
PHYSICAL REVIEW E 99, 032130 (2019)

Closure for the Ornstein-Zernike equation with pressure and free energy consistency
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The Ornstein-Zernike (OZ) integral equation theory is a powerful approach to simple liquids due to its
low computational cost and the fact that, when combined with an appropriate closure equation, the theory is
thermodynamically complete. However, approximate closures proposed to date exhibit pressure or free energy
inconsistencies that produce inaccurate or ambiguous results, limiting the usefulness of the Ornstein-Zernike
approach. To address this problem, we combine methods to enforce both pressure and free energy consistency
to create a new closure approximation and test it for a single-component Lennard-Jones fluid. The closure is a
simple power series in the direct and total correlation functions for which we have derived analytical formulas for
the excess Helmholtz free energy and chemical potential. These expressions contain a partial molar volumelike
term, similar to excess chemical potential correction terms recently developed. Using our bridge approximation,
we have calculated the pressure, Helmholtz free energy, and chemical potential for the Lennard-Jones fluid
using the Kirkwood charging, thermodynamic integration techniques, and analytic expressions. These results
are compared with those from the hypernetted chain equation and the Verlet-modified closure against Monte
Carlo and equations-of-state data for reduced densities of ρ∗ < 1 and temperatures of T ∗ = 1.5, 2.74, and 5.
Our closure shows consistency among all thermodynamic paths, except for one expression of the Gibbs-Duhem
relation, whereas the hypernetted chain equation and the Verlet-modified closure exhibit consistency between
only a few relations. Accuracy of the closure is comparable to the Verlet-modified closure and a significant
improvement to results obtained from the hypernetted chain equation.
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I. INTRODUCTION

Integral equation and classical density functional theories
of the statistical mechanics of liquids are frequently used
in the study of biological, condensed matter, and plasma
systems due to their low computational cost and the physical
insights they provide. Over the years, fundamental theories,
such as the Ornstein-Zernike (OZ) equation [1] and classi-
cal density functional theory (CDFT) [2], have been devel-
oped to deal with complex solutes and molecular solvents,
e.g., reference interaction site model (RISM) theories [3–7],
molecular OZ [8,9], and molecular CDFT [10]. Common to
all these theories is the requirement of a closure relation.
Unfortunately, approximations to the closure equation have
invariably produced inconsistent state variables that depend
on the physical or mathematical path taken—i.e., thermo-
dynamic inconsistencies—that should not exist. Importantly,
quantitatively different pressures or free energies are calcu-
lated when different thermodynamic routes are employed.
Such inconsistencies limit physical insights and affect the
accuracy of the theory. Despite an immense amount of work
on the subject, no closure approximation has been developed
that incorporates both free energy and pressure consistency.

Pressure consistency may been enforced by introducing
free parameters into a closure approximation, which are ad-
justed to ensure density derivatives of the pressure calculated
from the virial and compressibility paths agree. Many closure
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approximations of this type have been developed and improve
the accuracy of calculated pressures [11–19]. However, these
closures have failed to provide path-independent free ener-
gies, limiting their usefulness.

Free energy consistency can be guaranteed by satisfying
conditions derived by Kast [20], which only a small num-
ber of closely related closures have been shown to satisfy
[7,21,22]. However, these closures do not display pressure
consistency, and both pressure and free energy estimates are
inaccurate [23]. In fact, to compensate for the large errors,
a number of partial molar volume (PMV) corrections have
been developed that are applied to just the chemical potential
[24–27].

In this work, we show how these two approaches can
be combined by proposing a simple closure approximation
compatible with both. We show that this closure not only
satisfies both pressure and free energy consistency relations
but also internal energy-pressure, free energy-pressure, and
Gibbs-Duhem consistency. Furthermore, we derived analytic,
closed-form formulas for both the chemical potential and
Helmholtz free energy. The formula for the chemical poten-
tial is functionally similar to that of the hypernetted chain
equation (HNC) [21] with the universal correction (UC) [24]
applied. We then apply this closure to a simple Lennard-Jones
fluid at densities ρσ 3 = 0.1−1.1 and temperatures T ∗ = 1.5,

2.74, and 5 in reduced units and compare it to the HNC
and Verlet-modified (VM) [28], which exhibit free energy
and pressure consistency, respectively. Several consistency
relations are checked for all three approximations, and results
for the excess free energy and excess chemical potential are
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compared with available simulation and equation-of-state data
[29–31].

The paper is organized as follows. In Sec. II we discuss the-
oretical foundations for developing a closure with thermody-
namic consistency and introduce our closure approximation.
We also provide an overview of the consistency tests we will
use. Numerical procedures used to calculate thermodynamic
quantities are described in Sec. III. In Sec. IV we present our
results, and in Sec. V we discuss the implications for thermo-
dynamic consistency and the relationship to PMV corrections.
This is followed by concluding remarks.

II. THEORY

A. Ornstein-Zernike equation

Many excellent descriptions of the OZ equation can be
found in the literature, such as Refs. [32,33]. Briefly, the
OZ equation divides the contributions to equilibrium liquid
structure into direct and indirect contributions. For a homoge-
neous, single-component system at temperature T and number
density ρ, it may be written in the form

h(r) = c(r) + ρ

∫
c(|r − r′)h(r′)dr′, (1)

where h(r) and c(r) are the total and the direct correlation
functions, respectively. With these functions, one can define
the indirect correlation, γ ≡ h(r) − c(r), and radial distribu-
tion functions, g(r) = h(r) + 1.

To solve Eq. (1), one needs a second equation, called a
closure relation, that relates the correlation functions to a
spherically symmetric pair potential u(r) between the liquid
particles. This closure equation is defined as

h(r) = exp[−βu(r) + γ (r) + B(r)] − 1, (2)

where B(r) is the bridge function, β = 1/kBT , and kB is
the Boltzmann constant. B(r) can be expressed as a power
series in ρ of irreducible diagrams [34] but, in practice, is
approximated as some combination of u(r), h(r), and c(r).
By solving Eqs. (1) and (2) self-consistently, both correlation
functions may be obtained. Commonly used closures include
the HNC,

BHNC(r) = 0, (3)

and a VM approximation [28],

BVM(r) = −1

2

φγ 2
a

1 + αγa
, (4)

where φ and α are free parameters to be optimized. Here γa ≡
γ − βua, and ua(r) is the attractive part of the pair potential
[35].

B. Thermodynamic consistency and the bridge function

As a closed-form expression for the bridge function is not
known, one must attempt to build an approximate bridge func-
tion, B(r), either theoretically or empirically. For the former
approach, one needs to compute a series expansion for B(r)
in powers of the density in which each term may represent the
sum of diagrams computed in terms of the multidimensional

integrals and so cannot be completely utilized in practice
[34,36,37].

The empirical approach is technically easier. However,
when constructing B(r), one should take care to preserve the
thermodynamic consistency, which is the property that state
variables do not depend on the path taken in the physical
or mathematical sense. There are several types of thermody-
namic consistency conditions, for example [38–40], virial and
compressibility pressure,

pv = pc, (5)

internal energy and pressure,

ρ2

(
∂βE/N

∂ρ

)
T

= −T

(
∂βp

∂T

)
ρ

, (6)

pressure and free energy,

βμe = βAe

N
+ βp

ρ
− 1, (7)

and Gibbs-Duhem (
dμ

d p

)
T

= 1

ρ
. (8)

These conditions can either be directly tested for or explicitly
enforced, e.g., through the introduction free parameters in the
closure relation that can be tuned. In this work, we enforce
Eq. (5) and test the other three relations.

In addition, we require path independence for the chemical
potential and Helmholtz free energy. For example, the results
of the Kirkwood charging formulas for chemical potential
and free energy, Eqs. (C1) and (B1), should not depend on
how the coupling parameter is included. To handle this path-
dependence issue, Kast [20] has shown that path indepen-
dence is implied if the variational parameter

q =
∂B
∂γ

− ∂B
∂c + 1

∂B
∂u − β

(9)

is independent of the spatial coordinates and λ (see also
Appendix B). Therefore, any function B(γ − βu), B(c +
βu), B(h, γ − βu), B(h, c + βu), and B(h) has guaranteed
path independence in RISM theory and, therefore, OZ theory.
Importantly, renormalized bridge functions, where only the
long-range or short-range part of the potential is used, do not
satisfy this condition, nor do functions that are a function of
γ , B(γ ). Such bridge functions may be path independent, but
this is difficult to prove and must be done on an individual
basis.

C. A free energy and pressure path-independent closure

In this work we employ virial and compressibility pressure
consistency, commonly known as “pressure consistency,” and
free energy consistency. As we are not aware of a bridge
approximation that has both properties, we propose a new
approximation which satisfies the Kast conditions and has free
parameters, a and b, to enforce pressure consistency,

B(r) = ac(r) +
∑

i

bih
i(r). i = 1, 2, 3, . . . (10)
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Although this proposed equation explicitly includes the direct
correlation function, it satisfies the requirements for path inde-
pendence, since Eq. (9) is constant and independent of spatial
coordinates and coupling parameters. Details are given in
Appendix B. For simplicity, in the numerical part of this work
we employ only the first-order expansion of the proposed
bridge function,

B = ac(r) + b1h(r). (11)

In order to simplify the computational work required, it is
advantageous to have an analytical, closed-form expression to
evaluate the excess free energy or chemical potential. Using
the Kirkwood charging formula, we can obtain an analytic
formula for evaluation of the excess Helmholtz free energy
(see Appendix C):

βAe

N
= βAHNC

N
+ ρ

2

∫
drgB

− a

16π3

∫
dk

[
ĥ − 1

ρ
ln |1 + ρĥ|

]
− ρ

2

∫ ∑
i

bi

i + 1
hi+1dr. (12)

Here, βAHNC

N is the excess Helmholtz free energy expression
for the HNC closure and is given by [34,41]

βAHNC

N
= ρ

2

∫
dr

(
1

2
h2 − c

)
+ 1

2

1

8π3

∫
dk

[
ĉ + 1

ρ
ln |1 − ρĉ|

]
. (13)

Using a similar approach (see Appendix C) we can obtain a
semianalytical expression for the VM closure,

βAe

N
= βAHNC

N
+ ρ

2

∫
drgB + ρ

4

1

8π3

∫
dkĥ

×
∫ 1

0
dν

(
φ[ρν2ĥ2/(1 + ρνĥ)]2

1 + αρν2ĥ2/(1 + ρνĥ)

)
, (14)

where numerical integration over a coupling parameter, ν, is
still required.

For excess chemical potential we have derived a formula
with the proposed bridge function (see Appendices B and C):

βμe = βμHNC + ρ

∫
drgB

− ρ

∫
dr

[
1

2
ahc +

(∑
i=1

bi

i + 1
hi+1

)]
, (15)

where βμHNC is the HNC-type expression for the excess
chemical potential with appropriate bridge function B(r)
[34,41],

βμHNC = ρ

∫
dr

(
1

2
h2 − c − 1

2
hc

)
. (16)

The VM closure has no known closed-form, ana-
lytic expression for the excess chemical potential. Instead,
we will employ a commonly used approximate closed

expression [42–46],

βμe ≈ βμHNC + ρ

∫
dr

(
B + 2h

3
B

)
. (17)

With Eqs. (12)–(17), the excess Helmholtz free energy and
chemical potential can be computed using only a single state
at the given temperature and density. As one would expect,
setting B = 0 in the derived expressions for the Helmholtz
free energy and chemical potential leads directly to expres-
sions in the HNC approximation, Eq. (13). We note that for
the excess free energy, expressions similar to formula Eq. (14)
have been given by Kiselyov and Martynov [42] but for other
closure approximations.

D. Evaluating thermodynamic consistency

To check if a closure approximation satisfies Eqs. (5)–(7),
we must compute pressure, internal energy, free energy, and
chemical potential using different paths. These different paths
may involve numerical integration and differentiation or dif-
ferent analytic expressions for the same quantity.

1. Virial and compressibility pressure

Pressure consistency is most commonly calculated along
the viral and compressibility paths, Eq. (5). The pressure from
the virial equation of state, pv [32], is computed as

βpv

ρ
= 1 − ρ

6

∫
drr

∂βu(r)

∂r
g(r), (18)

where β = 1/kbT, kb is Boltzmann’s constant, and T is
temperature. The isothermal compressibility χT is computed
through the compressibility route [32]

β(ρχT )−1 = β

(
∂ pc

∂ρ

)
T

= 1 − ρ

∫
c(r)dr, (19)

where pc is the pressure from the compressibility route and
the pressure can be computed as

βpc

ρ
= β

ρ

∫ ρ

0
dρ ′ρ ′−1χ−1

T . (20)

2. Internal energy and pressure

To check the consistency of the internal energy and pres-
sure, Eq. (6), the temperature derivatives of the internal energy
and pressure are required. The internal energy may be directly
computed as [32]

E = Ei + Ee = 3

2
kbT + ρ

2

∫
g(r)u(r)dr, (21)

where Ee is the excess internal energy and Ei is the internal
energy of the ideal gas. Temperature and density derivatives
of Eqs. (20) and (21) are straightforward to compute.

3. Pressure and free energy

Pressure and free energy consistency, Eq. (7), may be
tested by comparing chemical potentials calculated along
different paths. Analytical expressions for chemical potential,
Eqs. (15) and (16), are guaranteed to be path independent.
In addition, the virial and compressibility pressure equations
may be combined with the Helmholtz free energy using

032130-3



TSOGBAYAR TSEDNEE AND TYLER LUCHKO PHYSICAL REVIEW E 99, 032130 (2019)

Eq. (7). The excess Helmholtz free energy may be computed
from the Kirkwood charging formula, such as the analytic and
semianalytic expressions already presented, Eqs. (12), (13),
and (14), or by integrating along the density path [30,47],

βAe

N
=

∫ ρ

0
dρ ′ 1

ρ ′

(
βp

ρ ′ − 1

)
. (22)

When this is evaluated numerically, the pressure is calculated
at each intermediate density using either the virial or com-
pressibility expressions.

Combining the various expressions for the free energy and
pressure, we can calculate the excess chemical potential along
different paths: density-compressibility, Eqs. (22) with (19),

βμe =
∫ ρ

0

1

ρ ′

(
βp

ρ ′ − 1

)
dρ ′ − 1

ρ

∫ ρ

0
ρ ′dρ ′

∫
c(r, ρ ′)dr,

(23)
density-virial, Eqs. (22) with (18),

βμe =
∫ ρ

0

1

ρ ′

(
βp

ρ ′ − 1

)
dρ ′ − ρ

6

∫
drr

∂βu(r)

∂r
g(r), (24)

Kirkwood-compressibility, Eqs. (C1) with (19),

βμe = ρ

2

∫ 1

0
dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

− 1

ρ

∫ ρ

0
ρ ′dρ ′

∫
c(r, ρ ′)dr′, (25)

or Kirkwood-virial, Eqs. (C1) with (18),

βμe = ρ

2

∫ 1

0
dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

−ρ

6

∫
drr

∂βu(r)

∂r
g(r). (26)

4. Gibbs-Duhem

As with the Helmholtz free energy, a density-dependent
path of the chemical potential can be derived. This results in
expressions using the virial,

βμe = −
∫ ρ

0
dρ ′

[
1

3

∫
drr

∂βu(r)

∂r
g(r)

+ ρ ′

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ ′

]
, (27)

and compressibility paths,

βμe = −kT
∫ ρ

0
dρ ′

∫
c(r, ρ ′)dr, (28)

which are equivalent to the Gibbs-Duhem consistency equa-
tion, Eq. (8) (see Appendix A). However, if ( d pv

dρ
)
T

= ( d pc

dρ
)
T

is not satisfied, then Eqs. (27) and (28) are not equivalent
and may not agree with other expressions for the chemical
potential. For example, HNC exhibits Gibbs-Duhem consis-
tency when the viral pressure is used, Eq. (27), but not if the
compressibility is used, Eq. (28).

III. NUMERICAL PROCEDURE

In this work we consider a single-component fluid whose
interparticle potential is given by the Lennard-Jones potential:

u(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (29)

where σ and ε are the size and energy parameters of the LJ
potential, respectively. For all calculations we use reduced
units in which σ and ε are the base units for length and
energy. This gives the reduced number density, ρ∗ = ρσ 3,
temperature, T ∗ = kBT/ε, and pressure, p∗ = pσ 3/ε.

Even when the free energy should be a path-independent
property, the details of how the coupling constant is included
in the potential energy are numerically important, as a simple
linear coupling, u(r, λ) = λu(r), leads to large numerical er-
rors. For this reason, a shifted and scaled LJ potential may be
used [48]:

u(r, λ) = 4λε

[(
σ 2

r2 + (1 − λ)s

)6

−
(

σ 2

r2 + (1 − λ)s

)3
]
,

(30)

where s > 0 is an arbitrary constant. In this approach, for each
different value of λ from 0 to 1, a new g(r, λ) is computed.
Numerically computing the Kirkwood excess free energy
charging formula, Eq. (C1), then requires solving the OZ
equation at different λ. Depending on the precision required,
this can require onerous computation.

An in-house MATLAB [49] code was developed to solve the
OZ equation, Eq. (1), using HNC, VM, and Eq. (11) bridge
approximations to obtain the thermodynamic properties of
the LJ fluid using the theoretical formulations described in
the preceding sections. A simple Picard iterative method
was applied, and the numerical tolerance for the root-mean-
squared residual of the direct correlation functions during
successive iterations was set at 10−10. All calculations were
performed with the same number of grid points, N = 8192,
and length parameter, L = 32σ . Thermodynamic quantities
were computed for T ∗ = 1.5, 2.74, and 5 and ρσ 3 = 0.1−1.1
in increments of 0.1.

At each temperature and pressure reported, pressure con-
sistency was enforced by optimizing coefficients (a, b1) in
Eq. (10) and (φ, α) in Eq. (4) to satisfy the consistency
condition. The pressure consistency equation was converged
to |pv − pc| � 10−6 using the “fminsearch” multidimensional
unconstrained nonlinear minimization routine of MATLAB.
This required calculating the pressure from the virial and
compressibility routes for each set of coefficients proposed
by the minimizer. For the virial pressure, Eq. (18) was used
directly. To calculate the compressibility pressure, Eq. (20)
was employed where the trial coefficients were fixed for all
intermediate densities ρ ′ in the integral. HNC was excluded
from pressure consistency enforcement since it has no ad-
justable parameters.

Numerical calculations of the pressure, free energy, and
chemical potential used the midpoint integration with step
sizes dλ = 0.005 and dρ ′ = 0.025 for the Kirkwood charging
and thermodynamic integration formulas, respectively. Bridge
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TABLE I. The pressure pσ 3/ε from virial and compressibility routes for the LJ potential at ρσ 3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5

HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Virial 9.104 7.688 6.421 15.99 13.15 12.64 26.12 22.32 21.92
Compressibility 3.781 7.688 6.421 9.415 13.15 12.64 18.12 22.32 21.92
MC 12.68 [29]
EOS 6.365 [31] 12.72 [31] 22.19 [31]

function coefficients were held constant for each of these
calculations. For Eq. (30), s = 0.5 was used.

IV. RESULTS

A. Pressure consistency

In Table I we compare pressures obtained from HNC, VM,
and Eq. (11) bridge approximations for the LJ potential at
ρσ 3 = 0.9 and T ∗ = 1.5, 2.74, and 5. As expected, both VM
and Eq. (11) show virial-compressibility consistency while
HNC does not. Furthermore, while both VM and (11) are
within a few percent of Monte Carlo (MC) and equations-of-
state (EOS) data [29–31] and each other at T ∗ = 2.74 and
5, HNC values differ considerably at all temperatures. At
T ∗ = 1.5, Eq. (11) is still an improvement over HNC but has
increased relative error.

We note that if we use d pv = d pc consistency instead, the
obtained numerical values for both pressures would be close
but inconsistent. For example, for the LJ potential at T ∗ =
2.74 and ρ∗ = 0.9, the VM approximation gives pvσ 3/ε =
12.70 and pcσ 3/ε = 13.05, while our closure gives pvσ 3/ε =

FIG. 1. Absolute pressure pσ 3/ε as a function of density ρσ 3.
Green, black, and blue lines are from the HNC, VM, and Eq. (11)
bridge corrections, respectively. Red crosses are from the equations
of state in [31]. Cyan crosses are available MC data from [29] and
[30] for T ∗ = 2.74 and 5.

12.94 and pcσ 3/ε = 13.92. Therefore, we did not employ
d pv = d pc consistency in this work.

As seen in Fig. 1, the pressure for all three models is in
good agreement with EOS data at low densities, regardless
of temperature. HNC, however, diverges from the EOS as the
density increases, always overestimating the pressure, while
VM stays within a few percent. Equation (11) also behaves
like VM for T ∗ = 2.74 and 5, tracking the EOS pressure
within a few percent. However, at T ∗ = 1.5, Eq. (11) predicts
excessively high pressures at high densities.

Figure 2 shows optimized values of coefficients (a, b1)
of Eq. (10) vs ρσ 3, which are obtained by enforcing viral
and compressibility pressure consistency, Eq. (5). As seen
here, the coefficients have both a temperature and pressure
dependence, though it appears to be diminished as density
increases.

As with other closure approximations that enforce pressure
consistency in this manner, including VM, there is no guaran-
tee of uniqueness in the parameters found by minimization
since the function is nonlinear. This is particularly true at low
densities, where more than one pair of values (a, b1) may be
found to satisfy the consistency criterion. However, at low
densities, the effect of the bridge correction is small. For high
densities, the range of (a, b1) pairs is much smaller. The result
is that small variations can be found that depend on the initial
guess, but they are insignificant in practice.

B. Energy-pressure consistency

Table II shows the consistency of pressure and internal
energy through density and temperature derivatives, as given

ρσ3
0 0.2 0.4 0.6 0.8 1 1.2

co
ef

fic
ie

nt
s

-1.5

-1

-0.5

0

0.5

1

FIG. 2. Coefficients a (red, filled) and b1 (blue, unfilled) for
Eq. (11) vs ρσ 3 at T ∗ = 1.5 (diamonds), 2.74 (squares), and 5
(circles).
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TABLE II. Internal energy-pressure consistency for the LJ po-
tential at ρσ 3 = 0.9.

T ∗ = 2.74 T ∗ = 5

HNC Eq. (11) VM HNC Eq. (11) VM

ρ2
(

∂βE/N
∂ρ

)
T

0.910 0.550 0.120 1.267 0.949 0.563

−T
(

∂βp
∂T

)
ρ

0.910 0.550 0.099 1.267 0.949 0.675

in Eq. (6). As the virial pressure is used, both HNC and
Eq. (11) show consistency while VM does not. If the pressure
was calculated from the compressibility route, the results for
Eq. (11) would be unaffected but HNC would fail to show
consistency.

C. Chemical potential and Helmholtz free energy

To test the path independence of our closure, we calculated
the excess Helmholtz free energy Ae/ε using the Kirkwood
charging formula Eq. (C1), density integration Eq. (22), and
the respective analytical formulas, Eqs. (12), (13), and (14).
In Table III we show the values for Ae/ε at T ∗ = 1.5, 2.74,
and 5 for ρσ 3 = 0.9. As expected, results from HNC and
Eq. (11) show no path dependence. The VM results, however,
are path dependent, with the Kirkwood and density integration
formulas giving different, but close, values. The semianalyti-
cal expression for VM is not consistent with the Kirkwood
values, as it has a different coupling parameter, although it
gives reasonable values. In contrast to the calculated pressure,
Eq. (11) has the best agreement with EOS at the values at low
temperatures while VM performs better at high temperatures.
HNC overestimates the Helmholtz free energy in all cases and
has the largest relative error.

Results for the excess Helmholtz free energy over a range
of densities are shown in Fig. 3 for temperatures T ∗ =
1.5, 2.74, and 5. HNC overestimates the free energy, while
the new bridge approximation tends to underestimate the free
energy at higher densities. This is most apparent at T ∗ = 2.74,
but the same behavior is also observed at T ∗ = 5. Only values
for the analytical expression for the VM free energy are
shown, but these are in good agreement with simulation at all
temperatures and densities.

Several paths for the excess chemical potential are com-
pared in Table IV for all three closure approximations. We
can see that for all closures the agreement of the various
numerical approaches with the analytic expression depends
on which path was used. All closures display inconsistency
between the virial and compressibility expressions for Gibbs-

FIG. 3. Helmholtz free energy per particle Ae/ε as a function of
density ρσ 3. Green, black, and blue lines are from the HNC, VM,
and Eq. (11) bridge corrections, respectively. Red crosses are from
the equations of state in [31]. Cyan crosses are MC simulation data
taken from [29] and [30] for T ∗ = 2.74 and 5.

Duhem, Eqs. (27) and (28). This is due to inconsistency in the
density derivative of the pressure, which all of these closures
exhibit. We note that the virial expression for Gibbs-Duhem
is consistent with the analytic expression for both HNC and
Eq. (11).

Consistency for different thermodynamic routes for the
free energy-pressure equation, Eq. (7), naturally depends on
the consistency of the free energy and pressure of the respec-
tive closures. HNC has free energy consistency but not pres-
sure consistency—as long as the virial path is used, Gibbs-
Duhem, free energy and pressure, and the analytic expressions
all agree. Conversely, VM has pressure consistency but not
free energy consistency, so Kirkwood and density paths to
the free energy and chemical potential do not agree. However,
density integration is consistent with the virial Gibbs-Duhem
expression. Because Eq. (11) exhibits both free energy and
pressure consistency, all routes agree except for the compress-
ibility Gibbs-Duhem expression.

VM and Eq. (11) have similar accuracy for the chemical
potential over a range of temperatures and compare well to

TABLE III. The excess Helmholtz free energy Ae/ε per particle for the LJ potential at ρσ 3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5

HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Kirkwood [Eq. (C1)] 0.115 − 0.752 − 0.600 3.904 2.251 2.630 9.570 7.315 8.009
TI density [Eq. (22)] 0.115 − 0.752 − 0.951 3.904 2.251 2.700 9.570 7.315 8.127
Analytic [Eqs. (13), (12), (14)] 0.115 − 0.752 − 0.493 3.904 2.251 2.961 9.570 7.315 8.194
MC 2.850 [29]
EOS − 0.720 [31] 2.850 [31] 8.248 [31]
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TABLE IV. The excess chemical potential μe/ε for the LJ potential at ρσ 3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5

HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Gibbs-Duhem

Compressibility [Eq. (28)] 1.479 6.693 5.505 9.811 13.77 14.52 22.32 27.33 27.80
Virial [Eq. (27)] 8.726 6.292 4.680 18.93 14.13 14.00 33.59 27.12 27.49
Kirkwood-compressibility [Eq. (25)] 2.816 6.291 5.035 11.62 14.13 13.93 24.70 27.12 27.38
Kirkwood-virial [Eq. (26)] 8.730 6.292 5.035 18.93 14.13 13.93 33.59 27.12 27.37

Free energy and pressure

TI density-compressibility [Eq. (23)] 2.816 6.291 4.684 11.62 14.13 14.00 24.70 27.12 27.50
TI density virial [Eq. (24)] 8.730 6.292 4.684 18.93 14.13 14.00 33.59 27.12 27.49

Analytic [Eqs. (16), (17), (15)] 8.730 6.293 5.517 18.93 14.13 14.65 33.59 27.12 27.60
EOS [31] 4.852 14.24 27.90

the EOS, as shown in Fig. 4. Again, HNC overestimates the
MC data and is significantly higher than VM and Eq. (11).
Analytic expressions were used for all three closures. Over-
all, Eq. (11) has better agreement with the excess chemical
potential than it does with the Helmholtz free energy (Fig. 3),
especially at high temperatures, and is similar to that observed
for the pressure (Fig. 1).

V. DISCUSSION

Thermodynamically consistent behavior is an essential
property for a successful theory of liquids. The primary result
of this work is the development of a closure for the OZ
equation that has both pressure and free energy consistency.

FIG. 4. Excess chemical potential μe/ε as a function of density
ρσ 3. Green, black, and blue lines are from the HNC, VM, and
Eq. (11) bridge corrections, respectively. Red crosses are from the
equations of state in [31].

While pressure-consistent and free energy path-independent
closures have been developed before, our single closure has
demonstrated both.

A. Thermodynamic consistency

To examine how satisfying both types of thermodynamic
consistency can improve the predictive power of the OZ
equation, we compared our results against VM and HNC clo-
sures. These alternately satisfy virial-compressibility pressure
consistency (VM) or path independence for the free energy,
respectively (HNC), but not both. All other closures that we
are aware of either satisfy only virial-compressibility pressure
or free energy consistency. As expected, enforcing pressure
consistency improves predictions of the pressure from VM
and Eq. (11) compared to HNC, particularly at high tempera-
ture and density.

We have more routes to the free energy and chemical
potential, which allows us to examine in greater detail the
implications of thermodynamic consistency or lack thereof.
Because Eq. (11) satisfies the Kast criteria [20] and pressure
consistency is enforced, all routes to the free energy and
chemical potential provide consistent results, except for the
Gibbs-Duhem expression using the compressibility, Eq. (28),
which we discuss below. HNC does have internal energy and
virial consistency but not pressure consistency, so any expres-
sion that uses the compressibility route is inconsistent, but
viral and Kirkwood results are consistent, which includes the
analytic expressions. The VM closure only exhibits pressure
consistency, so analytic expressions are simply approxima-
tions. Numeric results may agree with each other but only
when the only difference is whether the pressure is calculated
from the viral or compressibility route.

To achieve consistency for all routes to the chemical
potential tested here, it is necessary to have consistency of
the density derivative of the pressure, ( d pv

dρ
)
T

= ( d pc

dρ
)
T

, while
satisfying pressure consistency. None of the three closures
satisfy this, as is demonstrated by the results for the Gibbs-
Duhem expression for the chemical potential, Table IV. For
this additional consistency, it is necessary that the free param-
eters in the bridge be independent of density. We see this at
T ∗ = 5, where the coefficients for Eq. (11) change very little
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with density (Fig. 2) and Gibbs-Duhem consistency is nearly
achieved (Table IV).

An additional consequence of free energy path indepen-
dence is that we were able to derive analytical, closed-form
formulas for the excess free energy and excess chemical
potential for our closure. This allows the excess free energy
and excess chemical potential to be computed without the
Kirkwood charging or any other numerical form of thermo-
dynamic integration. Indeed, we find that these formulas are
completely consistent with the various numerical paths we
have tested for Eq. (12). This is in contrast to the approximate
formulas for VM, which are in poor agreement with various
numerical results.

B. Partial molar volume correction

Some physical insight can be gained by comparing our
closure to the various partial molar volume–based corrections
that have been proposed for 3D-RISM theory and molec-
ular density functional theory (MDFT) [24–27]. These are
modifications to the usual closure-specific expressions for the
chemical potential and are not bridge corrections. These all
have a similar form to UC applied to HNC,

βμUC = β
{
μHNC + a′ρv + b′},

where a′ and b′ are parameters fit to experiment and v is the
PMV of the solute, which may be interpreted as by com-
pensating for mechanical work (pressure-volume) required to
introduce a solute. From this interpretation, we have a′ =
Pcontact/ρ. Due to pressure inconsistencies in HNC, Pcontact is
not equal to the virial or compressibility pressure but is the
contact pressure between the solute and solvent [27,50,51].
Like the virial and compressibility pressures, the contact
pressure for HNC is too high and corrections like UC are
employed to compensate for this.

Comparing our expression for the chemical potential,
Eq. (15), to UC, we find that the coefficients are related as a ≈
−βa′ and b1 ≈ βa′ and, by analogy, a ≈ −b1 ≈ −βPcontact/ρ

(see Appendix D). In agreement with this, Fig. 2 shows that
a ≈ −b1. This observation suggests it may be possible to
replace the b1 coefficient with −a.

PMV corrections have been used successfully for water
(e.g., [25–27,52–54]) and other solvents (e.g., [55–58]). Be-
cause room temperature and atmospheric pressure are typical
physical conditions for solvated biological and nonbiological
systems, we anticipate that this closure will work well where
PMV corrections have been used before. For example, simu-
lations of water are commonly performed at T = [298.15 K
and ρ = 997 kg/m3 or T ∗ = 3.82 and ρ∗ = 1.06 using the
SPC/E (simple point charge/extended) model [59]. These
conditions correspond to the highest temperatures and den-
sities we tested, where we observed pressures and chemical
potentials are in good agreement with the equation of state.
Nonpolar solvents, such as cyclohexane, have similar reduced
temperatures but lower densities than water for similar calcu-
lations. Indeed, we expect that this closure will perform well
for typical solvation free energy calculations for which PMV
corrections have been used in the past.

VI. CONCLUSION

In this work we have proposed a closure equation, Eq. (10),
for the Ornstein-Zernike equation that satisfies both virial-
compressibility pressure consistency and path independence
for the chemical potential and free energy. As a conse-
quence, this closure also exhibits internal energy-pressure,
free energy-pressure, and Gibbs-Duhem consistency. Con-
sistency was demonstrated by calculating solutions to the
Ornstein-Zernike equation with our closure truncated at the
first term of the summation, Eq. (11), for the Lennard-Jones
potential at thermodynamic parameters T ∗ = 1.5, 2.74, and
5, and ρσ 3 = 0.1−1.1. In addition, we were able to derive
closed-form expressions for the free energy and chemical
potential. We anticipate that this closure will be particularly
useful for calculations of common solvents in 3D-RISM and
molecular CDFT calculations where PMV corrections are
currently used.
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APPENDIX A: DENSITY DERIVATIVE PATH
TO THE CHEMICAL POTENTIAL

Following [60], when we hold the temperature constant,
starting from the thermodynamic identity

dG = V d p − SdT,

we have (
∂G

∂ p

)
T

= V(
∂μ

∂ p

)
T

= ρ−1

(
∂μ

∂ρ

)
T

(
∂ρ

∂ p

)
T

= ρ−1

(
∂μe

∂ρ

)
T

+
(

∂μi

∂ρ

)
T

= ρ−1

[(
∂ pe

∂ρ

)
T

+
(

∂Pi

∂ρ

)
T

]
.

In the second step we have the Gibbs-Duhem relation and in
the last step we have split the chemical potential into excess
e and ideal i contributions. For the ideal contribution on the
right-hand side we have(

∂ pi

∂ρ

)
T

= ∂

∂ρ
ρkT = kT,

where we have used the ideal gas law. For the excess chemical
potential, we then have(

∂μe

∂ρ

)
T

= ρ−1

[(
∂ p

∂ρ

)
T

− kT

]

μe =
∫ ρ

0
dρ ′ 1

ρ ′

[(
∂ p

∂ρ ′

)
T

− kT

]
.
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We may use either Eq. (18) or Eq. (19) for the derivative of
the pressure. Using Eq. (18), we have

μe =
∫ ρ

0
dρ ′ 1

ρ ′

[
kT

(
1 − 2

ρ ′

6

∫
drr

∂βu(r)

∂r
g(r)

− ρ ′2

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ ′

)
− kT

]
= −

∫ ρ

0
dρ ′

[
1

3

∫
drr

∂βu(r)

∂r
g(r)

+ ρ ′

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ ′

]
.

Using Eq. (19), we have

μe =
∫ ρ

0
dρ ′ 1

ρ ′

[
kT

(
1 − ρ ′

∫
c(r, ρ ′)dr

)
− kT

]
= −kT

∫ ρ

0
dρ ′

∫
c(r, ρ ′)dr,

which is the result obtained by [60].

APPENDIX B: FREE ENERGY PATH INDEPENDENCE
AND CLOSED-FORM CHEMICAL POTENTIAL

The most common approach to calculating the chemical
potential μe (i.e., the Gibbs free energy per particle) is through
the Kirkwood charging formula [61,62],

βμ = βμid + βμe

= βμid + ρ

∫ 1

0
dλ

∫
dr

∂βuUV(r, λ)

∂λ
gUV(r, λ), (B1)

where βμid and βμe are the ideal and excess chemical
potentials. In the language of charging technique, one may
add one (marked) solute particle U from infinity to a given
point into the N − 1 particle solvent system solvent V , and
the intermolecular interactions between them scale until the
added particle is not distinguished from the others. For the
Kirkwood approach, λ scales interactions of one (marked)
particle with the others, that is, when λ = 0, the particle is
removed and when λ = 1, the particle is fully coupled to the
system. The integral may be computed analytically if βμe is
independent of how λ scales the interaction, i.e., it is path
independent.

To ensure path independence in Eq. (B1), Kast [20] uses
a variational approach to obtain a constrained formula for the
excess chemical potential:

μe =
∫ 1

0

∫
ρ(h + 1)

∂u

∂λ
+ pP + vV dr dλ

q

(2π )3

∫ 1

0

∫
Q dk,

(B2)

where, in the general case,

P = exp(−βu + γ + B) − h − 1,

V = h − c − γ ,

Q = ρĉ
∂ ĉ

∂λ

(
1 + ρĉ

1 − ρĉ

)
− ∂ ĉ

∂λ
ρĥ,

and p, v, and q are variational parameters to be solved for. For
path independence to be satisfied, the functional derivatives of
Eq. (B2) with respect to h, c, γ , and u must be zero:

∂μe

∂h
= ρ

∂u

∂λ
+ p

[
∂B

∂h
(h + 1) − 1

]
− qρ

∂c

∂λ
+ v = 0, (B3)

∂μe

∂c
= p

∂B

∂c
(h + 1) + qρ

∂h

∂λ
− v = 0, (B4)

∂μe

∂γ
= p

(
∂B

∂γ
+ 1

)
(h + 1) − v = 0, (B5)

∂μe

∂u
= p

(
∂B

∂u
− β

)
(h + 1) − ρ

∂h

∂λ
= 0. (B6)

This system of equations is then solved for p, v, and q, giving

p = ρ
∂h

∂λ

1(
∂B
∂u − β

)
(h + 1)

, (B7)

v = ρ
∂h

∂λ

∂B
∂γ

+ 1
∂B
∂u − β

, (B8)

q =
∂B
∂γ

− ∂B
∂c + 1

∂B
∂u − β

. (B9)

For a closure with bridge approximation given by Eq. (10), we
may obtain

p = −β−1(h + 1)−1 ∂h

∂λ
, v = −β−1ρ

∂h

∂λ
,

q = −β−1(1 − a). (B10)

From the equation for q in Eq. (B10) it is seen that the
proposed bridge approximation Eq. (10) has satisfied this
path-independence condition.

Combining Eqs. (B3) with (B1) and p, v, and q, we have

μe = μHNC − ρ

∫ 1

0

∫
dr dλ

1(
∂B
∂u − β

)
{

∂h

∂λ
(h + 1)

[
∂B

∂h
+ ∂B

∂γ

]
− ∂c

∂λ
(h + 1)

(
∂B

∂t
− ∂B

∂c

)}
.

(B11)

It is straightforward to extend this to multicomponent 1D- or
3D-RISM cases.

For the specific case of Eq. (10) we have

∂B

∂u
= 0,

∂B

∂γ
= 0,

∂B

∂c
= a,

∂B

∂h
=

∑
i=1

ibih
i−1,

and Eq. (B11) reduces to

μe = μHNC − ρ

β

∫
dr{

b1h +
∑
i=2

[
bi + bi−1

(
1 − 1

i

)]
hi − 1

2
ahc + ac

}
.

(B12)
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APPENDIX C: CLOSED-FORM EXPRESSIONS FOR FREE
ENERGY AND CHEMICAL POTENTIAL

As with the chemical potential, the Helmholtz free energy
can also be computed with the Kirkwood charging technique
[61,62], in which the free energy difference between two
different states is calculated by gradually “switching between”
the two different Hamiltonians using the coupling parameter
λ. When λ = 0, the system is represented by a Hamilto-
nian corresponding to the initial state and for λ = 1 by a
Hamiltonian corresponding to the final state. Then the excess
Helmholtz free energy Ae is obtained in terms of thermody-
namic integration with the Kirkwood charging formula,

βAe

N
= ρ

2

∫ 1

0
dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ). (C1)

The manner in which λ is coupled to u(r, λ) determines the
computational path. To eliminate a derivative of ∂u/∂λ in the
Kirkwood charging formulas, Eqs. (C1) and (B1), we begin
with the exact expression

[1 + h(r, λ)] = e−βu(r,λ)+h(r,λ)−c(r,λ)+B(r,λ). (C2)

Taking the derivative of both sides, we arrive at

β(1 + h)
∂u

∂λ
= ∂

∂λ

(
1

2
h2 − c + B

)
− h

∂c

∂λ
+ h

∂B

∂λ
. (C3)

Inserting Eq. (C3) into the Kirkwood charging formula for the
excess free energy, Eq. (C1), we have

βAe

N
= ρ

2

∫
dr

(
1

2
h2 − c + B

)
− ρ

2

∫ 1

0
dλ

∫
drh

∂c

∂λ

+ ρ

2

∫ 1

0
dλ

∫
drh

∂B

∂λ
. (C4)

In the second integral we need to express h in terms of c in
order to integrate over λ, that is,∫ 1

0
dλ

∫
drh

∂c

∂λ
=

∫ 1

0
dν

∫
drhc

= 1

8π3

∫ 1

0
dν

∫
dk ̂h(νc) ĉ

= 1

8π3

∫ 1

0
dν

∫
dk

νĉ

1 − ρνĉ
ĉ

= 1

8π3

∫
dkĉ2

∫ 1

0
dν

ν

1 − ρνĉ

= − 1

8π3

1

ρ

∫
dk

[
ĉ + 1

ρ
ln |1 − ρĉ|

]
.

(C5)

Here we used (∂c/∂λ)dλ = cdν, ν̂c = νĉ, and Parseval’s
theorem

∫
a(r)b(r)dr = (1/8π3)

∫
âb̂dk [42].

For the third integral, we can write∫∫ 1

0
h
∂B

∂h
dλdr =

∫
hBdr −

∫∫ 1

0
B

∂h

∂λ
dλdr. (C6)

If we assume that h(r, λ) ≈ λh(r) and use expression Eq. (10)
for B(r), the second integral of Eq. (C6) becomes∫∫ 1

0
ac

∂h

∂λ
dλdr +

∑
i

bi

∫∫ 1

0
hi ∂h

∂λ
dλdr

= 1

8π3

a

ρ

∫
dk

[
ĥ − 1

ρ
ln |1 + ρĥ|

]
+

∫
dr

∑
i

bi

i + 1
hi+1.

(C7)

Combining Eqs. (C6) and (C7), we have

βAe

N
= ρ

2

∫
dr

(
1

2
h2 − c

)
+ 1

2

1

8π3

∫
dk

[
ĉ + 1

ρ
ln |1 − ρĉ|

]
+ ρ

2

∫
drgB − a

2

1

8π3

∫
dk

[
ĥ − 1

ρ
ln |1 + ρĥ|

]
− ρ

2

∫ ∑
i

bi

i + 1
hi+1dr. (C8)

For the VM closure, we may follow the same procedure
with the observation that a particular coupling is selected.
Proceeding with this understanding, the second integral of
Eq. (C6) becomes∫ 1

0
dλ

∫
B

∂h

∂λ
dr

=
∫ 1

0
dν

∫
Bhdr = 1

8π3

∫ 1

0
dν

∫
dk ̂B(νh) ĥ

= −1

2

1

8π3

∫
dkĥ

∫ 1

0
dν

φ(ρν2ĥ2/(1 + ρνĥ))2

1 + αν2ĥ2/(1 + ρνĥ)
. (C9)

Then, combining Eqs. (C6) and (C9), we have

βAe

N
= ρ

2

∫
dr

(
1

2
h2 − c

)
+ 1

2

1

8π3

∫
dk

[
ĉ + 1

ρ
ln |1 − ρĉ|

]
+ ρ

2

∫
drgB + ρ

4

1

8π3

∫
dkĥ

×
∫ 1

0
dν

φ(ρν2ĥ2/(1 + ρνĥ))2

[1 + αν2ĥ2/(1 + ρνĥ)]
. (C10)

For the excess chemical potential βμe, from Eqs. (B1) and
(C3) we can write

βμe = ρ

∫
dr

(
1

2
h2

UV − cUV + BUV

)
− ρ

∫ 1

0
dλ

∫
drhUV

∂cUV

∂λ
+ ρ

∫ 1

0
dλ

∫
drhUV

∂BUV

∂λ
,

(C11)

where UV denotes correlation functions between a marked
solute particle U and the bulk solvent liquid V . While this
looks almost identical to Eq. (C4), in this case λ scales
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the interaction between the single marked particle and the
liquid rather than all of the interactions in the liquid. The OZ
equation for the solute particle is then [63]

hUV(r) = cUV(r) + ρ

∫
cUV(|r − r′)hVV(r′)dr′.

Because hVV(r) does not depend on λ, we may choose that
c(r, λ) = λc(r), which leads to

βμe = ρ

∫
dr

(
1

2
h2 − c − 1

2
hc

)
+ ρ

∫
drgB

− ρ

∫
dr

[
1

2
ahc +

( ∑
i

bi

i + 1
hi+1

)]
. (C12)

In evaluation of the excess chemical potential βμe for the
VM approximation, the second integral of Eq. (C6) becomes∫

B
∂h

∂λ
dλdr =

∫
B′hdr ≈

∫
B

3
hdr. (C13)

Here B′ denotes the series of integrated bridge diagrams with
the h bond removed [42]. Combining Eqs. (C6) and (C13),
and inserting them in Eq. (C11), we have

βμe = ρ

∫
dr

(
1

2
h2 − c − 1

2
hc

)
+ ρ

∫
dr

(
B + 2h

3
B

)
.

(C14)

APPENDIX D: CONNECTION TO PMV CORRECTIONS

The analytic expression for the excess chemical potential,
Eq. (15), bears a strong resemblance to PMV corrections that
have been used with 3D-RISM theory and molecular density
functional theory [24–27]. To see the connection, we first
expand Eq. (15) to the form

βμe = βμHNC + aρ

∫
drc(r) + 1

2
aρ

∫
drc(r)h(r)

+
∑

i

biρ

∫
dr

[
hi(r) +

(
i

i + 1

)
hi+1(r)

]
. (D1)

In the case that we truncate the summation at b1, this
becomes

βμe = βμHNC + aρ

∫
drc(r) + b1ρ

∫
drh(r)

+ 1

2
aρ

∫
drc(r)h(r) + b1

ρ

2

∫
drh2(r). (D2)

The most general of the PMV corrections is the universal
correction [24], which can be applied to the HNC expres-
sion as

βμUC = β{μHNC + a′ρv + b′}, (D3)

where a′ and b′ are parameters fit to experiment and v is the
PMV,

v = kBT χT

(
1 − ρ

∫
c(r)dr

)
. (D4)

It is useful to expand v using an alternate expression for the
isothermal compressibility [32,33,64],

χT = β

ρ
+ β

∫
h dr. (D5)

Combining Eqs. (D3), (D4), and (D5), we have

βμUC = β

{
μHNC − a′ρ

∫
drc(r) + a′ρ

∫
drh(r)

−a′ρ2

(∫
drh(r)

)(∫
drc(r)

)
+ a′ + b′

}
. (D6)

The similarity is most easily seen between Eqs. (D2) and (D6),
were we can say that a ≈ −βa′, b1 ≈ βa′, and a′ + b′ ≈
b1

ρ

2

∫
drh2(r). For the general case of Eq. (D1), we have

instead

a′ + b′ ≈ b1
ρ

2

∫
drh2(r) +

∑
i=2

biρ

∫
dr

×
[

hi(r) +
(

i

i + 1

)
hi+1(r)

]
. (D7)

[1] L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17,
793 (1914).

[2] R. Evans, Adv. Phys. 28, 143 (1979).
[3] D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1930

(1972).
[4] F. Hirata and P. J. Rossky, Chem. Phys. Lett. 83, 329 (1981).
[5] J. Perkyns and B. M. Pettitt, J. Chem. Phys. 97, 7656 (1992).
[6] D. Beglov and B. Roux, J. Phys. Chem. B 101, 7821 (1997).
[7] A. Kovalenko and F. Hirata, J. Chem. Phys. 110, 10095 (1999).
[8] L. Blum and A. J. Torruella, J. Chem. Phys. 56, 303 (1972).
[9] L. Blum, J. Chem. Phys. 57, 1862 (1972).

[10] S. Zhao, R. Ramirez, R. Vuilleumier, and D. Borgis, J. Chem.
Phys. 134, 194102 (2011).

[11] L. Verlet, Mol. Phys. 41, 183 (1980).
[12] L. Verlet and D. Levesque, Mol. Phys. 46, 969 (1982).
[13] G. A. Martynov and G. N. Sarkisov, Mol. Phys. 49, 1495

(1983).

[14] F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).
[15] G. Zerah and J. Hansen, J. Chem. Phys. 84, 2336 (1986).
[16] P. Ballone, G. Pastore, G. Galli, and D. Gazzillo, Mol. Phys. 59,

275 (1986).
[17] G. A. Martynov and A. G. Vompe, Phys. Rev. E 47, 1012

(1993).
[18] D. Duh and A. D. J. Haymet, J. Chem. Phys. 103, 2625 (1995).
[19] L. L. Lee, J. Chem. Phys. 103, 9388 (1995).
[20] S. M. Kast, Phys. Rev. E 67, 041203 (2003).
[21] T. Morita, Prog. Theor. Phys. 20, 920 (1958).
[22] S. M. Kast and T. Kloss, J. Chem. Phys. 129, 236101 (2008).
[23] I. S. Joung, T. Luchko, and D. A. Case, J. Chem. Phys. 138,

044103 (2013).
[24] D. S. Palmer, A. I. Frolov, E. L. Ratkova, and M. V. Fedorov,

J. Phys.: Condens. Matter 22, 492101 (2010).
[25] V. Sergiievskyi, G. Jeanmairet, M. Levesque, and D. Borgis,

J. Chem. Phys. 143, 184116 (2015).

032130-11

https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1063/1.1678513
https://doi.org/10.1063/1.1678513
https://doi.org/10.1063/1.1678513
https://doi.org/10.1063/1.1678513
https://doi.org/10.1016/0009-2614(81)85474-7
https://doi.org/10.1016/0009-2614(81)85474-7
https://doi.org/10.1016/0009-2614(81)85474-7
https://doi.org/10.1016/0009-2614(81)85474-7
https://doi.org/10.1063/1.463485
https://doi.org/10.1063/1.463485
https://doi.org/10.1063/1.463485
https://doi.org/10.1063/1.463485
https://doi.org/10.1021/jp971083h
https://doi.org/10.1021/jp971083h
https://doi.org/10.1021/jp971083h
https://doi.org/10.1021/jp971083h
https://doi.org/10.1063/1.478883
https://doi.org/10.1063/1.478883
https://doi.org/10.1063/1.478883
https://doi.org/10.1063/1.478883
https://doi.org/10.1063/1.1676864
https://doi.org/10.1063/1.1676864
https://doi.org/10.1063/1.1676864
https://doi.org/10.1063/1.1676864
https://doi.org/10.1063/1.1678503
https://doi.org/10.1063/1.1678503
https://doi.org/10.1063/1.1678503
https://doi.org/10.1063/1.1678503
https://doi.org/10.1063/1.3589142
https://doi.org/10.1063/1.3589142
https://doi.org/10.1063/1.3589142
https://doi.org/10.1063/1.3589142
https://doi.org/10.1080/00268978000102671
https://doi.org/10.1080/00268978000102671
https://doi.org/10.1080/00268978000102671
https://doi.org/10.1080/00268978000102671
https://doi.org/10.1080/00268978200101711
https://doi.org/10.1080/00268978200101711
https://doi.org/10.1080/00268978200101711
https://doi.org/10.1080/00268978200101711
https://doi.org/10.1080/00268978300102111
https://doi.org/10.1080/00268978300102111
https://doi.org/10.1080/00268978300102111
https://doi.org/10.1080/00268978300102111
https://doi.org/10.1103/PhysRevA.30.999
https://doi.org/10.1103/PhysRevA.30.999
https://doi.org/10.1103/PhysRevA.30.999
https://doi.org/10.1103/PhysRevA.30.999
https://doi.org/10.1063/1.450397
https://doi.org/10.1063/1.450397
https://doi.org/10.1063/1.450397
https://doi.org/10.1063/1.450397
https://doi.org/10.1080/00268978600102071
https://doi.org/10.1080/00268978600102071
https://doi.org/10.1080/00268978600102071
https://doi.org/10.1080/00268978600102071
https://doi.org/10.1103/PhysRevE.47.1012
https://doi.org/10.1103/PhysRevE.47.1012
https://doi.org/10.1103/PhysRevE.47.1012
https://doi.org/10.1103/PhysRevE.47.1012
https://doi.org/10.1063/1.470724
https://doi.org/10.1063/1.470724
https://doi.org/10.1063/1.470724
https://doi.org/10.1063/1.470724
https://doi.org/10.1063/1.469998
https://doi.org/10.1063/1.469998
https://doi.org/10.1063/1.469998
https://doi.org/10.1063/1.469998
https://doi.org/10.1103/PhysRevE.67.041203
https://doi.org/10.1103/PhysRevE.67.041203
https://doi.org/10.1103/PhysRevE.67.041203
https://doi.org/10.1103/PhysRevE.67.041203
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1063/1.3041709
https://doi.org/10.1063/1.3041709
https://doi.org/10.1063/1.3041709
https://doi.org/10.1063/1.3041709
https://doi.org/10.1063/1.4775743
https://doi.org/10.1063/1.4775743
https://doi.org/10.1063/1.4775743
https://doi.org/10.1063/1.4775743
https://doi.org/10.1088/0953-8984/22/49/492101
https://doi.org/10.1088/0953-8984/22/49/492101
https://doi.org/10.1088/0953-8984/22/49/492101
https://doi.org/10.1088/0953-8984/22/49/492101
https://doi.org/10.1063/1.4935065
https://doi.org/10.1063/1.4935065
https://doi.org/10.1063/1.4935065
https://doi.org/10.1063/1.4935065


TSOGBAYAR TSEDNEE AND TYLER LUCHKO PHYSICAL REVIEW E 99, 032130 (2019)

[26] V. Sergiievskyi, G. Jeanmairet, M. Levesque, and D. Borgis,
J. Chem. Phys. Lett. 5, 1935 (2014).

[27] J. Johnson, D. A. Case, Y. Yamazaki, S. Gusarov, A. Kovalenko,
and T. Luchko, J. Phys.: Condens. Matter 28, 344002 (2016).

[28] N. Choudhury and S. K. Ghosh, J. Chem. Phys. 116, 8517
(2002).

[29] H. C. Andersen, D. Chandler, and J. D. Weeks, J. Chem. Phys.
56, 3812 (1972).

[30] J. P. Hansen, Phys. Rev. A 2, 221 (1970).
[31] M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, and J.

Vrabec, J. Phys. Chem. Ref. Data 45, 023101 (2016).
[32] D. A. McQuarrie, Statistical Mechanics (University Press

Books, Redwood City, CA, 2010).
[33] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic Press, New York, 2006).
[34] T. Morita and K. Hiroike, Prog. Theor. Phys. 23, 1003 (1960).
[35] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 (1971).
[36] P. Attard and G. N. Patey, J. Chem. Phys. 92, 4970 (1990).
[37] J. Perkyns and B. M. Pettitt, Theor. Chem. Acc. 96, 61 (1997).
[38] E. Lomba and L. L. Lee, Int. J. Thermophys. 17, 663 (1996).
[39] L. L. Lee, D. Ghonasgi, and E. Lomba, J. Chem. Phys. 104,

8058 (1996).
[40] A. G. Vompe and G. A. Martynov, J. Chem. Phys. 100, 5249

(1994).
[41] S. J. Singer and D. Chandler, Mol. Phys. 55, 621 (1985).
[42] O. E. Kiselyov and G. A. Martynov, J. Chem. Phys. 93, 1942

(1990).
[43] A. B. Schmidt, J. Chem. Phys. 99, 4225 (1993).
[44] G. Sarkisov, J. Chem. Phys. 114, 9496 (2001).

[45] N. Jakse and I. Charpentier, Phys. Rev. E 67, 061203 (2003).
[46] J. M. Bomont, J. Chem. Phys. 119, 11484 (2003).
[47] D. Levesque and L. Verlet, Phys. Rev. 182, 307 (1969).
[48] M. Zacharias, T. P. Straatsma, and J. A. McCammon, J. Chem.

Phys. 100, 9025 (1994).
[49] MATLAB, version 8.50 (R2015a) (The MathWorks Inc., Natick,

MA, 2015).
[50] G. Rickayzen and A. Augousti, Mol. Phys. 52, 1355 (1984).
[51] S. L. Carnie, J. Chem. Phys. 74, 1472 (1981).
[52] T. Fujita and T. Yamamoto, J. Chem. Phys. 147, 014110 (2017).
[53] M. Misin, M. V. Fedorov, and D. S. Palmer, J. Chem. Phys. 142,

091105 (2015).
[54] J.-F. Truchon, B. M. Pettitt, and P. Labute, J. Chem. Theory

Comput. 10, 934 (2014).
[55] D. Roy, N. Blinov, and A. Kovalenko, J. Phys. Chem. B 121,

9268 (2017).
[56] T. Luchko, N. Blinov, G. C. Limon, K. P. Joyce, and A.

Kovalenko, J. Comput.-Aided Mol. Des. 30, 1115 (2016).
[57] W. Huang, N. Blinov, and A. Kovalenko, J. Phys. Chem. B 119,

5588 (2015).
[58] M. Misin, D. S. Palmer, and M. V. Fedorov, J. Phys. Chem. B

120, 5724 (2016).
[59] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys.

Chem. 91, 6269 (1987).
[60] R. O. Watts, J. Chem. Phys. 50, 984 (1969).
[61] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
[62] J. G. Kirkwood, Chem. Rev. 19, 275 (1936).
[63] F. Hirata, Molecular Theory of Solvation (Kluwer Academic

Publishers, Dordrecht, The Netherlands, 2003).
[64] B. C. Eu and K. Rah, J. Chem. Phys. 111, 3327 (1999).

032130-12

https://doi.org/10.1021/jz500428s
https://doi.org/10.1021/jz500428s
https://doi.org/10.1021/jz500428s
https://doi.org/10.1021/jz500428s
https://doi.org/10.1088/0953-8984/28/34/344002
https://doi.org/10.1088/0953-8984/28/34/344002
https://doi.org/10.1088/0953-8984/28/34/344002
https://doi.org/10.1088/0953-8984/28/34/344002
https://doi.org/10.1063/1.1467894
https://doi.org/10.1063/1.1467894
https://doi.org/10.1063/1.1467894
https://doi.org/10.1063/1.1467894
https://doi.org/10.1063/1.1677784
https://doi.org/10.1063/1.1677784
https://doi.org/10.1063/1.1677784
https://doi.org/10.1063/1.1677784
https://doi.org/10.1103/PhysRevA.2.221
https://doi.org/10.1103/PhysRevA.2.221
https://doi.org/10.1103/PhysRevA.2.221
https://doi.org/10.1103/PhysRevA.2.221
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1063/1.4945000
https://doi.org/10.1143/PTP.23.1003
https://doi.org/10.1143/PTP.23.1003
https://doi.org/10.1143/PTP.23.1003
https://doi.org/10.1143/PTP.23.1003
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.458556
https://doi.org/10.1063/1.458556
https://doi.org/10.1063/1.458556
https://doi.org/10.1063/1.458556
https://doi.org/10.1007/s002140050205
https://doi.org/10.1007/s002140050205
https://doi.org/10.1007/s002140050205
https://doi.org/10.1007/s002140050205
https://doi.org/10.1007/BF01441512
https://doi.org/10.1007/BF01441512
https://doi.org/10.1007/BF01441512
https://doi.org/10.1007/BF01441512
https://doi.org/10.1063/1.471522
https://doi.org/10.1063/1.471522
https://doi.org/10.1063/1.471522
https://doi.org/10.1063/1.471522
https://doi.org/10.1063/1.467189
https://doi.org/10.1063/1.467189
https://doi.org/10.1063/1.467189
https://doi.org/10.1063/1.467189
https://doi.org/10.1080/00268978500101591
https://doi.org/10.1080/00268978500101591
https://doi.org/10.1080/00268978500101591
https://doi.org/10.1080/00268978500101591
https://doi.org/10.1063/1.459071
https://doi.org/10.1063/1.459071
https://doi.org/10.1063/1.459071
https://doi.org/10.1063/1.459071
https://doi.org/10.1063/1.466074
https://doi.org/10.1063/1.466074
https://doi.org/10.1063/1.466074
https://doi.org/10.1063/1.466074
https://doi.org/10.1063/1.1365107
https://doi.org/10.1063/1.1365107
https://doi.org/10.1063/1.1365107
https://doi.org/10.1063/1.1365107
https://doi.org/10.1103/PhysRevE.67.061203
https://doi.org/10.1103/PhysRevE.67.061203
https://doi.org/10.1103/PhysRevE.67.061203
https://doi.org/10.1103/PhysRevE.67.061203
https://doi.org/10.1063/1.1623184
https://doi.org/10.1063/1.1623184
https://doi.org/10.1063/1.1623184
https://doi.org/10.1063/1.1623184
https://doi.org/10.1103/PhysRev.182.307
https://doi.org/10.1103/PhysRev.182.307
https://doi.org/10.1103/PhysRev.182.307
https://doi.org/10.1103/PhysRev.182.307
https://doi.org/10.1063/1.466707
https://doi.org/10.1063/1.466707
https://doi.org/10.1063/1.466707
https://doi.org/10.1063/1.466707
https://doi.org/10.1080/00268978400101971
https://doi.org/10.1080/00268978400101971
https://doi.org/10.1080/00268978400101971
https://doi.org/10.1080/00268978400101971
https://doi.org/10.1063/1.441161
https://doi.org/10.1063/1.441161
https://doi.org/10.1063/1.441161
https://doi.org/10.1063/1.441161
https://doi.org/10.1063/1.4990502
https://doi.org/10.1063/1.4990502
https://doi.org/10.1063/1.4990502
https://doi.org/10.1063/1.4990502
https://doi.org/10.1063/1.4914315
https://doi.org/10.1063/1.4914315
https://doi.org/10.1063/1.4914315
https://doi.org/10.1063/1.4914315
https://doi.org/10.1021/ct4009359
https://doi.org/10.1021/ct4009359
https://doi.org/10.1021/ct4009359
https://doi.org/10.1021/ct4009359
https://doi.org/10.1021/acs.jpcb.7b06375
https://doi.org/10.1021/acs.jpcb.7b06375
https://doi.org/10.1021/acs.jpcb.7b06375
https://doi.org/10.1021/acs.jpcb.7b06375
https://doi.org/10.1007/s10822-016-9947-7
https://doi.org/10.1007/s10822-016-9947-7
https://doi.org/10.1007/s10822-016-9947-7
https://doi.org/10.1007/s10822-016-9947-7
https://doi.org/10.1021/acs.jpcb.5b01291
https://doi.org/10.1021/acs.jpcb.5b01291
https://doi.org/10.1021/acs.jpcb.5b01291
https://doi.org/10.1021/acs.jpcb.5b01291
https://doi.org/10.1021/acs.jpcb.6b05352
https://doi.org/10.1021/acs.jpcb.6b05352
https://doi.org/10.1021/acs.jpcb.6b05352
https://doi.org/10.1021/acs.jpcb.6b05352
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1063/1.1671152
https://doi.org/10.1063/1.1671152
https://doi.org/10.1063/1.1671152
https://doi.org/10.1063/1.1671152
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1021/cr60064a007
https://doi.org/10.1021/cr60064a007
https://doi.org/10.1021/cr60064a007
https://doi.org/10.1021/cr60064a007
https://doi.org/10.1063/1.479658
https://doi.org/10.1063/1.479658
https://doi.org/10.1063/1.479658
https://doi.org/10.1063/1.479658



