presence of an external
confining potential of the type V (x) = α |x|p, with p > 0. We
showed that the stationary probability density P(x) has a rich
behavior in the (p, α) plane. For p > 1, the distribution has
finite support in [x−, x+] and there is an interesting shape
transition in the (p, α) plane across a critical line αc(p). For
α > αc(p), the distribution P(x) diverges at x±, characteristic
of an activelike phase, while for α < αc(p), P(x) vanishes at
x±, corresponding to a passivelike phase. On the marginal line
p = 1, there is an additional transition as a function of α: For
α < αc = v0, the stationary distribution P(x) is a symmetric
exponential, while for α � αc = v0, the stationary distribu-
tion collapses to a δ function at the origin, P(x) = δ(x).
Furthermore, for 0 < p < 1 and all α > 0, the stationary
state is again a δ function P(x) = δ(x). These results are
summarized in the phase diagram in Fig. 2. In addition, for
the harmonic case p = 2, we have obtained exact results for
the relaxation to the stationary state and also the probability
of the first-passage time to the origin. There is another exactly
solvable case for the relaxation as well as the first-passage
properties. This corresponds to the marginal case p = 1,
i.e., the active particle moving in a potential V (x) = α |x|.
The first-passage properties of this model to an absorbing
boundary at an arbitrary position a turns out to be extremely
interesting. These results will be reported in a forthcoming
publication.

There remain several interesting open questions. While
for the two special cases p = 2 (harmonic potential) and
p = 1 (marginal case) we have obtained exact relaxation and
the first-passage properties, it remains challenging to obtain
analytical results for other values of p. Another interesting
extension of our results would be to investigate the relaxation
and first-passage properties of an RTP in higher dimensions.
In higher dimensions, there exist some approximate results for
the statics and dynamics of an RTP in a confining potential
[21,30,31]. However, first-passage properties have not been
systematically studied for an RTP in a confining potential in
higher dimensions. It would be interesting to find an exactly
solvable model in higher dimensions for the relaxation to the
steady-state as well as for the first-passage properties. Very
recently, the free RTP in one -dimension but in the presence
of resetting to the initial position was exactly solved both for
the stationary state as well as for the first-passage properties
[32]; it would be interesting to see how an external potential
generalizes these results.

Finally, we have studied here the statics, dynamics, and
first-passage properties of a run-and-tumble particle in a
confining potential. Another well-studied model for active
particles is the so-called active Brownian motion in two
dimensions in the presence of a confining potential. While
some results on the steady-state properties have been derived
[6,33–36], there are very few studies on the relaxational
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dynamics to the steady-state and first-passage properties (see,
however, Ref. [33] for some recent analytical results). It would
thus be interesting to find an exactly solvable model for the
relaxation and for the first-passage properties.
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APPENDIX: DERIVATION OF P̃(z, s) IN EQS. (58) AND (59)

In this Appendix, we derive the solution for P̃(z, s) given
in Eqs. (58) and (59). The general solution of the second-order
differential equation (55) is given as a linear combination of
independent hypergeometric functions as

P̃+(z, s̄) = A F (1 − s̄, 1 − 2γ̄ − s̄, 2 − γ̄ − s̄, z)

+ B zγ̄+s̄−1 F (γ̄ ,−γ̄ , γ̄ + s̄, z), (A1)

P̃−(z, s̄) = C F (1 − s̄, 1 − 2γ̄ − s̄, 1 − γ̄ − s̄, z)

+ D zγ̄+s̄ F (1 + γ̄ , 1 − γ̄ , 1 + γ̄ + s̄, z), (A2)

where F (a, b, c, z) ≡ 2F1(a, b; c; z) is a standard hypergeo-
metric function and A, B,C, and D are constants yet to be
fixed. We first note that the constants C and D are related
to A and B. This is because P̃+ and P̃− satisfy coupled first-
order differential equations. Indeed, by plugging these general
solutions into the two first-order differential equations (47),
for z < 1/2, it is then easy to see that

C = −1 − γ̄ − s̄

γ̄
A and D = γ

γ̄ + s̄
B. (A3)

Consequently, the solutions then read

P̃+(z, s̄) = A F (1 − s̄, 1 − 2γ̄ − s̄, 2 − γ̄ − s̄, z)

+ B zγ̄+s̄−1 F (γ̄ ,−γ̄ , γ̄ + s̄, z), (A4)

P̃−(z, s̄) = A
γ̄ + s̄ − 1

γ̄
F (1 − s̄, 1 − 2γ̄ − s̄, 1 − γ̄ − s̄, z)

+ B
γ

γ̄ + s̄
zγ̄+s̄ F (1 + γ̄ , 1 − γ̄ , 1 + γ̄ + s̄, z),

(A5)

where there are only two constants, A and B, to be determined.
One can check that the above solutions also satisfy the second
equation in (47).

The two constants A and B can be determined from (i) the
jump condition (54) and (ii) the normalization condition in
Eq. (51) with v0 = 1. Using the symmetry condition across
z = 1/2, this normalization condition in Eq. (51) reduces to∫ 1

2

0
[P̃+(z, s̄) + P̃−(z, s̄)]dz = 1

4s̄
. (A6)

Fixing the two constants A and B by the two above condi-
tions (i) and (ii), after straightforward algebra, we find that
P̃(z, s̄) = P̃+(z, s̄) + P̃−(z, s̄), for z < 1/2, reads

A = 0, B = 2γ̄+s̄−2

−F
(
1−γ̄ , γ̄ ; γ̄+s̄; 1

2

)+2 F
(−γ̄ , γ̄ ; γ̄+s̄; 1

2

) .

(A7)

The denominator in the expression for B in Eq. (A7) can
further be simplified using the identities of hypergeometric
function, giving

−F

(
1 − γ̄ , γ̄ , s̄ + γ̄ ,

1

2

)
+ 2 F

(
−γ̄ , γ̄ , γ̄ + s̄,

1

2

)

=
√

π 21−γ̄−s̄ �[γ̄ + s̄]

�
[

s̄
2

]
�

[ 1+2γ̄+s̄
2

] . (A8)

Substituting A and B into Eqs. (A4) and (A5) and adding them
gives Eqs. (58) and (59).
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