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We address the calculation of transition probabilities in multiplicative noise stochastic differential equations
using a path integral approach. We show the equivalence between the conditional probability and the propagator
of a quantum particle with variable mass. Introducing a time reparametrization, we are able to transform
the problem of multiplicative noise fluctuations into an equivalent additive one. We illustrate the method by
showing the explicit analytic computation of the conditional probability of a harmonic oscillator in a nonlinear
multiplicative environment.
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I. INTRODUCTION

Stochastic dynamics driven by multiplicative noise is, by
now, a common arena to model complex behavior [1,2]. In
fact, several very different areas of knowledge have benefited
from stochastic modeling, such as physics and chemistry [3],
biology and ecology [4], and even economy and social
sciences [5,6]. From a physical perspective, multiplicative
stochastic dynamics is one of the possible approaches to
enhance our understanding of out-of-equilibrium statistical
mechanics [7–9].

Some typical examples of multiplicative noise processes
are the diffusion of particles near a wall [10–14], micro-
magnetic dynamics in ferromagnetic systems [15–17], and
nonequilibrium transitions into absorbing states [18]. More-
over, among the very interesting stochastic phenomena de-
scribed by multiplicative noise, there are two particular ones:
noise-induced phase transitions [19–23] and stochastic reso-
nance [24–27], in which the interplay between nonlinearity
and noise produces surprising outputs.

There are several theoretical approaches to deal with this
type of process. The choice of any particular one mainly
depends on what kind of observables we are interested in
and what kind of calculation technique we are willing to
apply. For instance, the Langevin approach, consisting of
a system of stochastic differential equations, is the natural
way to model a specific situation and to perform numeri-
cal simulations [28]. On the other hand, we can gain more
insightful intuition by looking at the Fokker-Planck equa-
tion, which directly provides the time-dependent probability
distribution. Other analytic approaches, such as mean fields,
perturbation theory, and even renormalization group tech-
niques are also available [29]. Moreover, the path integral
formulation of stochastic processes is quite useful to compute
correlation and response functions [30]. Even though path
integrals for multiplicative noise processes have been studied
for a long time [31], important progress has been recently
reached [32–37]. Interestingly, this technique provides a

useful and beautiful connection between a classical stochastic
process and a quantum mechanical problem [38].

Preparing the system at a certain time ti with a probability
density distribution P0(x), the solution of the Fokker-Planck
equation provides a time-dependent probability distribution,
P(x, t ), at any time t > ti. Equivalently, it can be written in
the form

P(x, t ) =
∫

P(x, t |xi, ti )P0(xi ) dxi, (1.1)

where P(x, t |xi, ti ) is the conditional probability distribution
of the variable x at a time t , provided it was xi at a previous
time ti.

The conditional probability is a central object in the theory
of stochastic processes since it contains detailed information
about dynamics. For instance, equilibrium properties, such
as detailed balance, can be cast in terms of the conditional
probability and its time reversal. A careful definition of the
time-reversal conditional probability, detailed-balance rela-
tions, as well as microscopic reversibility in multiplicative
processes was developed in Ref. [35].

The explicit computation of the conditional probability is
quite involved. One of the methods to compute it is based on
its path integral representation. For an additive noise Langevin
equation, the problem is equivalent to the computation of a
propagator of a quantum particle. In this context, perturbation
theory or semiclassical expansions [39,40] can be imple-
mented.

In this paper, we propose a method to analytically compute
a weak noise expansion of the conditional probability in
the case of a multiplicative process driven by a Langevin
equation. We show that, when written in its path integral
representation, its computation is equivalent to compute a
propagator of a quantum particle with variable mass. The
state-dependent diffusion is translated to a quantum equivalent
model as a space-dependent mass. The quantization of a clas-
sical model with variable mass is not uniquely defined [41],
since the kinetic term is a product of noncommuting
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(coordinate and momentum) operators. This ambiguity re-
sembles, in the stochastic process, different discretization
prescriptions needed to properly define the stochastic differ-
ential equation. We describe a method to compute a weak
noise expansion of the conditional probability in an arbitrary
stochastic prescription. The key point, in order to compute
fluctuations, is the introduction of a reparametrized time
that transforms the structure of the fluctuation operator with
multiplicative noise into a simpler form, typically displayed
in additive noise problems. In some sense, we are trans-
forming multiplicative noise into additive noise by means
of a time reparametrization. This is different from the usual
way to transform multiplicative into additive noise, by means
of a nonlinear variable transformation [1,2,42]. Using this
technique, fluctuations can be explicitly computed in the
reparametrized time. In the end, it is necessary to invert the
time transformation in order to have sensible results.

To illustrate the technique we show a simple nontrivial
example. We compute the conditional probability of an over-
damped harmonic oscillator in the presence of a (nonlinear)
multiplicative noise. We obtain analytic results, allowing us
to explore the behavior of the conditional probabilities in
different time regimes. Ir order to check the accuracy of the
method we compare our results with numerical solution of the
Fokker-Planck equation.

The paper is organized as follows. In Sec. II, we describe
the model and set up the basic notation we use all through the
paper. In Sec. III we show that the conditional probability of
a multiplicative stochastic process is equivalent to the propa-
gator on a quantum particle with position-dependent mass. In
Sec. IV, we describe a weak noise expansion or semiclassical
approximation. Here, we introduce the time reparametrization
that allows us to compute fluctuations. Finally, in Sec. V we
show a particular example to illustrate how the computational
technique is applied. We discuss our results in Sec. VI. Addi-
tionally, we show details of the calculation in two Appendixes.

II. LANGEVIN DESCRIPTION OF A MULTIPLICATIVE
WHITE NOISE STOCHASTIC EVOLUTION

In order to describe the model and to set up notations, we
briefly review in this section the Langevin and Fokker-Planck
description of the dynamical evolution of a multiplicative
white noise stochastic process.

We consider a single random variable x(t ) satisfying a first-
order stochastic differential equation given by

dx(t ) = f [x(t )]dt + g[x(t )]dW (t ), (2.1)

where dW = ζ (t )dt is a Wiener process. Thus, ζ (t ) obeys a
Gaussian white noise distribution with

〈ζ (t )〉 = 0, 〈ζ (t )ζ (t ′)〉 = σ 2δ(t − t ′). (2.2)

σ measures the noise intensity while f (x) and g(x) are ar-
bitrary smooth functions of x, representing the drift force
and the square root of the diffusion function, respec-
tively. To completely define Eq. (2.1) we fix the general-
ized Stratonovich [43] prescription (also known as α pre-
scription [31]) to define the stochastic integrals. In this

prescription, the integrals are defined by the discretization rule∫
g[x(t )] dW (t ) = lim

n→∞

n∑
j=1

g[x(τ j )][W (t j+1) − W (t j )],

(2.3)

where τ j is chosen from

g[x(τ j )] = g[(1 − α)x(t j ) + αx(t j+1)] with 0 � α � 1.

(2.4)

The limit in Eq. (2.3) is understood in the sense of mean-
square limit [1]. The solutions of Eq. (2.1) depends on the
particular value of 0 � α � 1. Two popular choices are α =
0, which corresponds with the prepoint Itô interpretation,
and α = 1/2, with the (midpoint) Stratonovich one. Different
values of α also imply different calculus rules. The most
striking property is the chain rule. For an arbitrary function
of the stochastic variable, Y [x(t )], it takes the form [34,35],

dY [x(t )]

dt
= ∂Y

∂x

dx

dt
+ (1 − 2α)

2
σ 2 ∂2Y

∂x2
g2. (2.5)

As a consequence, integration by parts should be performed
with great care. Clearly, for α = 1/2, Eq. (2.5) is the usual
chain rule. In fact, the Stratonovich prescription is the only
one in which all the usual calculus rules are preserved. Some-
times it is useful to represent the same stochastic process in
different prescriptions. For instance, if the process is defined
by Eq. (2.1) in the α prescription, the same process can be
formulated in another β prescription by shifting the drift force
as

f (x) → f (x) + (α − β )σ 2g(x)g′(x), (2.6)

where g′(x) = dg/dx, (a rigorous demonstration can be found
in the Appendix of Ref. [36]), Using this relation, it is some-
times useful to consider, instead of Eq. (2.1) defined in the α

prescription, the alternative equation

dx(t ) = FS[x(t )]dt + g[x(t )]dW (t ), (2.7)

with

FS (x) = f (x) +
(

2α − 1

2

)
σ 2g(x)g′(x), (2.8)

where, now, the discretization is taken in the Stratonovich
prescription. In this way, solutions of Eq. (2.7), solved in
the Stratonovich convention, coincide with those of Eq. (2.1),
solved in the α prescription (with arbitrary 0 � α � 1).

Equation (2.1) or, equivalently, Eq. (2.7), leads [12] to the
Fokker-Planck equation

∂P(x, t )

∂t
+ ∂J (x, t )

∂x
= 0, (2.9)

where P(x, t ) is the time-dependent probability distribution
and the probability current is given by

J (x, t ) = [ f (x) − (1 − α)g(x)g′(x)]P(x, t )

− 1

2
g2(x)

∂P(x, t )

∂x
. (2.10)
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This equation has a time-independent equilibrium solution
Peq(x), which satisfies J (x) = 0. It has the form

Peq(x) = N e− 1
σ2 Ueq (x)

, (2.11)

where N is a normalization constant and

Ueq(x) = −2
∫ x f (x′)

g2(x′)
dx′ + (1 − α)σ 2 ln g2(x). (2.12)

In most practical cases, in the absence of noise, the system
is conservative, characterized by a potential U (x). In these
cases, the relation between the drift force and the potential
is

f (x) = −1

2
g2(x)

dU (x)

dx
, (2.13)

which can be considered as a generalization of the Einstein
relation for Brownian motion to the case of multiplicative
noise [35]. Replacing Eq. (2.13) into Eq. (2.12) we find for
the equilibrium potential

Ueq(x) = U (x) + 2(1 − α)σ 2 ln g(x). (2.14)

The equilibrium distribution depends not only on the given
functions [U (x), g(x)], but also on the value of the α prescrip-
tion, which defines the Wiener integral. The only prescription
that leads to the Boltzmann distribution Ueq(x) = U (x) is
α = 1; for this reason, this convention is sometimes called
thermal prescription or even Hänggi-Klimontovich interpre-
tation [44,45]. Furthermore, this prescription is also known
as anti-Itô interpretation. Interestingly, it can be considered as
the time reversal conjugated to the Itô prescription [35,36].

Choosing convenient values for α and U (x), it is possible
to study, in a unified formalism, model systems with general
equilibrium distributions that go from Boltzmann thermal
equilibrium to power-law distributions. A simple example
of the latter case is to consider a pure noisy system with
U (x) = 0. In that case, the equilibrium distribution is Peq ∼
g(x)−2(1−α).

III. CLASSICAL STOCHASTIC EVOLUTION
AND QUANTUM MECHANICS OF A PARTICLE

WITH VARIABLE MASS

The transition probability P(x f , t f |xi, ti ) is a central ingre-
dient in the study of any dynamical property of a stochastic
process. It represents the conditional probability of finding the
system in the state x f at time t f , provided the system was in
the state xi at time ti. In the path integral formalism, it can be
written as [33]

P(x f , t f |xi, ti ) =
∫

Dx det−1(g) e− 1
σ2 S[x]

, (3.1)

where the action S[x] is given by

S[x] =
∫ t f

ti

dt

{
1

2g2

[
dx

dt
− FS + 1

2
σ 2gg′

]2

+ σ 2

2
F ′

S

}
, (3.2)

with boundary conditions x(ti ) = xi and x(t f ) = x f . Equa-
tions (3.1) and (3.2) are the Onsager-Mashlup representa-
tion [46] of the transition probability of the stochastic process
driven by Eq. (2.7). Note that, for simplicity, we have built
a path integral representation of Eq. (2.7). In this way, we

can employ usual calculus rules to deal with the path integral.
The information about the different stochastic prescriptions
is codified in FS , given by Eq. (2.8). Alternatively, we could
choose to represent Eq. (2.1) in the past integral formalism;
in this case, it would be necessary to use the α generalization
of stochastic calculus [35,36]. Of course, the results are ex-
actly the same, the chosen representation is just a matter of
convenience.

It is instructive to rewrite the action in an alternative way.
Expanding the squared bracket in Eq. (3.2), using Eqs. (2.8)
and (2.13) and integrating by parts, we find

S[x] = 	Ueq

2
+

∫ t f

ti

dt L(x, ẋ). (3.3)

Here, the first term is a state function governed by the equi-
librium potential Ueq evaluated at the initial and the final state
of the system, 	Ueq = Ueq(x f ) − Ueq(xi ), with Ueq given by
Eq. (2.14). The Lagrangian can be written in the suggestive
form,

L = 1

2

(
1

g2(x)

)
ẋ2 + V (x), (3.4)

where

V (x) = g2

2

[(
U ′

eq

2

)2

− σ 2

(
U ′′

eq

2
+ g′

g
U ′

eq

)]
+ σ 4

4
(gg′)′.

(3.5)
The primes, ( )′, means derivative with respect to x. Replacing
Eq. (3.3) into Eq. (3.1), the conditional probability takes the
form

P(x f , t f |xi, ti ) = e− 	Ueq
2σ2 K (x f , t f |xi, ti ), (3.6)

where the propagator K (x f , t f |xi, ti ) is given by

K (x f , t f |xi, ti ) =
∫

[Dx] e− 1
σ2

∫ t f
ti

dt L(x,ẋ)
. (3.7)

Here, the functional integration measure is

[Dx] = Dx det−1g = lim
N→∞
	t→0

N∏
n=0

dxn√
	t g2

( xn+xn+1

2

) , (3.8)

where xn = x(tn), with x(t0) = xi and x(tN ) = x f .
Interestingly, Eq. (3.7) is the exact propagator of a quantum

particle with position-dependent mass m(x) = 1/g2(x) mov-
ing in a potential V (x), written in the imaginary time path
integral formalism t → −it . The noise σ 2 places the role of h̄
in the quantum theory. There is subtlety in the identification
of the stochastic and the quantum problem. Inside V (x),
Eq. (3.5), there are terms of order σ 2 and σ 4. These terms
are absent in a pure quantum problem, where the potential is
independent of h̄. However, as we will show in next section,
this fact is important in developing a weak noise (or semiclas-
sical) approximation since the saddle-point approximation has
contributions of the same order as fluctuations.

The quantization of a classical system with variable mass
has ambiguities due to operator ordering. In fact, the quantum
kinetic term mixes the noncommuting operators, position x̂
and momentum p̂. As a consequence, different orderings
in the Hamiltonian are not equivalent. In the configuration
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space path integral approach, this fact is reflected in different
discretization schemes of the time integral. Then, the quantum
ordering problem is associated in the classical Langevin de-
scription with the different stochastic prescriptions available
to compute the Wiener integrals. Specifically, the propagator
of Eq. (3.7) with time integrals symmetrically discretized
(Stratonovich prescription α = 1/2), is equivalent to a quan-
tum problem described by a Hamiltonian operator with the
Weyl order [41],

Ĥ = 1
4 [g2(x̂) p̂2 + 2 p̂ g2(x̂) p̂ + p̂2g2(x̂)] + V (x̂). (3.9)

It is worth mentioning that, in our formalism, the dependence
of the conditional probability on the stochastic prescription α

is completely taken into account through the expression of the
equilibrium potential Ueq(x), given by Eq. (2.14).

In the next section, we present a detailed procedure for
analytically computing the propagator of Eq. (3.7) in a weak
noise expansion.

IV. WEAK NOISE EXPANSION

In order to explicitly compute the conditional probability,
we make a weak noise expansion, in some sense, equivalent
to a semiclassical (or WKB) approximation in quantum me-
chanics. The general method is very well known in additive
noise processes and in quantum systems. The main idea is that
the functional integral of Eq. (3.1) is dominated, at very low
noise, by extrema of the action, in such a way that at first
approximation

P(x f , t f |xi, ti ) ∼
∑

j

e− 1
σ2 S[x( j)

cl ]
, (4.1)

where x( j)
cl (with j = 1, 2, . . .) are different solutions of the

classical equation of motion with the same boundary condi-
tions. To improve the approximation, the functional integral
of Eq. (3.1) could be computed considering small fluctuations
around each solution x( j)

cl . This integration produces a prefac-
tor in Eq. (4.1) given in terms of a functional determinant (see
below) that, upon exponentiation, will result in an effective
action containing terms proportional to σ 2 (or h̄ in a quantum
system). The application of this procedure to multiplicative
stochastic processes or, equivalently, to variable mass quan-
tum problems, is cumbersome [47]. In particular, we will see
that the classical solution as well as fluctuation contributions
to the effective action, both have σ -dependent terms. Thus,
it will be necessary to carefully compute and consider both
contributions in order to get a consistent approximation.

In this section, we present a general procedure for the
computation of the conditional probability in a stochastic
process driven by a drift force f (x) and a diffusion function
g(x), for a general stochastic prescription α. We begin by
assuming that, at very weak noise, the functional integral,
Eq. (3.1) is dominated by the solutions of the classical
equation δS[x]/δx(t ) = 0, where S[x] is given by Eq. (3.3).
Explicitly computing the functional derivative, we find

d2x

dt2
= g2V ′ + g′

g
ẋ2. (4.2)

This equation provides an alternative interpretation of
the classical problem. It corresponds with the classical

dynamics of a unit mass particle, moving under the influence
of a nonconservative velocity-dependent force, proportional
to ẋ2 [41]. This term is proper of multiplicative systems since
it is proportional to g′(x). The solution of Eq. (4.2) is quite in-
volved due, on one hand, to the nonlinearity introduced by the
diffusion function g(x) and, on the other, to the nonlinearity
in the velocity. However, using the fact that the Lagrangian
is invariant under time translations, it is not difficult to built
up a first integral of this equation. In fact, the canonical mo-
mentum p = ∂L/∂ ẋ = ẋ/g2(x) and the classical Hamiltonian
H (x, p) = ẋp − L can be simply computed, obtaining

H (x, p) = 1
2 g2(x)p2 − V (x). (4.3)

This is a classical Hamiltonian, thus, there is no ordering
problem of the kinetic term. The Hamiltonian, evaluated on
a solution of the equation of motion xcl (t )

H[xcl (t )] = 1

2

1

g2(xcl )
ẋ2

cl − V (xcl ) (4.4)

should be a conserved quantity, dH/dt = 0. Then,

ẋ2
cl = 2g2

cl (Vcl + H ), (4.5)

where gcl = g[xcl (t )] and Vcl = V [xcl (t )]. Note that the
Hamiltonian, even though it is a conserved quantity, is not the
energy, since the Lagrangian is not a homogeneous quadratic
function of the velocity.

From Eq. (4.5), we can write the solution of Eq. (4.2) by a
quadrature

t − t0 =
∫ xcl

0

ds√
2Veff (s)

, (4.6)

where we have defined an effective potential

Veff (x) = g2(x)[V (x) + H]. (4.7)

These expressions have two arbitrary constants, t0 and H ,
that should be determined by means of the boundary condi-
tions xcl (ti ) = xi and xcl (t f ) = x f . Thus, Eqs. (4.6) and (4.7)
implicitly define xcl (t ), used as a starting point of the weak
noise approximation. As anticipated, due to the fact that V (x)
contains terms proportional to σ 2 [see Eq. (3.5)], S[xcl ] will
contain such terms. Therefore, for consistency, we need to go
beyond the saddle-point approximation. The following section
is devoted to this matter.

Reparametrization of time and Gaussian fluctuations

Let us assume, for the moment, that, given initial and
final conditions, the classical solution xcl is unique. The
generalization to multiple solutions is straightforward. Then,
we consider fluctuations around it

x(t ) = xcl (t ) + δx(t ) (4.8)

with boundary conditions δx(ti ) = δx(t f ) = 0. Replacing the
expansion into Eq. (3.7) and keeping up to second-order terms
in the fluctuations we find for the propagator

K (x f , t f |xi, ti ) = e− 1
σ2 Scl

∫
[Dδx] e− 1

2

∫
dtdt ′ δx(t )O(t,t ′ )δx(t ′ ),

(4.9)
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where the classical action Scl is

Scl =
∫ t f

ti

dt L[xcl (t ), ẋcl (t )] (4.10)

and the fluctuation kernel

O(t, t ′) = − d

dt

(
1

g2
cl

dδ(t − t ′)
dt

)
+

(
1

g2
cl

V ′
eff (xcl )

)′
δ(t − t ).

(4.11)
In Eq. (4.9), the functional integration measure is

[Dδx] = lim
N→∞
	t→0

N∏
n=0

dδxn√
	t g2

( xcl (tn )+xcl (tn+1 )
2

) . (4.12)

Although Eq. (4.9) formally looks like a Gaussian integral,
its evaluation is not simple. The reason is twofold. On one
hand, the fluctuation kernel O(t, t ′), Eq. (4.11), is not trivial
due to the time dependence of gcl = g[xcl (t )]. On the other,
the integration measure, Eq. (4.12), has the diffusion function
g[x(t )] in the denominator. This factor comes from det−1 g in
Eq. (3.1) and resembles curvature effects in the time axes.

In order to compute the fluctuation integral, we make a time
reparametrization. For concreteness, we introduce a new time
variable τ , by means of

τ =
∫ t

0
g2[xcl (t

′)]dt ′. (4.13)

This is a nontrivial local scale transformation, weighted by the
diffusion function, evaluated at the classical solution xcl (t ).
Equation (4.13) defines a function τ (t ), in such a way that

dτ

dt
= g2[xcl (t )]. (4.14)

We have chosen the integration constant in order to keep the
time origin unchanged, τ (0) = 0.

Performing this time reparametrization, the fluctuation ker-
nel transforms as O(t, t ′) → 
(τ, τ ′), and takes the simpler
form


(τ, τ ′) =
[
− d2

dτ 2
+ W [xcl ]

]
δ(τ − τ ′), (4.15)

where

W (xcl ) = 1

g2
cl

(
1

g2
cl

V ′
eff (xcl )

)′
. (4.16)

On the other hand, after discretizing the reparametrized time
axes τ , the functional integration measure, Eq. (4.12) becomes

[Dδx] = lim
N→∞
	τ→0

N∏
n=0

dδxn√
	τ

, (4.17)

in which the function g(xcl ) has been absorbed in the
reparametrization.

Thus, in the new time variable τ , the functional integral
of fluctuations is Gaussian and can be formally evaluated,
obtaining for the propagator

K (x f , t f |xi, ti ) = [det 
(τi, τ f )]−1/2e− 1
σ2 Scl (ti,t f )

, (4.18)

where the relation between (τi, τ f ) and (ti, t f ) is given through
Eq. (4.13).

Considering that Eq. (4.18) is the main result of this
section, let us comment on its meaning. The general formal
structure of the propagator is the usual one in a semiclassical
approximation. It consists of an exponential of a classical
action and a prefactor, which codifies fluctuations. However,
in the present case of multiplicative noise processes, there are
important differences that we should stress. One of the effects
of the multiplicative noise in the classical action is to correct
terms proportional to σ 2 and to produce new terms of order
σ 4, as can be seen from the definition of the potential V (x),
Eq. (3.5). Thus, in order to correctly implement the approx-
imation scheme, it is essential to compute fluctuations, since
they will contribute with terms of the same order. The explicit
computation of the prefactor is very interesting. The trans-
formed fluctuation operator 
(τ, τ ′), Eq. (4.15), has exactly
the same structure as the fluctuation operator of an additive
process, albeit with a modified potential W (x), Eq. (4.16).
This fact allows us to compute the functional determinant
using the usual techniques developed to treat additive noise.
However, the result of this computation is expressed in a
reparametrized time variable τ . In order to produce sensible
results, at the end of the calculations, we need to go back
to real time, t , by inverting the reparametrization transfor-
mation. Summarizing, we have transformed the computation
of fluctuations in a multiplicative stochastic process into a
simpler problem of an additive process by means of a time
reparametrization.

V. TRANSITION PROBABILITY FOR AN OVERDAMPED
HARMONIC OSCILLATOR WITH MULTIPLICATIVE

NOISE

In this section, we illustrate the method proposed in this
paper by analyzing the simplest nontrivial example of a
multiplicative stochastic process. Let us consider an over-
damped harmonic oscillator in the presence of multiplicative
noise. A lot of particular examples of this system have been
analyzed for different physical applications. A good peda-
gogical presentation with lots of references can be found
in Ref. [48]. Much of these references try to compute the
Fokker-Planck equation or some moments of the probability
distribution. Differently, we are interested here in the transi-
tion probability with the main purpose of explicitly showing
how the technique described in this paper (specially the time
reparametrization) works.

For concreteness, let us choose a harmonic oscillator po-
tential

U (x) = ω

2
x2 , (5.1)

where ω is the natural frequency of the oscillator and a
diffusion function

g(x) = 1 + λ2x2, (5.2)

where λ controls the intensity of the multiplicative component
of the noise. In particular, for λ = 0, we recover the usual
additive white noise process.
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Using the generalized Einstein relation, Eq. (2.13), the drift
force is

f (x) = −ω

2
x(1 + λ2x2)2. (5.3)

This relation guarantees that the equilibrium potential,
Eq. (2.14), is given by

Ueq(x) = ω

2
x2 + 2(1 − α)σ 2 ln(1 + λ2x2), (5.4)

implying, for the asymptotic equilibrium probability distribu-
tion,

Peq(x) = N e− ω

2σ2 x2

(1 + λx2)2(1−α)
, (5.5)

where N is a normalization constant. One of the effects of
multiplicative noise is to correct the Gaussian equilibrium
distribution with a power-law factor, which depends on the
stochastic discretization prescription α. We also observe that,
for the Hänggi-Klimontovich prescription (α = 1), the equi-
librium probability distribution is of Boltzmann type, com-
pletely equivalent to a harmonic oscillator with additive noise.

We want to compute the propagator K (x, T |0, 0) for this
model in the weak noise approximation by using Eq. (4.18),
where we have chosen initial conditions ti = 0, xi = 0, and
final conditions t f = T , x f = x. The first step in the weak
noise approximation is to compute the classical action Scl . To
do this, we need to compute the solution of the saddle-point
equation, Eq. (4.2) or, equivalently, Eq. (4.6), and to replace
it into Eq. (4.10). We have computed Scl considering a weak
multiplicative effect, |λx| 	 1. That is, the results are accurate
in a distance range, x2 	 1/λ2, where the diffusion function
g(x) is not very far from its additive value g = 1. For details

of the calculations, Appendix A can be consulted. We have
obtained

Scl =ωx2

4
coth(ωT/2) − σ 2 ωT

4

− σ 2λ2x2(1 + 2α)

2

(
1 − ωT

sinh(ωT )

)
coth(ωT/2)

+ O(λ4x4). (5.6)

The first line of this expression is the usual result for the
harmonic oscillator with additive noise. The second line is the
correction due to the multiplicative noise to order λ2x2. For
very weak noise, only the first term of Eq. (5.6) is relevant. An
important observation is that we are getting terms of order σ 2

at saddle-point level. On the other hand, fluctuations will con-
tribute also with σ 2 terms. Consequently, this approximation
is only consistent provided fluctuations are taken into account.

As described in the preceding section, to properly com-
pute fluctuations we need to reparametrize the time vari-
able according to Eq. (4.13). In the present example, this
reparametrization reads

τ = t

{
1 + λ2x2

sinh2(ωT/2)

(
sinh ωt

ωt
− 1

)}
, (5.7)

where 0 < t < T . With this reparametrization the computa-
tion of fluctuations reduces to evaluating the determinant of
the operator of Eq. (4.15), where we have, now,

W (xcl ) = ω2

4
+ λ2x2ω2

2 sinh2(ωT/2)
[1 + 8 sinh2(ωτ/2)]. (5.8)

In Appendix B, we explicitly compute this determinant in
the reparametrized time axes and, after that, we turn back to
original time variable T . The result at order λ2x2 is

1√
det 
(0, τ )

=
√

ωT

2 sinh(ωT/2)

{
1 − λ2x2

2 sinh2(ωT/2)

[
3

2
+ 1

2

sinh(3ωT/2)

sinh(ωT/2)
+ ωT

2
coth(ωT/2)

(
sinh(ωT )

ωT
− 4

)]}
. (5.9)

Since Eq. (5.9) is an expansion in (λx)2, we can exponentiate the second term and absorb it in the definition of an effective
action, finally obtaining for the propagator

K (x, T |0, 0) =
√

ωTeωT/2

2 sinh(ωT/2)
e− 1

σ2 Seff , (5.10)

where

Seff = ωx2

4
coth(ωT/2)

{
1 + λ2σ 2

ω

[
4(1 − α) + 2

sinh(ωT )

(
5 + 3e−ωT + ωT [1 + 2α − 4coth(ωT/2)]

)]}
. (5.11)

This is the central result of this section. We have computed,
in closed analytic form, the propagator for a harmonic oscil-
lator under the influence of a nonlinear multiplicative noise in
the weak noise approximation. The first term of Eq. (5.11) is
the usual result for a harmonic oscillator under additive noise,
while the second term represents the corrections due to the
multiplicative character of the noise.

It is instructive to analyze particular limits in the time scale.
For instance, consider ωT 	 1. In this case, Eq. (5.11) takes

the simpler form

Seff = 1

2

x2

T

{
1 + 5

3

(
λ2σ 2

ω

)
ωT + O[(ωT )2]

}
. (5.12)

The first term is the result for a diffusive free particle. This
is, indeed, the correct result since, for very short times, the
particle did not have enough time to explore the harmonic po-
tential. The first correction in ωT is due to multiplicative noise
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FIG. 1. Solution of the Fokker-Planck equation, Eqs. (2.9)
and (2.10), for the model given by Eqs. (5.1) and (5.2) with initial
condition P(x, 0) = δ(x) and the following values of the parameters:
ω = 1, λ = 0.1, σ = 0.5, and α = 0.

(order λ2) and is independent of the stochastic prescription;
α-dependent terms only appear at order (ωT )2.

On the other hand, in the asymptotic limit ωT 
 1, the
effective action is

Seff = 1
4ωx2 + (1 − α)λ2x2σ 2 + O(1/ωT ). (5.13)

Replacing this result into Eq. (5.10) we get, for the conditional
probability Eq. (3.6),

lim
ωT →∞

P(x, T |0, 0) = Peq(x) = N e−Ueq (x)/σ 2
, (5.14)

which is the correct result obtained, independently, by solving
the stationary Fokker-Planck equation.

Comparison with the exact Fokker-Planck solution

In order to check the method and the accuracy of our
approximation, we compare the analytic result with the nu-
merical solution of the Fokker-Planck equation. In fact, from
Eq. (1.1), it is simple to check that the conditional probability
P(x, t |0, 0) is the solution of the Fokker-Planck equation,
P(x, t ), with the initial condition P(x, 0) = δ(x). Therefore,
we numerically solved Eqs. (2.9) and (2.10), for our model
Eqs. (5.1) and (5.2). In Fig. 1, we depict a solution for typical
values of the parameters, ω = 1, λ = 0.1, σ = 0.5, and α = 0.
The initial probability density is strongly peaked at x = 0.
It diffuses in time and, at long times, saturates to the exact
analytic expression Eq. (5.5). We observe that, as already
commented, the asymptotic equilibrium probability depends
on the stochastic prescription α. For anti-Itô prescription, α =
1, the probability density is Gaussian. However, for α �= 1,
the Gaussian behavior is slightly corrected by a power law.
In the region λ2x2 	 1, the distribution can be approximated
by a Gaussian with variance 2 = 1 − 4(1 − α)λ2σ 2/ω. This
behavior, deduced from Eq. (5.5), is verified by the numerical
solution of the Fokker-Planck equation with great precision.
On one hand, we see that the effect of the multiplicative
character of the noise is controlled by the parameter β ≡
λ2σ 2/ω. We also note from Fig. 1 that, for ωT > 3, the
asymptotic limit is already reached. On the other hand, our
approximate analytic result, valid for ωσ 2 	 1 and λx 	 1,
can be written in the form of a normal distribution,

P(x, T |0, 0) =
√

ω

2πσ 22(T )
exp

(
− ωx2

2σ 22(T )

)
, (5.15)

where the dimensionless time-dependent variance is given by

2(T ) = (1 − e−ωT )

{
1 − λ2σ 2

ω

[
4(1 − α) + e−ωT/2

8 sinh(ωT/2)
(5 + 3e−ωT + ωT [1 + 2α − 4 coth(ωT/2)])

]}
. (5.16)

The first term in the last expression corresponds to the usual
additive noise result, while the second one, proportional to
β = λ2σ 2/ω, is the multiplicative noise correction. From this
equation, it is immediate to verify that in the asymptotic limit
ωT 
 1, we get the correct result 2 = 1 − 4(1 − α)λ2σ 2/ω,
while at very short time approximation, ωT 	 1, we reach the
initial distribution limωT →0 P(x, T |0, 0) = δ(x).

Now, we compare the approximate analytic solution
with the exact numerical distribution in all the time
ranges for different values of the parameters. For this,
we observe that the variance can be obtained from the
maximum of the distribution probability at x = 0, as 2(T ) =
ω2/

√
2πσ 2P(0, T |0, 0)2. In the same way, we define the

quantity

2
ex(T ) =

√
ω

2πσ 2P(0, T )2
, (5.17)

computed from the numerical solution, P(0, T ), of the
Fokker-Planck equation. In Fig. 2, we depict both curves
computed in the Itô prescription, α = 0, with a moderate value
of the noise σ = 0.5 and λ = 0.1. We see that both curves

coincide in the range within the graphic precision. Although
we are working in the weak noise approximation, Eq. (5.16)
is quite accurate even for noise intensities as big as σ = 1.5.

FIG. 2. 2(T ) computed from Eq. (5.16) and from Eq. (5.17) for
α = 0, σ = 0.5, λ = 0.1. Both curves coincide within the graphic
precision.
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(a)

(b)

FIG. 3. Comparison of the variance 2(T ), computed with
Eq. (5.16), with the exact numerical evaluation 2

ex(T ). The solid
line is 2(T ), while 2

ex(T ) is depicted by the dotted line. We used
the following parameters for both panels: ω = 1, σ = 1.5, λ = 0.1.
(a) was computed in the Itô prescription, α = 0, while (b) was
calculated in the Hänggi-Klimontovich prescription, α = 1.

In Fig. 3, we show two curves computed with the same pa-
rameters values σ = 1.5, λ = 0.1, but for different stochastic
prescriptions. Figure 3(a) is computed in the Itô prescription
while Fig. 3(b) is computed in the anti-Itô interpretation.
We see that the curves fit quite well for initial values of
the time evolution as well as in the asymptotic limit. In the
intermediate range, we begin to observe a small deviation due
to the big value of the noise. It can also be noticed from
this figure that a better approximation is obtained for the
Hänggi-Klimontovich interpretation (α = 1).

We quantified the observed deviation by computing the
difference 	(T ) = |2

ex(T ) − 2(T )| for different stochas-
tic prescriptions. In Fig. 4, we depict 	 for σ = 1.5 and λ =
0.1. The dot-dashed curve was computed in the Itô prescrip-
tion (α = 0), the solid line was evaluated in the Stratonovich
prescription (α = 1/2), and the anti-Itô interpretation (α = 1)
is shown by the dashed line. Clearly, although the errors
are very small for these values of the parameters, we get
our best result in the anti-Itô prescription. The reason is that
in this prescription, the exact asymptotic probability density
is Gaussian, the same one of our approximation. The exact
asymptotic expression for any other value of α is, in general,

FIG. 4. 	 = |2
ex(T ) − 2(T )| for the parameters ω = 1, σ =

1.5, λ = 0.1. The dot-dashed line was computed in the Itô interpreta-
tion α = 0, the solid line, in the Stratonovich prescription α = 1/2,
while the dashed line was computed in the Hänggi-Klimontovich
prescription α = 1.

not Gaussian. This fact is reflected in Fig. 4, in the residual
values of the curves for ωT 
 1.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed the weak noise approxima-
tion for computing conditional probabilities in a multiplicative
stochastic process. We noted that this problem is equivalent
to compute the propagator of a quantum problem, which
describes a particle with variable mass in an external potential.
Indeed, the diffusion function g(x), in the classical stochastic
model, plays the role of the inverse mass in the quantum
equivalent problem [m(x) = 1/g2(x)]. On the other hand, the
necessary stochastic prescriptions used to properly define the
Wiener integral have their counterpart in the ordering problem
in quantum mechanics. The position-dependent mass mixes
noncommuting operators (x and p) in the kinetic term of
the Hamiltonian. In the stochastic process, the Stratonovich
prescription is equivalent to the Weyl order for the quantum
associated problem. In this paper, we have presented the com-
putation of the propagator using a generalized Stratonovich
prescription, parametrized by a continuous parameter 0 �
α � 1, which contains the most popular stochastic interpre-
tations as particular cases.

The direct implementation of the usual weak noise, or
semiclassical, approximation for this type of systems is quite
involved. In fact, when performing the saddle-point approx-
imation plus quadratic fluctuations, we see that fluctuations
are not Gaussian, due to the multiplicative noise effects on
the functional integration measure. On the other hand, the
fluctuation operator is very elaborate because of the time de-
pendence of the diffusion function (or equivalently, the mass).
To solve this problem and to effectively integrate fluctuations,
we have performed a time reparametrization weighted with
the diffusion function, computed at the classical solution
of the equation of motion, g[xcl (t )]. The net effect is to trans-
form the problem of computing fluctuations of a multiplicative
process into an equivalent additive noise problem. This is one
of the main contributions of this paper.
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The transformation of a multiplicative noise process into an
equivalent additive one can be done, at least for a single vari-
able, by means of a nonlinear transformation of the stochastic
variable. This fact is very well known and gives rise to all the
subtleties of different types of stochastic calculus. In higher
dimensions, this transformation can be done only in very
particular cases and it is quite problematic in the context of the
path integral representation, even in one dimension [49]. The
transformation we have presented in this paper is of a different
type, since it is not a variable transformation, but a local time
reparametrization. Interestingly enough, a similar, however
different, type of time reparametrization was previously used
in the context of path integral to relate the harmonic oscillator
propagator with the free particle propagator [50].

In some sense, what we are doing is rectifying the multi-
plicative character of the noise by locally changing the way we
measure time. A similar related idea was recently proposed in
Ref. [51]. In that reference, a time reparametrization equiv-
alent to Eq. (4.13) was proposed, but keeping the stochastic
character of the variable x. In this way, a new stochastic
time was introduced, allowing us to change the multiplicative
process into an additive one. Differently, in our approach, the
time transformation, Eq. (4.13), is not stochastic since the
diffusion function is evaluated at the solution of the saddle-
point equation. The classical solution provides a well-defined
protocol to rectify the multiplicative noise. Of course, this
procedure works for computing quadratic fluctuations. Proba-
bly, it would be necessary to correct it, order by order, if we
pretend to compute higher-order fluctuations. An additional
advantage of the time reparametrization technique is that it
can be straightforwardly implemented in higher-dimensional
systems.

We illustrated the procedure by showing the explicit com-
putation of the propagator of the simplest nontrivial model.
We have considered an overdamped harmonic oscillator with
nonlinear multiplicative noise. We have solved the saddle-
point equation in the weak multiplicative noise regime and we
computed fluctuations using the proposed time reparametriza-
tion. We showed how the multiplicative noise affects the
conditional probability and we have shown short and long
time limits in order to check the results. We have also com-
pared the analytic approximate propagator with the numerical
solution of the Fokker-Planck equation finding an excellent
match, even well beyond the parameters region where the
approximation is expected to work.

Having this powerful technique in hand, it is now possible
to attack more involved problems, such as a potential with sev-
eral minima, in order to address problems such as stochastic
resonance in systems with multiplicative noise. We hope to
report on this subject in the near future.
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APPENDIX A: SADDLE-POINT APPROXIMATION

The first step in the weak noise approximation is to solve
the saddle-point equation, Eq. (4.2) or, equivalently, Eq. (4.6).
By using the expression for the equilibrium potential Ueq(x)
given by Eq. (5.4), we can build V (x) from Eq. (3.5). It can be
approximated as

V (x) = −ωσ 2

4
+

[
ω2

8
− λ2ω

2
σ 2(1 + 2α)

]
x2, (A1)

where, in the spirit of the weak noise approximation, we
have kept terms up to order ωσ 2. We have also considered a
weak multiplicative effect, |λx| 	 1. That is, we compute the
potential in a distance range x2 	 1/λ2, where the diffusion
function g(x) is not very far away from its additive value
g = 1. In the same approximation, we compute Veff (x) from
Eq. (4.7), obtaining

Veff (x) = H − ωσ 2

4
+ �2

2
x2, (A2)

with

�2 = ω2

4
+ λ2[4H − 2ωσ 2(1 + α)]. (A3)

With this expression for Veff , we solve Eq. (4.6), with the
boundary conditions xcl (0) = 0 and xcl (T ) = x. We immedi-
ately find the classical solution

xcl (t ) = x

sinh �T
sinh(�t ). (A4)

In order to have a completely defined solution, we need to
determine the constant H , contained in the frequency �.
To determine it, we observe from Eq. (4.5) that ẋcl (0) =√

2H − ωσ 2/2. Using the solution Eq. (A4) we obtain the
transcendental equation

H = �2(H )x2

2 sinh2[�(H )T ]
+ ωσ 2

4
. (A5)

The solution of Eqs. (A3) and (A5) for H and � completely
determines the classical solutions xcl , Eq. (A4). Although this
equation can only be solved numerically, we observe that,
within the range of our approximation, an analytic expression
can be found. Using a perturbative recurrent procedure, we
find, to order λ2x2,

H = ωσ 2

4
+ ω2x2

8 sinh2(ωT/2)
− λ2x2ωσ 2(1 + 2α)

2 sinh2(ωT/2)

×
(

1 − ωT

2
coth

ωT

2

)
+ O(λ4x4) (A6)

� = ωT

2
− λ2

(
σ 2(1 + 2α) − ωx2

2 sinh2(ωT/2)

)
+ O(λ4x4).

(A7)
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Now, we are in condition to compute Scl from Eq. (4.10).
Using Eq. (4.5) we find the simpler equation

Scl = 2
∫ T

0
V (xcl ) dt + HT . (A8)

Replacing xcl (t ) into Eq. (A8), performing the time integral
and using the expressions of Eqs. (A6) and (A7), we find to
quadratic order in λx,

Scl = ωx2

4
coth(ωT/2) − σ 2 ωT

4
− σ 2λ2x2(1 + 2α)

2

×
(

1 − ωT

sinh(ωT )

)
coth(ωT/2). (A9)

The first line of Eq. (A9) is the usual result for the classical ac-
tion of the harmonic oscillator. The second line, proportional
to λ2x2, codifies information about the multiplicative noise.

APPENDIX B: FLUCTUATIONS

To compute fluctuations, we need to evaluate the prefactor
in Eq. (4.18), N ≡ det−1/2 
(0, τ f ), where 
(0, τ f ) is the
time reparametrized fluctuation operator given by Eq. (4.15)
with the fluctuation potential,

W (xcl ) = ω2

4
+ λ2x2ω2

2 sinh2(ωT/2)
[1 + 8 sinh2(ωτ/2)]. (B1)

To obtain Eq. (B1) we have discarded any term proportional
to the noise intensity σ 2. This is so because, at this level of
approximation, the prefactor will contribute, upon exponen-
tiation, to order σ 2 to the effective action. Then, any term
proportional to σ 2 in the prefactor will contribute to the order
σ 4 in the effective action.

To compute the prefactor we multiply and divide by the
determinant of the free particle operator ∂2

τ . Then, we need to
compute

N−1(τ f ) =
√

det ∂2
τ

√
det 
(0, τ f )

det ∂2
τ

. (B2)

We recall that the variable τ is the reparametrized time
given by Eq. (4.13). In our particular example, the final
reparametrized time τ f is written in terms of T as

τ f = T

[
1 + λ2x2

sinh2(ωT/2)

(
sinh ωT

ωT
− 1

)]
. (B3)

The second factor of Eq. (B2) can be computed by means
of the Gelfand-Yaglom theorem [52]. That is,

det 
(0, τ )

det ∂2
τ

= ψ (τ f )

τ f
, (B4)

where ψ (τ ) is the solution of the homogeneous equation

−d2ψ (τ )

dτ 2
+ W (xcl )ψ (τ ) = 0, (B5)

with the initial conditions ψ (0) = 0, dψ (0)/dτ = 1. Thus,
the evaluation of the ratio of determinants is reduced to solve
an ordinary homogeneous second-order differential equation,
with initial conditions. Due to the extremely nonlinear charac-
ter of the fluctuation potential W (xcl ), this equation cannot be

solved using elementary functions. Fortunately, the solution
of Eq. (B5) can be expressed in a closed form in terms of
Mathieu functions [53,54]. The result is

ψ (τ ) = −2i

ω

Ser (iωτ/2, q)

Se′
r (0, q)

, (B6)

where Ser (z, q) is the odd Mathieu function of imaginary ar-
gument z = iωτ . Se′

r (z, q) is the first derivative of the Mathieu
function with respect to z. The parameters r and q are given
by

r = 1 − 12
λ2x2

2 sinh(ωT/2)
, (B7)

q = − 8
λ2x2

2 sinh(ωT/2)
. (B8)

Interestingly, for additive noise (λ = 0), the parameters are
r = 1 and q = 0. For these values of the parameters, the
Mathieu functions reduce to elementary functions,

Se1

(
i
ωτ

2
, 0

)
= i sinh

ωτ

2
. (B9)

Then, we can expand Eq. (B6) in powers of λ2x2. To explicitly
perform this expansion we only need two properties of the
Mathieu functions [53,54]. The first of these properties is

Se1(q, z) ∼ sin z − 1
8 sin(3z)q + O(q2), (B10)

and the second one,

Ser (0, z) = sin(
√

rz)√
r

. (B11)

Using these expressions we find, for ψ (τ ),

ψ (τ ) = 2

ω
sinh(ωτ/2)

+ 6

ω

λ2x2

sinh(ωT/2)

{
1

2
sinh(ωτ/2) + 1

6
sinh(3ωτ/2)

− ωτ

2
cosh(ωτ/2)

}
+ O(λ4x4). (B12)

Replacing this result into Eq. (B4), we find the determinant
ratio that should be evaluated at the final time τ f .

To complete the calculation, we need to go back to ordinary
time using Eq. (B3). Keeping the leading-order term in λ2x2

we find√
det ∂2

τ

det 
(0, τ )

=
√

ωT

2 sinh(ωT/2)

{
1 − λ2x2

2 sinh2(ωT/2)

×
[

3

2
+ 1

2

sinh(3ωT/2)

sinh(ωT/2)
− 3

2
ωT coth(ωT/2)

−
(

sinh(ωT )

ωT
− 1

)(
1 − ωT

2
coth(ωT/2)

)]}
. (B13)

Now, to finished the calculation of N (T ) in Eq. (B2), it
is necessary to carefully evaluate det ∂2

τ . Usually, this factor
is absorbed in a global normalization constant. However, in
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our case, due to the reparametrization of time, this procedure
should be done with great care. Computing the determinant
thorough the eigenvalues of the operator ∂2

τ , it is simple to
show that

det ∂2
τ =

∏
n

π2n2

τ 2
f

. (B14)

Going back to the original time variable, using Eq. (B3) we
find,

det ∂2
τ =

(∏
n

π2n2

T 2

)

×
∏

n

1[
1 + λ2x2

sinh2(ωT/2)

(
sinh ωT

ωT − 1
)]2 . (B15)

The first factor can indeed be absorbed in a global normaliza-
tion constant N ′. However, the second factor depends on x and

cannot be ignored. Using the ζ -function regularization [55]
we find,

det ∂2
τ = N ′

[
1 + λ2x2

sinh2(ωT/2)

(
sinh ωT

ωT
− 1

)]
. (B16)

Replacing this expression in Eq. (B2), using Eq. (B13) and
reexpanding to leading order in λ2x2, we finally find

N (T )

= N ′
√

ωT

2 sinh(ωT/2)

{
1 − λ2x2

2 sinh2(ωT/2)

×
[

3

2
+ 1

2

sinh(3ωT/2)

sinh(ωT/2)

+ ωT

2
coth(ωT/2)

(
sinh(ωT )

ωT
− 4

)]}
, (B17)

which coincides with Eq. (5.9).
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