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Nonequilibrium phase transition in an open quantum spin system with long-range interaction
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We investigate a nonequilibrium phase transition in a dissipative and coherent quantum spin system using
the quantum Langevin equation and mean-field theory. Recently, the quantum contact process (QCP) was
theoretically investigated using the Rydberg antiblockade effect, in particular, when the Rydberg atoms were
excited in s states so that their interactions were regarded as being between the nearest neighbors. However, when
the atoms are excited to d states, the dipole-dipole interactions become effective, and long-range interactions
must be considered. Here we consider a quantum spin model with a long-range QCP, where the branching
and coagulation processes are allowed not only for the nearest-neighbor pairs but also for long-distance pairs,
coherently and incoherently. Using the semiclassical approach, we show that the mean-field phase diagram of our
long-range model is similar to that of the nearest-neighbor QCP, where the continuous (discontinuous) transition
is found in the weak (strong) quantum regime. However, at the tricritical point, we find a new universality class,
which was neither that of the QCP at the tricritical point nor that of the classical directed percolation model with
long-range interactions. Implementation of the long-range QCP using interacting cold gases is discussed.
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I. INTRODUCTION

Nonequilibrium phase transitions into an absorbing state
have been extensively studied [1–11]. However, in recent
years, they have attracted a significant amount of attention
because some of these transitions have been experimen-
tally realized in turbulence [12,13] and dissipative Rydberg
atom quantum systems [14]. One of the most robust classes
of absorbing transitions is the directed percolation (DP)
class [6–10], in which the dynamics spreads by a contact
process (CP). An active particle becomes inactive at a rate
γ , whereas an inactive particle becomes active at a rate κ

when it contacts a neighboring active particle. If κ/γ is small,
then the system falls into an absorbing state. Otherwise, it is
in an active state. The CP model can be used for modeling
the epidemic spread of infectious disease and the reaction-
diffusion process of interacting particles. On the other hand,
the Reggeon field theory reveals the universal properties of the
DP class [15,16].

The CP can be generalized in various ways. Here we
introduce two cases associated with the main topic of this
paper. One is the long-range CP. This process was inspired
by disease contagion by long-distance insect flight. We re-
call a simple lattice model associated with the long-range
CP [17–22], in which the activation process is modified as
follows. At a rate κP(x), each active particle activates an
inactive particle at distance |x| in a random direction. P(x)
is thought to follow the power law P(x) ∼ 1/|x|d+p, where d
is the spatial dimension and p > 0 is a control parameter. Due
to the long-range interaction, the transition property of the DP
class can be changed when p < pc, where pc depends on the
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dimension d [18]. When p > pc, the long-range interaction
is irrelevant. The other variant is the so-called tricritical CP
[23–28]. In this modification, in addition to the ordinary CP,
an inactive particle becomes active at a rate ω when it contacts
two consecutive active particles. This tricritical CP exhibits a
first-order transition for κ < ω and a second-order transition
for κ > ω. Thus, a tricritical point occurs at κ = ω with the
tricritical directed percolation (TDP) class.

Although the DP class is theoretically well established,
experimental realization of DP behavior has been elusive [29].
It was only recently that two experiments associated with
this DP class were implemented [12–14]. We are particularly
interested in the experiment in dissipative quantum systems
of Rydberg atoms. An essential factor for realizing the DP
class in Rydberg atoms is the antiblockade effect. An inactive
spin is activated by detuning the excitation energy so that it
is comparable to the energy of interaction with the active spin
of the nearest neighbor [30–32]. This is reminiscent of the
branching process in the CP. We remark that the antiblockade
dynamics can be implemented incoherently when strong de-
phasing noise is applied. Then, quantum coherence becomes
negligible, and the dynamics is reduced to the classical DP
process. When quantum coherence is effective, this case is
called the quantum contact process (QCP), and coherent and
incoherent CPs can be realized simultaneously [33–35]. Com-
petition between the two types of process leads to the TDP
class at the tricritical point. This resembles the behavior of
spin-glass systems, in which competing interactions between
spins generate a negative cubic term of the Landau free energy
and a tricritical point. In the strong quantum regime, the
system undergoes a discontinuous transition.

When Rydberg atoms interact via the dipole-dipole inter-
action, it is natural to consider cold atomic systems with long-
range interaction. Similar studies of dipole-dipole interactions
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were performed in quantum systems associated with several
phenomena, for instance, quantum magnetism [36–39], An-
derson localization [40–43], Rydberg energy transport [44],
and Rydberg blockade [45]. However, the long-range Ryd-
berg atom system under the antiblockade condition has not
been investigated yet, even though the results are expected
to contribute to theoretical development of the QCP. In this
paper, we consider the long-range QCP in the open quantum
spin system. We set up the Lindblad equation for the density
matrix in terms of the Hamiltonian with long-range interaction
and the dissipators for decay and long-range branching and
coagulation. Using mean-field (MF) theory, we obtain a phase
diagram including absorbing and active states and discontin-
uous and continuous transition curves with a tricritical point.
This diagram is similar to that of the classical TDP model.
However, the continuous transition changes from the ordinary
DP to the long-range DP class [17,21]. The TDP transition
at the tricritical point also changes. We expect it to be in a
long-range TDP class corresponding to the TDP; however,
it has not been explored yet. Using the scaling argument,
we determine the critical exponents of the long-range TDP
in the MF limit. Moreover, we determine the upper critical
dimension.

The remainder of this paper is organized as follows. In
Sec. II B, we derive the quantum Langevin equation of the
long-range QCP. The MF equation and its phase diagram are
presented in Sec. III, and the scaling behavior and upper crit-
ical dimension are presented in Sec. IV. Finally, we conclude
our work and discuss the relationship between our model and
the behavior of interacting cold gases in Sec. V.

II. EQUATIONS OF MOTION FOR THE LONG-RANGE
QUANTUM CONTACT PROCESS

A. Lindblad equation

The Lindblad equation describes a quantum system cou-
pled to the environment in the context of the Born-Markov
approximation [46]. We consider a quantum spin model on a
d-dimensional lattice, where each spin state denotes the state
of a single atom at a site with |↑〉, that is, an active state,
and |↓〉, that is, an inactive state. Interactions between atoms
and between atoms and the baths may result in the dynamics
of the QCP, which are described by the Lindblad equation.
The equation is generally composed of the Hamiltonian and
dissipative terms. Our equation also contains the coherent
terms for branching and coagulation and incoherent ones for
not only branching and coagulation but also decay of active
states (see Fig. 1) and is given by

∂t ρ̂ = −i[ĤS, ρ̂] +
∑

l

[
L̂(d )

l ρ̂L̂(d )†
l − 1

2

{
L̂(d )†

l L̂(d )
l , ρ̂

}]

+
∑
i=b,c

∑
l,m

[
L̂(i)

ml ρ̂L̂(i)†
ml − 1

2

{
L̂(i)†

ml L̂(i)
ml , ρ̂

}]
, (1)

where the Hamiltonian ĤS is defined as

ĤS = ω
∑
l,m

P(|xm − xl |)(n̂mσ̂+
l + n̂mσ̂−

l ), (2)

FIG. 1. Schematic of QCP with long-range interaction in one
dimension. In this model, there are two incoherent processes and
one coherent process, which are represented by the total Hamiltonian
in Eq. (7). The incoherent processes are induced by interaction
with harmonic baths. The first incoherent process decays each site
(denoted as l) by raising the harmonic bath’s state at the rate γ , given
by the second summation term in Eq. (8). The second incoherent
process consists of branching and coagulation. Specifically, if site m
is in an active state, then site l branches (coagulates) at a rate κPml

via directional links (denoted as ml) by raising the bath’s state, which
is given by the second summation term in Eqs. (9) and (10). The
rate decreases algebraically as the distance increases. Similarly, the
coherent process, which consists of quantum long-range branching
and coagulation and involves the off-diagonal elements of the density
matrix during the dynamics, is induced by the system Hamiltonian
[Eq. (2)].

and the Lindblad jump operators of decay, branching, and
coagulation are given by

L̂(d )
l = √

γ σ̂−
l , (3)

L̂(b)
ml = [κP(|xm − xl |)]1/2n̂mσ̂+

l , (4)

L̂(c)
ml = [κP(|xm − xl |)]1/2n̂mσ̂−

l , (5)

respectively. Here σ̂+
l and σ̂+

l are the raising and lowering
operators of the spin at site l , respectively, which are defined
in terms of the spin basis as σ̂+ = |↑〉〈↓| and σ̂− = |↓〉〈↑|.

Because n̂l is the number operator of the active state, n̂ =
|↑〉〈↑|, the composite operator n̂mσ̂+

l or n̂mσ̂−
l with l �= m

means that the active state at site m activates or deactivates
the state at l , representing the branching and coagulation pro-
cesses, as seen in Eqs. (2), (4), and (5). Instead, L̂(d )

l denotes
the decay dynamics of the active state at l . Therefore, if there
is no active state, then no further dynamics occurs, implying
an absorbing state. Note that m and l need not be a nearest-
neighbor pair in the interaction. Indeed, P(|xm − xl |) in the
dynamic equation [Eq. (1)] represents the Lévy distribution,
which decays as

P(|xm − xl |) ∼ 1/|xm − xl |p+d , (6)

and which determines the amplitude of the long-range interac-
tion. Here we set P(|xm − xl |) = 0 when m = l . In addition,
the distribution satisfies the normalization condition,∑

m

P(|xm − xl |) =
∑

l

P(|xm − xl |) = 1.

It is obvious that the dynamics of populations (the diag-
onal elements of ρ̂) in Eq. (1) in the absence of coherent
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dynamics is equivalent to the ordinary long-range contact pro-
cess. Consequently, depending on parameters such as κ and γ ,
the steady state for ω = 0 shows the active or inactive phase,
and the transition between them belongs to the long-range DP
universality class. If ω is increased, then the coherence may
change the nature of the transition in the system. Note that
in the limit p → ∞, our model becomes equivalent to the
nearest-neighbor QCP in previous works [34,35].

B. Total Hamiltonian

By solving the Lindblad equation, Eq. (1), one may find the
phase diagram of the system; however, this is not easy when
system size N becomes large, N � 1. Instead, in this work
we take the semiclassical approach starting with the quantum
Langevin equation, as seen in previous works for the nearest-
neighbor QCP [34,35].

To derive the Langevin equations, we first set the
equivalent Hamiltonian for a system with N spins, Nb

harmonic baths, and their interactions, where Nb is given by
Nb = 2N2 − N , as follows. The total Hamiltonian should be
given by

Ĥtot = ĤS +
∑

l

Ĥd (l ) +
∑
m,l

[Ĥb(m, l ) + Ĥc(m, l )], (7)

where ĤS is the same as in Eq. (2). There are three types of
Hamiltonians for the baths and interactions (see Fig. 1). First,
the Hamiltonian Ĥd , which corresponds to the decay process,
is assigned to each spin, and Ĥd (l ) defined on spin l is then
given by

Ĥd (l ) =
∑

q

θqd̂†
l,qd̂l,q +

∑
q

[λqd̂†
l,qσ̂

−
l + H.c.], (8)

where θq denotes the energy of bath particles with momentum
q, and H.c. denotes the Hermitian conjugate. Here d̂†

l,q and

d̂l,q are the creation and annihilation operators, respectively,
of particles of the bath associated with spin l , and λq is the
coupling strength of the decay process of the active state
accompanied by emission of a single bath particle. Note that
baths having different site indices are mutually independent,
which is represented in the commutation relation for d̂†

l,q and

d̂l,q, that is, [d̂l,q, d̂†
m,q′ ] = δl,mδq,q′ .

The other Hamiltonians, for branching (Ĥb) and coagula-
tion (Ĥc), are defined at each link (l, m) with direction, which
means Ĥb(c)(m, l ) �= Ĥb(c)(l, m). The branching and coagu-
lation Hamiltonians are also given by the bath energy and
interactions, similarly to that of the decay process. Because
branching and coagulation are allowed between long-distance
spins, the interaction between the system and bath particles
contains the distribution P(|xm − xl |), so the Hamiltonians are
given by

Ĥb(m, l ) =
∑

q

φqb̂†
ml,qb̂ml,q

+
∑

q

[χq
√

Pml b̂†
ml,q n̂mσ̂+

l + H.c.], (9)

Ĥc(m, l ) =
∑

q

φqĉ†
ml,qĉml,q

+
∑

q

[χq
√

Pml ĉ†
ml,q n̂mσ̂−

l + H.c.], (10)

where Pml is shorthand notation for the Lévy distribution.
Further, b̂ml,q and ĉml,q are also operators of the harmonic
baths defined on the directional link, which satisfy the com-
mutation relation, [b̂ml,q, b̂†

m′l ′,q] = δl,l ′δm,m′ (the relations for

ĉlm,q and ĉ†
lm,q are obtained by replacing b̂ and b̂† with ĉ and

ĉ†, respectively). Further, φq and χq are the energy function
and coupling between the system and baths, respectively,
where the branching and coagulation Hamiltonians share the
same functions. Note that we have thus used Nb independent
baths, including N decay, N (N − 1) branching, and N (N − 1)
coagulation baths.

To obtain Eq. (1) for the density operator, we consider that
the bath is in a pure state |0〉B with zero temperature such
that d̂|0〉B = b̂|0〉B = ĉ|0〉B = 0. Following the Born-Markov
approximation, where the density operator of the total system
can be given approximately by the product state, ρ̂(t ) ⊗ ρ̂B,
with the stationary bath density ρ̂B = |0〉〈0|B [46], the density
operator ρ̂(t + dt ) is given by

ρ̂(t + dt ) = trB
{
e−idtĤtot ρ̂(t ) ⊗ |0〉〈0|BeidtĤtot

}
. (11)

Expanding the evolution operators up to the second order of
dt and using 〈ĤI〉B, where ĤI is the part of Eq. (7) representing
the interaction between the system and bath, and 〈·〉B denotes
〈0| · |0〉B with the bath state, we write Eq. (11) up to the order
of dt2:

ρ̂(t + dt ) = ρ̂(t ) − idt[ĤS, ρ̂(t )] + dt2
(
ĤSρ̂(t )ĤS − 1

2

{
Ĥ2

S , ρ̂(t )
}) + dt2

(〈ĤI ρ̂(t ) ⊗ |0〉〈0|BĤI〉B − 1
2

{〈
Ĥ2

I

〉
B, ρ̂(t )

})
. (12)

Because 〈d̂qd̂†
q 〉B = 1, 〈b̂qb̂†

q〉B = 1, and 〈ĉqĉ†
q〉B = 1, and otherwise the correlators of bath particles are zero, the third line in

Eq. (12) can be written as

dt2
∑

l

∑
q

λ2
q

[
σ̂−

l ρ̂(σ̂−
l )† − 1

2
{(σ̂−

l )†σ̂−
l , ρ̂}

]
+ dt2

∑
l,m

∑
q

χ2
q Pml

[
n̂mσ̂+

l ρ̂(n̂mσ̂+
l )† − 1

2
{(n̂mσ̂+

l )†n̂mσ̂+
l , ρ̂}

]

+ dt2
∑
l,m

∑
q

χ2
q Pml

[
n̂mσ̂−

l ρ̂(n̂mσ̂−
l )† − 1

2
{(n̂mσ̂−

l )†n̂mσ̂−
l , ρ̂}

]
.
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In accordance with the Weisskopf-Wigner theory [47], we
extract the slow mode of bath particles around q = 0 by
setting λq ≈ λq=0 and χq ≈ χq=0. Then the summations over
q become

∑
q λ2

q ≈ λ2
0

∑
q and

∑
q χ2

q ≈ χ2
0

∑
q. To eval-

uate
∑

q, we use the definition of the Dirac δ function,
(2π )−1 ∑

q exp(−iωqτ ) = δ(τ ), with a linear function ωq of
q. Inserting τ = 0 in both exp(−iωqτ ) and δ(τ ), one can see

dt2 λ2
0

∑
q

→ dt 2πλ2
0 , dt2 χ2

0

∑
q

→ dt 2πχ2
0 ,

where we have used the fact that δ(0) → 1/dt as dt → 0.
Therefore, we can reduce dt2 to dt in the third line of Eq. (12).
Defining γ = 2πλ2

0 and κ = 2πχ2
0 , and retaining the order of

dt , we arrive at the Lindblad equation [Eq. (1)] from Eq. (12).

C. Quantum Langevin equation

Now we derive the equations of motion for the system
degrees of freedom from the Heisenberg equation in the total
Hilbert space. During the procedure, noise and the influence
of heat baths will be defined so that the quantum Langevin
equation, which is the starting point for the semiclassical
theory of the long-range QCP, can be obtained.

For the system operators âl = σ̂ x
l , σ̂l

y, n̂l , which are
Hermitian operators, the Heisenberg equation is given by
∂t âl (t ) = i[Ĥ, âl (t )]; then

∂t âl = i

⎧⎨
⎩[ĤS, âl ] + [Ĥd (l ), âl ]

+
∑

m, j=b,c

[Ĥj (m, l ) + Ĥj (l, m), âl ]

⎫⎬
⎭. (13)

The first term in Eq. (13) consists only of system operators:

i[ĤS, âl ] = iω
∑

m

Pml ([n̂mσ̂+
l , âl ] + [n̂l σ̂

+
m , âl ] + H.c.),

(14)

and the other terms, which are obtained from commutation
with the interaction terms, are mixtures of the system and bath
operators, as shown below. The commutation with the decay
Hamiltonian reads

i[Ĥd (l ), âl ] =
∑

q

λq(id̂†
l,q[σ̂−

l , âl ] − i[âl , σ̂
+
l ]d̂l,q), (15)

that with the branching Hamiltonian is

i[Ĥb(m, l ), âl ] =
∑

q

χq
√

Pml (ib̂†
ml,q[n̂mσ̂+

l , âl ] + H.c.),

(16)

and, finally, that with the coagulation Hamiltonian is

i[Ĥc(m, l ), âl ] =
∑

q

χq
√

Pml (iĉ†
ml,q[n̂mσ̂−

l , âl ] + H.c.).

(17)

Note that i[Ĥb(c)(l, m), âl ] can be obtained by replacing l
and m with each other, except for âl , in Eqs. (16) and (17).

Here the Heisenberg picture has been used for all operators
such that âl ≡ âl (t ) = eiĤt âl (0)e−iĤt , where âl (0) denotes
the Schrödinger operator. Henceforth, an operator without an
explicit time represents the Heisenberg operator at time t .

To proceed a step further, we need functional forms of
b̂ml,q, ĉml,q, and d̂l,q, whose equations of motion are also ob-
tained from the Heisenberg equations, ∂t d̂l,q = i[Ĥd (l ), d̂l,q],
∂t b̂ml,q = i[Ĥb(m, l ), b̂ml,q], and ∂t ĉml,q = i[Ĥc(m, l ), ĉml,q],
respectively. It is easy to show that the solutions are given by

d̂l,q = d̂l,q(0)e−iθqt − iλq

∫ t

0
dτ σ̂−

l (τ )e−iθq (t−τ ), (18)

b̂ml,q = b̂ml,q(0)e−iφqt

− iχq
√

Pml

∫ t

0
dτ n̂m(τ )σ̂+

l (τ )e−iφq (t−τ ), (19)

ĉml,q = ĉml,q(0)e−iφqt

− iχq
√

Pml

∫ t

0
dτ n̂m(τ )σ̂−

l (τ )e−iφq (t−τ ). (20)

Plugging Eqs. (18)–(20) into Eqs. (15)–(17) reveals that the
equation of motion for âl can be divided into two parts, where
one part is composed only of the system operators and the
other contains both system and bath operators. For example,
inserting Eq. (18) into Eq. (15), we get

i[Ĥd (l ), âl ] =
∑

q

λq
(
id̂†

l,q(0)[σ̂−
l , âl ]e

iθqt + H.c.
) −

∑
q

λ2
q

×
∫ t

0
dτ

(
σ̂+

l (τ )[σ̂−
l , âl ]e

iθq (t−τ ) + H.c.
)
,

(21)

where the first line gives the quantum noise from the bath
and the second line is the dissipative term. Employing the
Weisskopf-Wigner theory as shown in Sec. II B, we let λq

be constant in Eq. (21), which leads to λ2
0

∑
q eiθq (t−τ ) ≈

2πλ2
0δ(t − τ ). Therefore, Eq. (21) reads√

γ

2π

∑
q

(
id̂†

l,q(0)eiθqt [σ̂−
l , âl ] − i[âl , σ̂

+
l ]d̂l,q(0)e−iθqt

)

− γ

2
(σ̂+

l [σ̂−
l , âl ] + [âl , σ̂

+
l ]σ̂−

l ), (22)

because
∫ t

0 dτδ(t − τ ) = 1/2 and γ = 2πλ2
0. For Eqs. (16)

and (17), one can also obtain similar expressions with
κ = 2πχ2

0 .
Because the second line in Eq. (22) can be rewritten as

(
√

γ σ̂−
l )†âl

√
γ σ̂−

l − 1
2 {(√γ σ̂−

l )†√γ σ̂−
l , âl}

≡ F̂ (âl ,
√

γ σ̂−
l ),

by combining Eqs. (14)–(17) with the Weisskopf-Wigner
theory, we obtain the equations of motion for âl , which are
given by

∂t âl = iω
∑

m

Pml ([n̂mσ̂+
l , âl ] + [n̂l σ̂

+
m , âl ] + H.c.)

+
∑
α,m

F̂
(
âl , Îα

lm

) + η̂(âl ), (23)
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where for convenience we defined the interaction operators
Îα
lm as

Î1
lm = √

γ σ̂−
l δl,m,

Î2
lm = √

κPml n̂mσ̂+
l , Î3

lm = √
κPml n̂l σ̂

+
m ,

Î4
lm = √

κPml n̂mσ̂−
l , Î5

lm = √
κPml n̂l σ̂

−
m . (24)

The Kronecker δ function δlm = 1 for l = m and is zero
otherwise. Although Îα

lm has the same form as the Lindblad
jump operators in Eqs. (3)–(5), it is composed of the Heisen-
berg operators defined at time t , which are different from
the Lindblad operators. Finally, the noise operator η̂(âl , t )
is also written in terms of Îα

lm and the corresponding bath
operators. We redefine the bath operators B̂α

lm,q(t ) with the
original operators as

B̂1
lm,q(t ) = d̂l,q(0) δl,me−iθqt , B̂2

lm,q(t ) = b̂ml,q(0)e−iφqt ,

B̂3
lm,q(t ) = b̂lm,q(0)e−iφqt , B̂4

lm,q(t ) = ĉml,q(0)e−iφqt ,

B̂5
lm,q(t ) = ĉlm,q(0)e−iφqt . (25)

Then, one can write the noise operator in the compact form

η̂(âl ) = i√
2π

∑
α

∑
m,q

(
B̂α

lm,q(t )
)†[

Îα
lm, âl

] + H.c. (26)

Obviously, the quantum average of the noise operators be-
comes zero: 〈η̂(âl )〉B = 0.

III. MEAN-FIELD RESULT

A. Mean-field equations

To explore the MF phase transition of the QCP, we ex-
tract the MF equation from the quantum Langevin equation,
Eq. (23), by taking the trace of the equations of the operators
with the initial density operator given by ρ̂(0) ⊗ ρ̂B. By
defining

al (t ) ≡ 〈âl (t )〉 = tr âl (t )ρ̂(0) ⊗ ρ̂B, (27)

the equations of the fields can be obtained; for example, the
equation of motion for nl is given by

ṅl = ω
∑

m

Pml
〈
n̂mσ̂

y
l

〉 − γ nl + κ
∑

m

Pml (nm − 2〈n̂mn̂l〉).

(28)

One can also derive similar equations for σ x
l (t ) and σ

y
l (t ).

Ignoring correlations such as 〈n̂mσ̂
y
l 〉 → nm(t )σ y

l (t ) and tak-
ing uniform fields, nl (t ) → n(t ), σ x

l (t ) → σ x(t ), and σ
y
l (t ) →

σ y(t ), we arrive at the MF equations, which are given by

ṅ = ωnσ y + (κ − 1)n − 2κn2,

σ̇ x = −ωσ xσ y − 1 + κ

2
σ x − κnσ x,

σ̇ y = ω{2n + (σ x )2 − 4n2} − 1 + κ

2
σ y − κnσ y, (29)

where we rescale time, tγ → t , ω/γ → ω, and κ/γ → κ .
Note that the above equations are equivalent to the MF equa-
tion used in previous studies for the nearest-neighbor QCP
model [34,35].

FIG. 2. Phase diagram of QCP. This diagram is represented as
a plot of the classical rate κ and the quantum rate ω. In the weak
quantum regime, the second-order transition is observed [(red) solid
vertical line and (red) filled circle; Eq. (34)]. In contrast, in the
strong quantum regime, the absorbing transition is found to be of
the first-order type [upper dashed (blue) curve between bistable and
inactive states; Eq. (35)]. The (red) filled circle, at which the two
transitions intersect, is the tricritical point. (Black) dotted vertical
line represents the boundary of the number of the stable solutions
and (black) lower dotted curve inside the inactive region represents
the boundary between the existence and nonexistence of multiple
solutions.

B. Phase diagram

In this section, we review the previous MF result, which is
also similar to those in previous studies of TDP [10,15,23,24].
It is found that the steady-state solutions or fixed points, n0,
σ x

0 , and σ
y
0 , satisfying ȧ = 0 in Eq. (29), form two groups as

follows. One is given by

σ x
0 = 0, σ

y
0 = 4ωn0(1 − 2n0)

1 + κ + 2κn0
,

n0 = 0,
ω2 − κ ±

√
(ω2 − κ )2 + (κ2 + 2ω2)(κ2 − 1)

4ω2 + 2κ2
,

(30)

and the other is given by

σ x
0 = ±

√
4n2

0 − 2n0 − (1 + κ + 2κn0)2/(2ω)2,

σ
y
0 = −1 + κ + 2κn0

2ω
, n0 = 0,

1

6
− 1

2κ
. (31)

Note that if only real solutions are required, the latter
should be ruled out because solutions n0 do not give real
values of σ x

0 in Eq. (31). Moreover, the nonzero solu-

tions n0 = n+
0 ≡ ω2−κ+

√
(ω2−κ )2+(κ2+2ω2 )(κ2−1)

4ω2+2κ2 and n0 = n−
0 ≡

ω2−κ−
√

(ω2−κ )2+(κ2+2ω2 )(κ2−1)
4ω2+2κ2 in Eq. (30) does not exist when

(ω2 − κ )2 < (κ2 + 2ω2)(1 − κ2), which is inside the (blue)
dashed curve and lower (black) dotted curve in Fig. 2.
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Now we check the stability of Eq. (30) through lineariza-
tion of Eq. (29) around the fixed points. Inserting n = n0 +
δn, σ y = σ

y
0 + δσ y, and σ x = σ x

0 + δσ x into Eq. (29), and
expanding up to the linear order of perturbations, we then

obtain the linear equation δ̇a = Mδa, where

δa = (δn, δσ y, δσ x )T, (32)

and the matrix M is

M =

⎛
⎜⎝

ωσ
y
0 − 4κn0 + κ − 1 ωn0 0

−8ωn0 − κσ
y
0 + 2ω − 2κn0+κ+1

2 0

0 0 − 2ωσ
y
0 +2κn0+κ+1

2

⎞
⎟⎠. (33)

For n0 = σ
y
0 = σ x

0 = 0, all the eigenvalues of M are negative
at κ < 1, meaning that the fixed point is stable, whereas one
of the eigenvalues becomes positive when κ > 1. Thus, κ = 1
is the boundary for the fixed point, n0 = σ

y
0 = σ x

0 = 0.
For the nonzero solutions n0 = n+(−)

0 in Eq. (30), by inves-
tigating the eigenvalues of Eq. (33), one can note that n0 = n+

0
and n0 = n−

0 are stable when n+
0 > 0 and n−

0 < 0, respectively.
More precisely, n0 = n+

0 , σ
y
0 = σ

y
0 (n+

0 ), σ x
0 = 0 is the stable

fixed point when n+
0 > 0 and n+

0 > 1
6 − 1

2κ
. Because negative

density, n < 0, is not physically allowed, the fixed point n0 =
n−

0 < 0 should be ruled out in this analysis. To find the stable
region of n+

0 , first we note that n+
0 � 0 becomes marginal

along two curves. One is the (red) solid vertical line including
a (red) filled circle in Fig. 2,

κ = 1, ω � 1, (34)

where n+
0 = n0 = 0, and the other is the dashed (blue) curve,

given by

ω = (1 + κ − κ2 +
√

(1 + κ − κ2)2 − κ4)1/2 at κ � 1,

(35)

where n+
0 = n−

0 � 0. n+
0 is found to be stable outside of

the region enclosed by the two curves, Eqs. (34) and (35).
Thus, the stability analysis yields the phase diagram shown
in Fig. 2. With the boundaries described by Eqs. (34) and
(35), there are three regions: (i) the inactive phase, n0 = 0;
(ii) the active phase, n0 = n+

0 , divided by Eq. (34) with a sin-
gle stable fixed point; and (iii) a bistable phase possessing two
stable fixed points, n0 = 0 and n0 = n+

0 , with the boundary
curves of Eq. (35) and κ = κc with ω > 1. The solutions of
Eq. (30) show that between (i) and (ii) there exist second-order
phase transitions with the order parameter exponent β = 1
for ω < 1 and β = 1/2 at ω = 1. Moreover, one can observe
that the first-order transition may occur between (i) and (iii),
implying that (κ, ω) = (κc, 1) where the boundaries meet at
the tricritical point.

By substituting the expression for σ
y
0 in Eq. (30) into the

equation for n [Eq. (29)], one may expand the equation with
small n0 near the critical line Eq. (34) as

ṅ = 0 = −u2n0 − u3n2
0 − u4n3

0 + O(
n4

0

)
, (36)

where u2 = (κc − κ ), and u3 and u4 are given by

u3 = 2κ (1 + κ ) − 4ω2

1 + κ
, u4 = 8ω2(1 + 2κ )

(1 + κ )2
, (37)

respectively. Note that Eq. (36) implies an effective MF
potential defined as

UMF =
∑
k=2

uk

k
nk, (38)

where uk is defined in Eq. (36). Then, the solution n0 satis-
fying Eq. (36) is also the steady-state solution of the single
effective equation of the order parameter, which is given by

ṅ = −∂UMF/∂n. (39)

By expanding UMF up to the fourth order, it is found that when
ω < 1, u3 and u4 are positive near κ = κc. Consequently, n0 =
0 becomes unstable, and the stable fixed point is given by n0 ≈
(κ − κc)/u3 at κ > κc; consequently, the DP critical exponent
β = 1. On the other hand, at ω = 1, it is found that u3 = 0
at κ = κc yields a different universality, called the TDP class,
where the fixed point is given by n0 ≈ √

(κ − κc)/u4 with β =
1/2. We conclude that the effective single equation Eq. (39)
well describes the critical behavior in the steady state, which
is consistent with the linear stability analysis based on the MF
equations of all the system variables in Eq. (29).

We also observe that the effective equation Eq. (39) cap-
tures a change in the nature of the transition at the tricritical
point (κ, ω) = (κc, 1). Expanding UMF up to the fourth order
again, as shown in Eq. (36), one can see that all the positive
coefficients uk yield the single fixed point n0 = 0, but given
negative u3, an additional positive and stable fixed point can
exist as

n0 =
−u3 +

√
u2

3 − 4u2u4

2u4
, (40)

where u2
3 � 4u2u4 is also satisfied. Because we consider only

the limits κ → κc and ω → 1, the discriminant u2
3 = 4u2u4

may give the curve near the tricritical point,

ω = 1 +
√

3(κc − κ )/2, (41)

which is also obtainable by expanding Eq. (35) at κ = κc.
Of course, there is another solution, ω = 1 − √

3(κc − κ )/2,
but it does not satisfy u3 < 0. If ω > 1 + √

3(κc − κ )/2 at
κ < κc, then there are two stable fixed points, n0 = 0 and
Eq. (40), which is consistent with the previous discussion
of the linear stability analysis. Because the fixed point of
Eq. (40) disappears abruptly, and n0 = 0 becomes the only
fixed point crossing the curve of Eq. (41) from right to left,
one may observe the first-order phase transition in this regime.
Although the analysis of the MF potential for the first-order
transition is valid near the tricritical point, the entire analysis
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of linear stability with Eq. (32) implies a first-order transition
with the transition line described by Eq. (35).

IV. SCALING BEHAVIOR

A. Phenomenological equation

To investigate the low-dimensional QCP, one may add
spatiotemporal fluctuations to the MF equations, Eq. (29),
as seen in previous works [34,35], where the action for n,
σ x, and σ y is obtained by the so-called Martin–Siggia–Rose–
Janssen–de Dominicis (MSRJD) field theory [48–52]. In this
work, instead we start with the effective MF equation of n,
Eq. (39), which is a plausible assumption near the critical line
in Eq. (34) because σ x and σ y may arrive quickly in the steady
state [Eq. (30)] due to the finite gap energy, as seen in Eq. (29).
Near the critical line, by plugging n0 ≈ σ

y
0 ≈ 0 and σ x

0 = 0
into Eq. (29), one can see that the excitation gap for σ x and
σ y is given by (1 + κc)/2. Then the critical dynamics can be
described by a single equation associated with n and based on
Eq. (39) with fluctuations. Using the standard MSRJD theory
and the scaling theory, we will show the critical exponents and
upper critical dimensions of the long-range QCP.

The phenomenological Langevin description has been re-
garded as a very useful method to study the critical phenom-
ena of DP-type models [9,10], where the strength of the white
noise is proportional to the density of active states because
stochasticity is induced by the active states. We also follow
the phenomenological approach to obtain the Langevin-type
effective equation. Note that the field n in the MF equations
is the expectation value of the operator obtained by the trace
over the density operator, as seen in Eq. (27), implying
that n can also be thought of as an averaged field over the
quantum noise manifested in the noise operator in Eq. (23).
To describe the noise, one may start from the equations
of operators. Instead of using the quantum noise operators
[Eq. (26)] directly, we introduce a stochastic density field ξ

satisfying ξ = n, where the overbar denotes the average over
a phenomenological noise η. We regard ξ as a coarse-grained
field of the active sites measured in a single realization and
take η as the white Gaussian noise, which is plausible in
the thermodynamic limit. Near the critical point, ξ may be

governed by the effective Langevin equation keeping the low-
energy fluctuations, given by

∂tξl = κ
∑

m

Pmlξm − κξl − ∂UMF(ξl )

∂ξl
+ ηl , (42)

where the first term is the lowest-order contribution of Lévy
flight, and the potential UMF(ξ ) is defined as having the same
form as in Eq. (38),

UMF(ξ ) =
∑
k=2

uk

k
ξ k. (43)

Setting η = 0, taking the average of η in Eq. (42), and ignor-
ing correlations such that ξ k ≈ nk with k � 2 and fluctuations,
one can obtain the same MF equation as Eq. (39) from the
equation for ξ , Eq. (42).

The noise η should be invoked by the original quantum
dynamics so that Eq. (42) reflects the original dynamics of n̂.
In the original dynamics, existing active states can generate
stochastic processes such as decay and branching via interac-
tions with the baths. Therefore, we require that the strengthD
defined in

ηl (t )ηm(t ′) = Dl δm,l δ(t − t ′) (44)

depends on the density ξl as Dl ∝ ξl , implying also that
when ξ = 0, there is no fluctuation, so the absorbing state
is achieved. Moreover, one may suspect that the original
quantum noise itself also obeys the similar relation

〈η̂(n̂l (t )) η̂(n̂′
m(t ′))〉B ≈ D̂l δm,l δ(t − t ′), (45)

with D̂l ∝ 〈n̂l〉B, where D̂ is the strength of the quantum noise
[47,53]. Indeed, it has been revealed that the quantum noise
strength in the nearest-neighbor QCP is proportional to 〈n̂〉B

[34,35]. If this is also true in our case, then we can assume that
the phenomenological noise η originates from the quantum
noise operator η̂ with a strength D = 〈D̂〉, at least up to the
leading order.

Now we check the strength of the quantum noise in the
long-range QCP, which is given by the correlators of the noise
operators in Eq. (26):

〈η̂(âl (t )) η̂(â′
k (t ′))〉B = trB

1

2π

∑
α,β

∑
m,q

∑
m′,q′

[
âl (t ),

(
Îα
lm(t )

)†]
B̂α

lm,q(t )
(
B̂β

km′,q′ (t ′)
)†[

Îβ

km′ (t ′), â′
k (t ′)

]
ρ̂B, (46)

where again ρ̂B = |0〉〈0|B. By using the commutation relations of B̂α , Eq. (46) can be divided into three parts:

D̂1δl,k δ(t − t ′) + D̂2δ(t − t ′) + D̂3δt,t ′ , (47)

where the first term is given by

D̂1 = trB

∑
α

∑
m

[
âl ,

(
Îα
lm

)†][
Îα
lm, â′

l

]
ρ̂B, (48)

the second term D̂2 reads

D̂2 = trB
{[

âl ,
(
Î2
lk

)†][
Î3
kl , â′

k

] + [
âl ,

(
Î3
lk

)†][
Î2
kl , â′

k

] + [
âl ,

(
Î4
lk

)†][
Î5
kl , â′

k

] + [
âl ,

(
Î5
lk

)†][
Î4
kl , â′

k

]}
ρ̂B, (49)

and, finally,

D̂3 = trB
1

4

∑
α,β

∑
m,m′

[[
âl ,

(
Îα
lm

)†]
,
(
Îβ

km′
)†][

Îα
lm,

[
Îβ

km′ , â′
k

]]
ρ̂B, (50)
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where we omitted the site indices in D̂1,2,3. To obtain D̂3,
we used the fact that the system operators and bath opera-
tors commute when they are at the same time, for instance,
n̂l (t )d̂l,q(t ) = d̂l,q(t )n̂l (t ). Further, using the solutions of the
bath particles, Eqs. (18)–(20), with the Weisskopf-Wigner
theory, one can obtain the above form of D̂3.

In Eq. (47), the contribution of D̂3 can be ignored because
δ(t − t ′) � δt,t ′ at t = t ′. Moreover, D̂2 contains the contri-
butions of only the pair (l, k), whereas l-to-all coupling con-
tributes to D̂1. Therefore, the strength of the noise, including
D̂ in Eq. (45), may be determined mainly by D̂1. Because D̂1

is not a Hermitian operator, to obtain a real value, we take

Re〈D̂1〉 ≡ 〈D̂1 + D̂†
1〉/2. (51)

Now we can obtain the noise strength Re〈D̂l〉 for η̂(n̂l ) from
Eq. (51) by setting âl = â′

l = n̂l :

Re〈D̂l〉 = nl + κ
∑

m

Pml nm. (52)

Because we are interested in the critical dynamics, where
long-wavelength excitation is crucial, we use the approxima-
tion nm ≈ nl for all m in the summation term in Eq. (52),
which leads to

Re〈D̂l〉 ≈ (1 + κ )nl . (53)

This is what we expected, and now we take Dl = (1 + κ )ξl

for the noise strength in our Langevin equation [Eq. (42)].
We point out that the leading order of the noise strength for

σ̂ x or σ̂ x is given by a constant; more precisely,

Re
〈
η̂
(
σ̂ x

l (t )
)
η̂
(
σ̂ x

l (t ′)
)〉 ≈ Re

〈
η̂
(
σ̂

y
l (t )

)
η̂
(
σ̂

y
l (t ′)

)〉
≈ (1 + κ )δ(t − t ′).

Moreover, the noise operator η̂(n̂) is correlated with η̂(σ̂ x ) and
η̂(σ̂ y) as follows:

Re
〈
η̂(n̂l (t )) η̂

(
σ̂ x

l (t ′)
)〉 ≈ σ x

l δ(t − t ′)/2,

Re
〈
η̂(n̂l (t )) η̂

(
σ̂

y
l (t ′)

)〉 ≈ σ
y
l δ(t − t ′)/2.

Thus, even if there is no active state at some point, active
states can be induced by fluctuations of σ̂ x and σ̂ y, which
implies that the absorbing state cannot be achieved. This is
reminiscent of the quantum fluctuation induced by the uncer-
tainty relations between the Pauli spin operators. Therefore,
our semiclassical approach must be associated with a proper
timescale, where the quantum fluctuation is negligible. At this
stage, we assume the timescale without proof.

In short, we introduced the stochastic field ξ as the den-
sity field of active states and its phenomenological Langevin
equation. To capture the critical dynamics of QCP, we took
the lowest-order fluctuation in the long-range interaction to
the MF equation of the order parameter n. Since the original
dynamics shows the absorbing transition, we assumed that the
strength of the white Gaussian noise is proportional to the
density field. Indeed, we confirmed that the original quantum
noise also has the multiplicative nature, so we adopted the
functional form of the quantum-noise strength in the lowest
order as one of our phenomenological noise η. Because the
Langevin equation of ξ is the classical field equation, one
can apply the classical field theory to the QCP effectively at

least near the critical point. Finally, we remark that the quan-
tum Langevin equation can be transformed to the c-number
Langevin equation [53,54]. One may apply the conversion
method in this work and expect to obtain a similar equation to
ours, Eq. (42). To check whether our assumptions are adequate
and resolve the problem of timescale, it is worth studying
the relationship between the phenomenological and c-number
Langevin equations.

B. Critical exponents and upper critical dimensions

To apply the scaling theory, the equation for continuous
fields is more convenient than the discrete equation. Tak-
ing the continuum limit with an appropriate rescaling like
∂t → τ∂t , where τ is a scaling parameter, and expanding the
Lévy term up to two leading orders, as in previous works
[17–22,55], we write the Langevin equation of the continuous
density field ξ = ξ (r, t ) up to the u4 term as

τ∂tξ = D∇2ξ + Dp∇ pξ − u2ξ − u3ξ
2 − u4ξ

3 + η. (54)

Here D and Dp are the diffusion constants, obtained from the
expansion, given by κ

∫
dr′P(|r − r′|)ξ (r′) ≈ κξ + D∇2ξ +

Dp∇ pξ , and the noise η(r, t ) in the continuum limit obeys

η(r1, t1)η(r0, t0) = �ξ (r0, t0) δ(r1 − r0) δ(t1 − t0), (55)

where � = (1 + κ ). Note that uk in Eq. (54) was also rescaled
appropriately.

Setting � = 0, which yields ξ = n, one can obtain the MF
exponents for the correlation length, ν⊥, and time, ν‖ = zν⊥.
Under the scaling transformations, which are given by

|r| → |r′| = s|r| , t → t ′ = szt, ξ → ξ ′, (56)

where s > 1, the transformed equation is written as

τ s−z∂tξ
′ = Ds−2∇2ξ ′ + Dps−p∇ pξ ′ − u2ξ

′ − u3ξ
′2 − u4ξ

′3.

(57)

Because near the critical point the order parameter obeys
the scaling form of ξ ′(r′) = s−β/ν⊥ξ (r) [9,10], we rewrite
Eq. (57) in terms of ξ as

τ∂tξ = Dsz−2∇2ξ + Dpsz−p∇ pξ − u2szξ

− u3sz−β/ν⊥ξ 2 − u4sz−2β/ν⊥ξ 3.

When p > 2 and u3 > 0, one may set z = 2 and β/ν⊥ = z =
2; then, at the critical point where u2 = 0, the equation given
by

τ∂tξ = D∇2ξ − u3ξ
2

is invariant under the scaling transformation because
Dpsz−p∇ pξ and u4sz−2β/ν⊥ξ 3 vanish by repeated transforma-
tions. Using the value β = 1, we obtain the exponents, ν⊥ =
1/2, and thus ν‖ = 1. These exponents belong to the DP class.

For p > 2 and u3 = 0, however, the relevant equation is
given by

τ∂tξ = D∇2ξ − u4ξ
3,

so β/ν⊥ = z/2 = 1. Using β = 1/2 at the tricritical point
corresponding to u3 = 0, we obtain the exponents ν⊥ = 1/2
and ν‖ = 1, which correspond to the TDP universality. There-
fore, if p > 2, then the long-range term becomes irrelevant
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TABLE I. MF critical exponents. These critical exponents are obtained using the scaling transformation of Eq. (58). The universality
classes are determined by the power of the long-range interaction (p) and the strength of the coherent dynamics (ω in Ĥs). The long-range
interaction is relevant (irrelevant) for p � 2 (p > 2). Depending on whether u3 = 0 or u3 > 0, dc and β can vary.

dc β ν⊥ ν‖ z

κ = κc, ω = 1 p > 2 (TDP) 3 1/2 1/2 1 2
(u3 = 0) p � 2 (long-range TDP) 3p/2 1/2 1/p 1 p

κ = κc, ω < 1 p > 2 (DP) 4 1 1/2 1 2
(u3 > 0) p � 2 (long-range DP) 2p 1 1/p 1 p

for both u3 > 0 and u3 = 0, so the universality is equal to
that in the short-range model. On the other hand, if p < 2,
then one can see that the relevant term becomes Dpsz−p∇ pξ

instead of Dsz−2∇2ξ , leading to the dynamic exponent z = p.
Consequently, β/ν⊥ = z = p for u3 > 0, whereas β/ν⊥ =
z/2 = p/2 for u3 = 0, yielding ν⊥ = 1/p for both cases. The
MF exponents for the short-range and long-range cases are
summarized in Table I.

To check the relevance of the noise, we employ the path
integral formalism including the noise term in Eq. (54). Using
the MSRJD theory for the Langevin equation, we obtain the
action S = S[ξ, ξ̃ ] for Eq. (54), where ξ̃ is the response field,
as follows:

S =
∫

dx ξ̃

[
τ∂t −D∇2 − Dp∇ p + u2+u3ξ + u4ξ

2 − �

2
ξ̃

]
ξ,

(58)

where x = (r, t ). Under the transformation given by Eq. (56),
S[ξ, ξ̃ ] → S′[ξ ′, ξ̃ ′], where S′ can be written in terms of ξ and
ξ̃ using the relations ξ ′ = s−bξ and ξ̃ ′ = s−b̃ξ̃ and is given by

S′ =
∫

dx sd+z ξ̃

[
τ s−z−b−b̃∂t − Ds−2−b−b̃∇2 − Dps−p−b−b̃∇ p

+ u2s−b−b̃ + u3s−2b−b̃ξ + u4s−3b−b̃ξ 2 − �

2
s−b−2b̃ξ̃

]
ξ .

(59)

Therefore, we obtain the following relations of the parameters
under the scaling transformation:

τ → τ ′ = sd−b−b̃ τ,

D → D′ = sd+z−2−b−b̃ D,

Dp → D′
p = sd+z−p−b−b̃ Dp,

u2 → u′
2 = sd+z−b−b̃ u2,

u3 → u′
3 = sd+z−2b−b̃ u3,

u4 → u′
4 = sd+z−3b−b̃ u4,

� → �′ = sd+z−b−2b̃ �. (60)

Note that the transformations of the parameters in Eq. (60)
correspond to the Wilson renormalization group (RG) proce-
dure [9,56].

One can choose b + b̃ = d so that τ is invariant under
the transformation in Eq. (60). Moreover, the relations for D
and Dp suggest that the dynamic exponent z = 2 for p > 2
and z = p for p < 2. If z = 2 at p > 2, then the long-range

term with Dp becomes irrelevant, whereas the short-range
term with D is relevant and vice versa for p < 2 with z = p.
Above the upper critical dimension, d > dc, the higher-order
potential terms and noise term are irrelevant, so the Gaussian
fixed point is stable. Therefore, the relevance of u3, u4, and
� determines the upper critical dimension. The case of finite
u3 is well known, as follows [17–22]. If u3 is finite, then u4

is automatically irrelevant at dc, which implies that at d � dc,
u3 and � are relevant. Thus, one may infer that at d = dc, b =
b̃ = z, leading to b = dc/2 = z. Because z = 2 or z = p, the
upper critical dimensions of the short-range and long-range
QCPs are given by dc = 4 and dc = 2p, respectively. Note
that by using b = β/ν⊥ with β = 1, one can obtain the MF
exponents obtained in the noiseless equation, Eq. (57).

Finally, we discuss the TDP universality with the long-
range interaction. In this case, u3 = 0; thus, u4 and � become
relevant terms at d � dc. Similarly to the case of DP, at
d = dc, the invariance of u4 and � in Eq. (60) yields b = z/2
and b̃ = z. Because b + b̃ = dc, the upper critical dimension
of TDP is given by dc = 3z/2. Therefore, for short-range
TDP, it is found that dc = 3, as shown in previous works
[15,23,24], and for long-range TDP with p < 2, it is found
that dc = 3p/2, which is similar to the long-range DP case,
but the constant differs from 2 for the DP class. Again, with
b = β/ν⊥ and β = 1/2, we obtain the MF exponents for the
TDP universality. Because it is well known that the tricritical
point does not exist in the one-dimensional DP-type model
in the absence of the long-range interaction [57], one may
ask whether the tricritical point is sustained when d = 1 is
below the upper critical dimension or p > 2/3. To answer
that, numerical studies and RG approaches to long-range TDP
are needed.

V. DISCUSSION AND CONCLUSION

Now we discuss how the long-range QCP can emerge from
the cold atomic system. We start with the Hamiltonian of
Rydberg atoms under the antiblockade effect [33]:

ĤR = �

N∑
l

σ̂ x
l + �

N∑
l

n̂l +
∑
l �=m

Vlm

2
n̂l n̂m, (61)

where � is the Rabi oscillation frequency, � denotes the
detuning energy, and Vlm is the long-range interaction between
excited atoms. Because � is very large, Rabi oscillation is
suppressed, but if we set Vlm = −� for the nearest-neighbor
pairs, the excitation can be enhanced by the interaction. This
mechanism leads to coherent and incoherent CPs, where the
long-range nature of Vlm is usually neglected to realize the
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absorbing state on long timescales [33–35]. However, these
approaches are based on the low-density limit; therefore, one
spin can interact with approximately only one particle. As
pointed out in a previous work [33], when one spin simulta-
neously interacts with not only the nearest-neighbor spins but
also long-distance spins, the long-range effect may change the
universality of the system.

We investigated the critical behavior of the quantum long-
range CP, which is realized by coherently and incoher-
ently driven interacting cold atomic systems. We derived
the Heisenberg equations from the total Hamiltonian con-
sisting of the system, the baths, and their interaction. Using
the semiclassical approach, we obtained the MF equation
for the long-range QCP, where branching and coagulation
are realized as Lévy flight. Then we obtained a phase di-
agram similar to that for the short-range QCP. Next, we
set up the phenomenological Langevin equation and built
the Martin–Siggia–Rose–Janssen–de Dominicis action. Us-
ing scaling theory, we determined the critical exponents in
the MF limit. Depending on the model parameters, the DP-
type and TDP-type transitions occur. For the DP-type case,
the critical exponents were obtained as those of the long-range
DP [17,21]. For the TDP-type case at the tricritical point,
new critical exponents were obtained, the universality class
of which we identify as the long-range TDP class. Moreover,

we determined the upper critical dimension for the long-range
TDP, dc = 3p/2, which is different from that of the long-range
DP class, dc = 2p. The critical exponents for the ordinary
DP and TDP and the long-range DP and TDP classes are
compared in Table I. Recently, a similar result that a first and
second-order phase transition coexist has been reported in the
quantum epidemic model, realizable in a dissipative atomic
system with long-range interaction [58]. We expect that our
semiclassical approach is also applicable to the epidemic
model using a three-state quantum spin system.

In this study, we focused on the long-range nonequilibrium
absorbing phase transition in the dissipative quantum spin
system. We obtained the phase diagram and determined the
transition properties within the analytic theoretical framework
in the MF limit. However, the transition behavior below
the upper critical dimension has not been determined yet. The
renormalization group approach to this problem seems to be
challenging, yet numerical simulation studies remain as the
next problem.
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