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Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within
that environment are ubiquitous. Correlation in the location of individuals within such environments arises
as a combination of the mechanisms governing individual behavior and the heterogeneous structure of the
environment. Measures of spatial structure and correlation have been successfully implemented to elucidate
the roles of the mechanisms underpinning the behavior of individuals. In particular, the pair correlation function
has been used across biology, ecology, and physics to obtain quantitative insight into a variety of processes.
However, naively applying standard pair correlation functions in the presence of obstacles may fail to detect
correlation, or suggest false correlations, due to a reliance on a distance metric that does not account for obstacles.
To overcome this problem, here we present an analytic expression for calculating a corrected pair correlation
function for lattice-based domains containing obstacles. We demonstrate that this obstacle pair correlation
function is necessary for isolating the correlation associated with the behavior of individuals, rather than the
structure of the environment. Using simulations that mimic cell migration and proliferation we demonstrate that
the obstacle pair correlation function recovers the short-range correlation known to be present in this process,
independent of the heterogeneous structure of the environment. Further, we show that the analytic calculation
of the obstacle pair correlation function derived here is significantly faster to implement than the corresponding
numerical approach.
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I. INTRODUCTION

Environments that contain obstacles are of interest in a
wide variety of fields [1–12]. In biology, it is well known
that the motion of macromolecules and proteins in the cytosol
is restricted by the densely crowded nature of the interior
of cells [6,9]. The meshlike structure of the enteric ner-
vous system, highlighted in Fig. 1(a), contains clusters of
glial cells connected by nerve strands, as well as regions
that are inaccessible to the enteric glial cells [3,10]. Hence
the location and movement of glial cells is constricted by
these inaccessible regions [3]. In the context of pedestrian
dynamics, successful navigation around an obstacle without
jamming is a key criteria for the design of safe egress routes
[2,5,7,12,13]. Similarly, predicting how pedestrians will react
to path-blocking obstacles is a key question in computer
vision, as developing algorithms for robots to reliably avoid
collisions with pedestrians is crucial [8,14].

Within such environments individuals can undergo self-
organization and form highly spatially structured populations,
such as the aforementioned clusters of glial cells [3,10] or
pedestrian lanes [7,15]. Quantifying the amount of spatial
structure present within an environment provides insight
into the mechanisms by which the individuals are governed.
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Therefore, measures that can be applied to experimental data
to obtain estimates of the spatial structure within the data are
critical [16]. Various methods for quantifying spatial structure
have been proposed previously (for example, see the review
by Perry et al. [16], and references therein). Here we focus
on the use of pair correlation functions (PCFs), which are
a powerful and versatile tool for analyzing spatial structure
and spatial correlation [17–27]. PCFs have been successfully
employed in astrophysics [18], particle physics [23], ecology
[27–29], and cell biology [19,25], among others. Briefly, the
pair correlation for a given distance m, P(m), can be defined
as

P(m) = C(m)

E [C(m)]
,

where C(m) is the number of pairs of individuals separated by
a distance m observed in the data, and the normalization term,
E [C(m)], is the expected number of individuals separated by
distance m if the individuals are located randomly through-
out the experimental domain. If there are more individuals
separated by a particular distance than expected for randomly
located individuals, then P(m) > 1, and hence there is spatial
structure corresponding to correlation at that distance. Simi-
larly, if fewer individuals are separated by a particular distance
than expected, then P(m) < 1, which suggests that there is
spatial structure corresponding to anticorrelation present at
distance m [19].
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FIG. 1. (a) Experimental image of the nervous system within the mouse colon, containing neurons (magenta), glial cells (green), and glial
processes (white). Glial cells within clusters (known as ganglia) are highlighted with orange squares. Yellow lines indicate inaccessible regions.
An example of path distance and Cartesian distance between cells are highlighted in cyan (dashed and solid, respectively). (b) Experimental
image of pedestrian locations (red squares) in the presence of obstacles (yellow lines). Image is obtained from the freely available data set
provided by the authors of Ref. [1].

As it is unlikely that any two pairs of individuals are
separated by exactly the same distance, m is typically divided
into bins [20]. This can take the form of considering the
environment as continuous space and binning the measured
distance between pairs of individuals, or by mapping indi-
viduals onto a discrete domain such that there is a finite
number of possible distances between pairs of individuals
[19,20,24,25]. There has been significant recent focus on
PCFs for discrete, or lattice-based, domains [17,19,20,24–26],
and deriving analytic expressions for the normalization term
under various distance metrics [19,24]. In particular, Binder
and Simpson [19] present a normalization term for rectilinear
distance in x and y, illustrated in Figs. 2(a) and 2(b), which
corresponds to the distance separating two lattice sites in x
and y, respectively. More recently, Gavagnin et al. [24] derive
a normalization term under the taxicab and square uniform
distance metrics, illustrated schematically in Figs. 2(c) and
2(d), respectively. Under the taxicab distance metric and
the square uniform distance metric, the distance between
two lattice sites can be thought of as the minimum number
of “jumps” between the two sites under movement occur-
ring in a von Neumann neighborhood (four nearest neigh-
bors) and a Moore neighborhood (eight nearest neighbors),
respectively [24].

However, while these PCFs have proven useful in a range
of applications, they are unsuitable for analyzing environ-
ments that contain inaccessible regions, due to either “holes”
in the domain or the presence of obstacles. In these en-
vironments, Cartesian distance measures do not adequately
describe the distance between two individuals. For example,
for the glial cells presented in Fig. 1(a), certain cells are
separated by a path distance that is significantly longer than
the Cartesian distance between the cells. Therefore, naively
calibrating a standard PCF to these data may result in a
lack of identification of spatial correlation between cells or
in spurious correlations being reported. Here we propose an
analytic method for calculating a corrected PCF for lattice
domains containing obstacles or inaccessible regions, which
we refer to as an obstacle PCF (oPCF). In Sec. II we construct
the oPCF in a systematic manner, first considering a single
inaccessible site, and subsequently increasing the number of
sites within an inaccessible region, as well as increasing the
number of inaccessible regions. Through comparison with
path-finding algorithms, we show that the derived normal-
ization term is exact. In Sec. III we demonstrate that this
oPCF is required to isolate the correlation associated with
the mechanisms governing the behavior of individuals from
correlation associated with the structure of the environment.

Rectilinear distance (x) Rectilinear distance (y) Square uniform distanceTaxicab distance )d()c()b()a(
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FIG. 2. Distance between the center lattice site (highlighted in red) and other lattice sites under the (a) rectilinear x, (b) rectilinear y,
(c) taxicab, and (d) square uniform distance metrics. Note that blue sites correspond to a distance of zero.
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FIG. 3. Distance between the center lattice site (highlighted in red) and other lattice sites under (a), (e) rectilinear x, (b), (f) rectilinear y,
(c), (g) taxicab, and (d), (h) square uniform distance metrics in the presence of (a)–(d) one or (e)–(h) nine inaccessible sites (cross-hatched).
Note that blue sites correspond to a distance of zero.

Further, we show that analysis with the exact normalization
term is significantly less computationally intensive to perform,
compared to using a path-finding algorithm, and we discuss
environments where an approximation to the normalization
term can be used effectively. Finally, in Sec. IV we discuss
our results and suggest potential avenues for future research.

The code used to generate the results in this paper can be
found at Ref. [30].

II. DERIVATION

First we illustrate domains where a different distance
metric is required. In Figs. 3(a)–3(d) we introduce a single
inaccessible lattice site and examine how the distance metrics
change, compared to the domain in Fig. 2. We note that
neither of the rectilinear distances change, and hence all sites
remain the same distance from the center site, excluding the
inaccessible sites. As such, the counts of pair distances are
reduced only by the reduction in the number of lattice sites.
The taxicab distance is more significantly impacted by the
introduction of the inaccessible site, because to travel from the
center of the domain to the rightmost side now requires that
the inaccessible site is avoided. Hence the taxicab distance
between the center site and sites on the opposite side of the
inaccessible site, with respect to the center site, increases by
two [Fig. 3(c)]. The square uniform distance is also unaffected
by the inaccessible site, because diagonal “jumps” count the
same as either horizontal or vertical “jumps.” Therefore the
inaccessible site can be avoided by two diagonal “jumps,”
rather than the two horizontal “jumps,” and the distance does
not change [Fig. 3(d)]. If we introduce a larger inaccessible
region, as presented in Figs. 3(e)–3(h), we again see that
both rectilinear distances are not influenced. As before, the
taxicab distance is influenced because the inaccessible re-
gion must be avoided to travel between the center site and

sites on the right boundary [Fig. 3(g)]. In contrast to the
small inaccessible region, the square uniform distance is now
affected by the presence of the larger inaccessible region,
because the larger region cannot be avoided through diagonal
movement [Fig. 3(h)]. We note that any inaccessible region
aside from a single site will influence the square uniform
distance. As the size of a lattice site typically corresponds to
the size of an individual, a distance metric that is not impacted
by the presence of obstacles of that size is not appropriate.
Furthermore, the majority of models that are implemented on
a lattice with obstacles typically allow movement to only one
of four nearest neighbors [13,31–36], and hence the taxicab
distance metric is implicitly applied. As such, in the remainder
of this work, we consider only the taxicab distance metric.

A. Standard pair correlation functions

To obtain the oPCF for an environment with obstacles under
the taxicab distance metric, we first introduce the counts of
pair distances for an environment without obstacles. For a
domain containing Lx sites in the x direction and Ly sites in the
y direction with no-flux boundary conditions, the maximum
pair distance is Lx + Ly − 2. As experimental images are typ-
ically captured such that the influence of boundary effects are
minimized, no-flux boundary conditions are perhaps the most
relevant boundary conditions [25]. An alternative choice is
periodic boundary conditions, which are particularly relevant
if the experimental image captured is a small region, yet
representative of a larger experimental domain. However, in
this work, we focus on no-flux boundary conditions. Recently,
Gavagnin et al. [24] derived the counts of pair distances for a
domain without obstacles, DNO(m), for m < min(Lx, Ly):

DNO(m) = 2mLxLy − (Lx + Ly)m2 + m3 − m

3
.
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Introducing inaccessible sites into the domain increases the
distances between pairs of sites (Fig. 3), and hence we
require an expression for the counts of pair distances for

m � min(Lx, Ly). For an arbitrary Lx by Ly domain with no
obstacles, the counts of pair distances are (see Appendix A
for the derivation)

DNO(m) =

⎧⎪⎨
⎪⎩

2mLxLy − (Lx + Ly)m2 + m3−m
3 , 1 � m � min(Lx, Ly)

DNO(min(Lx, Ly)) − min(Lx, Ly)2[m − min(Lx, Ly)], min(Lx, Ly) < m < max(Lx, Ly)
k(k+1)(k+2)

3 , where k = Lx + Ly − 1 − m, max(Lx, Ly) � m � Lx + Ly − 2

, (1)

The PCF is calculated by evaluating the counts of pair
distances between occupied sites, C(m), and normalizing by
the expected number of pair distances obtained from D(m)
and the average occupancy of the domain. If there are z
occupied sites and na = LxLy − nh accessible sites, where nh

is the number of inaccessible sites, then the expected counts
of pair distances are [19]

E [C(m)] = z(z − 1)

na(na − 1)
D(m). (2)

Picking two accessible sites at random, z/na is the probability
that the first selected site is occupied, and (z − 1)/(na − 1) is
the probability that the second site is occupied, given that an
occupied site has been selected previously.

There are two counts that must be obtained from the data:
the counts of pair distances between occupied sites, C(m), and
the counts of pair distances between accessible sites, D(m).
While C(m) may have to be obtained via a path-finding al-
gorithm, the number of occupied sites is typically small com-
pared to the total number of sites. As such, calculating C(m)
will require significantly fewer iterations of the path-finding
algorithm, because the number of iterations required scales
with the square of occupied sites for C(m) or the square of ac-
cessible sites for D(m) [24]. Hence, even if calculating D(m)
via a path-finding algorithm is prohibitively computationally
intensive, C(m) should be able to be calculated rapidly.

B. Corrected pair correlation functions

Next, we focus on obtaining an expression for D(m) for
domains containing inaccessible sites, by adjusting the counts
of pair distances for a domain with no obstacles, DNO, to
account for inaccessible sites. This takes the form of several
additional terms:

(1) Accessible-inaccessible pairs, denoted A(m), which
are pairs of sites in the domain that consist of an accessible site
and an inaccessible site. As these pairs are counted in DNO(m),
we require that A(m) is accounted for via the removal of these
pairs.

(2) Inaccessible-inaccessible pairs, denoted I (m), which
are pairs of inaccessible sites. Again, these sites are counted
in DNO(m) and must be removed to obtain D(m).

(3) Shifted pairs, denoted S(m), which are pairs of accessi-
ble sites where the path distance between the sites is different
to the taxicab distance due to the presence of inaccessible
sites. Shifted pairs consist of lost pairs, L(m), which are
pairs of sites in DNO(m) that are no longer present due to
inaccessible sites altering the distance [Figs. 5(b) and 5(d)
below] and gained pairs, G(m), which are pairs of sites that

are not in DNO(m) but are now present due to the introduction
of inaccessible sites [Figs. 5(c) and 5(e)].

C. Single inaccessible site

We will derive an expression for each of the adjustment
terms by systematically considering different configurations
of inaccessible sites. We first consider a single inaccessible
site, such as presented in Fig. 4, and use the subscript s
to denote the special case of a single inaccessible site. The
coloring on each site in Fig. 4 highlights the distance between
that site and the inaccessible site. For a single inaccessi-
ble site, the number of sites with a specific color therefore
corresponds to the accessible-inaccessible pairs, As(m). We
note that As(m) is a function of both the domain size, Lx

and Ly, and the location of the inaccessible site, (Hx, Hy).
However, for notational convenience, we do not explicitly
denote this dependence. In the absence of boundaries, there
are 4m accessible-inaccessible pairs for a distance m.

Intuitively, the boundaries reduce the number of pairs of
sites separated by larger values of m. To calculate which of the
4m pairs lie outside the boundary, we introduce eight values,
which represent the distance between the inaccessible site and
the boundaries and corners of the domain. The distance to the
boundary, bi, where i ∈ {L, R, D,U } for the boundary in the
left, right, down, and up directions, respectively, is defined as

bL = Hx, bR = Lx − Hx + 1, bD = Hy, bU = Ly − Hy + 1,

where Hx and Hy correspond to the x and y location of the
inaccessible site. Similarly, the distance to the corner, c j,k

where j ∈ {D,U } and k ∈ {L, R} for the corner in the down-
left, down-right, up-left, and up-right directions, respectively,
is defined as

cD,L = bD + bL, cD,R = bD + bR, cU,L = bU + bL,

cU,R = bU + bR.

These values allow us to define a function for the number of
pairs containing a site that is located outside of the boundaries
at a distance m, α(m), referred to as out-of-domain pairs, and
hence at the corresponding distance m:

As(m) = 4m − α(m). (3)

The accessible site belonging to an accessible-inaccessible
pair can either be located in the same row or column as
the inaccessible site [Figs. 4(a)–4(c)] or not located in the
same row and not in the same column as the inaccessible site
[Figs. 4(d)–4(f)]. For sites in either the same row or column
as the inaccessible site, there is at most one site at a distance
m in each direction [Figs. 4(a)–4(c)]. Further, the sites will be
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FIG. 4. Example domains with a single inaccessible site (cross-hatched). The color of individual sites corresponds to the distance between
that site and the inaccessible site. Accessible-inaccessible pairs are highlighted in (a)–(c) green or (d)–(f) cyan, depending on whether the
accessible site is within the same row or column as the inaccessible site.

in the domain only for distances less than the distance to the
boundary. We therefore introduce the function

Ni(m) =
{

0, for m < bi

1, for m � bi
,

which represents the number of out-of-domain pairs of
distance m with respect to the boundary bi, for all i ∈
{L, R, D,U }. For the number of out-of-domain pairs of dis-
tance m in diagonal directions, intuitively there will be no
out-of-domain pairs if the distance is less than the minimum
distance to a boundary of interest. We note that diagonal
refers to a pair of sites that have neither a row or column in
common. For all distances greater than the minimum distance
to a boundary, but less than the distance to the other boundary
of interest, we observe that there are the same number of sites
in the domain, for each of these distances. For example, in
Fig. 4(e), in the down-left direction, we observe only two sites

highlighted in cyan for m = 3, 4, 5, 6. In comparison, in the
down-right direction, where m = 6 is less than the minimum
distance to a boundary, we observe two, three, four, and
five sites highlighted in cyan for m = 3, 4, 5, 6, respectively.
Hence, the number of out-of-domain pairs increases exactly
with distance for distances greater than the minimum distance
to a boundary, but less than the distance to the other boundary
of interest. For distances greater than the maximum distance
to a boundary of interest, we observe that the number of sites
highlighted in cyan decreases exactly with distance. Hence
the number of out-of-domain pairs increases by two for an
increase in distance of one. Finally, for distances greater than
the distance to the corner site, there will be no pairs inside
the domain, and the number of out-of-domain pairs must be
m − 1. We note that in all cases the sum of number of the pairs
outside and inside the domain is m − 1 for a distance m in a
particular diagonal direction. Combining these observations,
we introduce the function

Mj,k (m) =

⎧⎪⎨
⎪⎩

0, for m � min(b j, bk )
m − min(bj, bk ), for min(b j, bk ) < m � max(b j, bk )
2m − c j,k, for max(b j, bk ) < m � c j,k − 2
m − 1, for m > c j,k − 2

,

which represents the number of out-of-domain pairs in each
diagonal direction. Note that both Ni(m) and Mj,k (m) do not

need to be evaluated for pair distances greater than the largest
distance between the inaccessible site and the boundary or
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FIG. 5. (a) Example domain with a single inaccessible site (cross-hatched) and sites contributing to shifted pairs highlighted in pink.
Shifted pairs consist of a pair of pink sites, where there is one site on either side of the inaccessible site. (b)–(e) Distance between an example
lattice site (highlighted in red) and other lattice sites for (b)–(c) the row of pink sites and (d)–(e) the column of pink sites if the inaccessible
site (b), (d) does not have to be avoided (green) or (c), (e) must be avoided. (c), (e) Note the equivalence between a subdomain with a single
inaccessible site that must be avoided and a subdomain with three inaccessible sites that do not need to be avoided, with two additional sites in
the subdomain.

corner, respectively. The number of out-of-domain pairs is
therefore

α(m) =
∑

i

Ni(m) +
∑

j

∑
k

Mj,k (m).

For a single inaccessible site there are no inaccessible-
inaccessible pairs. Therefore, we next consider the shifted
pairs for a single inaccessible site. In this case, pairs of sites
that are located on either side of the inaccessible site are
shifted pairs, as highlighted in Fig. 5. The relevant row and
column are presented in Figs. 5(b)–5(e), with an example site
highlighted to demonstrate the difference between the pair
distances in the domain if the inaccessible site is included
[Figs. 5(c) and 5(e)] or not [Figs. 5(b) and 5(d)]. Intuitively,
we observe that if both sites in the pair are on the same side
of the inaccessible site, then the presence of the inaccessible
site is irrelevant. If the sites in the pair are on opposite sides
of the inaccessible site, then the inaccessible site increases the
pair distance by two, which accounts for a path that avoids the
inaccessible site. As we initially consider the counts of pair
distances for the domain without inaccessible sites, we can
incorporate the shifted pairs by removing the pairs present in
Figs. 5(b) and 5(d) and including the pairs present in Figs. 5(c)
and 5(e). We note that these are the lost pairs and gained pairs,
respectively.

We therefore require an expression for the counts of pair
distances within the subdomains in Figs. 5(b)–5(e) for pairs
with an inaccessible site on both sides of the inaccessible site.
Two observations are useful here: the total number of pairs
is conserved, and avoiding the inaccessible site is equivalent
to extending the subdomain by two sites, adding two more
inaccessible sites, and calculating the pair distances as if the
inaccessible site can be passed through. The minimum pair
distance for pairs that are located on separate sides of an
inaccessible site is one greater than the number of inaccessible
sites between them. Hence L(m) is defined on 2 � m � Ly −
1 and 2 � m � Ly − 1, respectively, for the subdomains in
Figs. 5(b) and 5(d). The maximum number of pairs separated
by a given distance is restricted by the requirement that sites
are located on both sides of the inaccessible site and hence

has an upper bound of dH = min(bL, bR) − 1 in the horizontal
direction and dV = min(bU , bD) − 1 in the vertical direction.
These values represent the minimum of the number of sites on
either side of the inaccessible site. Further, there is only one
possible pair of sites separated by a distance of two and Lx − 1
(or Ly − 1), two possible pairs of sites for a distance of three
and Lx − 2 (or Ly − 2), and so forth. The one possible pair of
sites separated by a distance of two, recalling that we require
that the sites are located on both sides of the inaccessible site,
are the two sites located immediately next to the inaccessible
site. Similarly, for a distance of three, there are two options:
a site located immediately next to the inaccessible site, and a
site located a distance of two from the inaccessible site. As the
site located immediately next to the inaccessible site can be on
either side of the inaccessible site, this gives the two possible
pairs of sites.

Combining this with the aforementioned upper bound we
obtain an expression for L(m) for a single inaccessible site:

Ls(m) = min

(
−

∣∣∣∣m − Ly + 1

2

∣∣∣∣ + Ly − 1

2
, dV

)

+ min

(
−

∣∣∣∣m − Lx + 1

2

∣∣∣∣ + Lx − 1

2
, dH

)
. (4)

As noted previously, the number of shifted pairs is conserved.
As the pair distance increases by two in the presence of a
single inaccessible site, here

Gs(m) = min

(
−

∣∣∣∣m − Ly + 5

2

∣∣∣∣ + Ly − 1

2
, dV

)

+ min

(
−

∣∣∣∣m − Lx + 5

2

∣∣∣∣ + Lx − 1

2
, dH

)
. (5)

This corresponds to an increase of two in both the number
of inaccessible sites and the subdomain length. We have now
considered all the adjustment terms for a single inaccessible
site, and therefore by combining (1), (3), (4), and (5), we
obtain the expression for the count of pair distances for a
domain with a single inaccessible site, noting that I (m) = 0
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FIG. 6. (a) Example domain with a cluster of inaccessible sites (cross-hatched) and sites contributing to shifted pairs highlighted in pink.
(b) Subdomain that contains all lost pairs for the row of pink sites in panel (a); that is, all pairs in this subdomain are contained within A(m)
but must be removed to incorporate the influence of the inaccessible site. (c) Subdomain that contains all gained pairs for the row of pink
sites in panel (a); that is, all pairs in this subdomain are not contained within A(m) but need to be included to incorporate the influence of
the inaccessible site. (d) Subdomain, and associated transformation to multiple subdomains, which contain all lost pairs for the three columns
of pink sites in panel (a). (e) Subdomain, and associated transformation to multiple subdomains, which contain all gained pairs for the three
columns of pink sites in panel (a).

for a single inaccessible site:

Ds(m) = DNO(m) − As(m) − Ls(m) + Gs(m). (6)

D. Clusters of inaccessible sites

We now consider a domain with several inaccessible sites
that form a Cx by 1 cluster of inaccessible sites, as presented
in Fig. 6. Introducing the two additional sites in this example,
compared to the example in Fig. 5, results in an increase in the
number of accessible-inaccessible pairs. The total number of
accessible-inaccessible pairs, As(m), is given by

A(m) =
∑

H

As(m), (7)

where H is the set of inaccessible sites in the domain and
As(m) is defined in (3). Including the additional inaccessible
sites introduces inaccessible-inaccessible pairs. The calcula-
tion of the number of inaccessible-inaccessible pairs, I (m), is
straightforward, because the distance between such pairs is

simply the taxicab distance between the two relevant sites:

I (m) =
nh∑

i=1

nh∑
j=i+1

1m[dtaxicab(hi − h j )], (8)

where 1m(x) is the indicator function, one when x =
m and zero otherwise, nh is the number of inaccessi-
ble sites, and dtaxicab(hi − h j ) is the taxicab distance be-
tween two sites located at sites hi = (Hi

x, Hi
y ) and h j =

(H j
x , H j

y ). We observe that I (m) = 0 for n = 1, as discussed
previously.

To calculate lost and gained pairs for a cluster of inaccessi-
ble sites, we consider the example domain in Fig. 6. The lost
pairs and gained pairs associated with the horizontal direction
are relatively straightforward and can be calculated from the
subdomains presented in Figs. 6(b) and 6(c). We introduce
the general counts of pair distances for a one-dimensional
subdomain K (m, n, X, d ), where X is the total number of sites
in the subdomain, n is the number of inaccessible sites in the
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subdomain, and d is the relevant dV or dH value, as defined
previously. The function is

K (m, n, X, d ) = min

(
−

∣∣∣∣m − X + n

2

∣∣∣∣ + X − n

2
, d

)
. (9)

We note that this generalizes Eqs. (4) and (5) by allowing
for an arbitrary number of inaccessible sites. By using this
generalized definition, we can consider transformations of the
cluster of inaccessible sites to multiple one-dimensional sub-
domains with varying X and n, and calculating the K value for
each. For example, for the horizontal subdomains in Fig. 6(b),
the lost pair subdomain uses the X , n, and d values obtained
from the original domain, whereas the gained pair subdomain
in Fig. 6(c) uses X + 2, n + 2, and d . This is consistent with
the previous observation of a longer pair distance correspond-
ing to the path around the inaccessible sites. We reiterate
that this implies that the sites around the inaccessible sites
are accessible. The vertical subdomains in Fig. 6(a) are more
complicated due to the increase in the number of columns
where pairs of sites can be located such that the distance
between them is influenced by the inaccessible sites. These
columns are highlighted in pink in Fig. 6(a). As the accessible
sites must be located on either side of the inaccessible sites,
there are a total of nine combinations of columns. Hence, the
transformation of the vertical subdomain around the cluster of
inaccessible sites results in nine one-dimensional subdomains.
For the lost pairs, there can be one, two, or three inaccessible
sites between the pair of accessible sites. The number of each
of these possibilities is highlighted in Fig. 6(d). Note that
an increase in the number of inaccessible sites corresponds
to an increase in both X and n. For the gained pairs, there
can again be one, two, or three inaccessible sites between
the pair of accessible sites. However, the magnitude of the
increase in pair distance due to the inaccessible sites depends
on which columns the pair belongs to. If either one of the
accessible sites is in an outermost column, then the increase
in pair distance is two. However, if both accessible sites are in
the middle column, then the increase in pair distance is four,
as the path from one site to the other must avoid all of the
inaccessible sites. In general, the increase in distance is two
times the minimum distance between the columns (rows) that
the accessible sites belong to and the columns (rows) on either
side of the inaccessible sites. We illustrate the transformation
of the vertical subdomain into one-dimensional subdomains
for gained pairs in Fig. 6(e), as well as the relevant number of
each subdomain. In general, an Cx by 1 cluster of inaccessible
sites results in

L(m) = K (m,Cx, Lx, dH ) + CxK (m, 1, Ly, dV )

+
Cx∑
i=2

2(Cx − i + 1)K (m, i, Ly + i − 1, dV ) (10)

and

G(m) = K (m,Cx + 2, Lx + 2, dH )

+ CxK (m,Cx + 2, Ly + Cx + 1, dV )

+
Cx−1∑
i=1

2iK (m, i + 2, Ly + i + 1, dV ). (11)

The first term in both equations corresponds to the horizontal
subdomain, and the second and third terms correspond to the
(Cx )2 vertical subdomains. A similar function for the lost and
gained pairs would describe a 1 by Cy cluster of inaccessible
sites, because this is simply a rotation of the Cx by 1 cluster of
inaccessible sites.

It is now relatively straightforward to extend the lost pairs
and gained pairs functions [(10) and (11)] to apply to an Cx

by Cy cluster of inaccessible sites, as presented in Fig. 7. We
note that the vertical subdomain transformation is similar to
the previous Cx by 1 cluster, albeit with an increase in n. Now
that the cluster has Cy > 1, the horizontal subdomain transfor-
mation also results in multiple one-dimensional subdomains.
We note that the transformation is the same as for the vertical
subdomain except for rotation, and hence it is straightforward
to obtain the lost pairs function for an arbitrary Cx by Cy

cluster of inaccessible sites,

Lc(m,Cx,Cy) = Lh
c (m,Cx,Cy, Ly) + Lv

c (m,Cx,Cy, Ly), (12)

where

Lh
c (m,Cx,Cy, Ly ) = CyK (m,Cx, Lx, dH ) +

Cy∑
i=2

2(Cy − i + 1)

×K (m, i + Cy − 1, Lx + i − 1, dH )

is the horizontal contribution to the lost pair distances and

Lv
c (m,Cx,Cy, Ly) = CxK (m,Cy, Ly, dV ) +

Cx∑
i=2

2(Cx − i + 1)

× K (m, i + Cx − 1, Ly + i − 1, dV )

is the vertical contribution to the lost pair distances. Similarly,
the gained pairs function for an arbitrary Cx by Cy cluster of
inaccessible sites can be obtained and is given by

Gc(m,Cx,Cy) = Gh
c (m,Cx,Cy, Lx ) + Gv

c (m,Cx,Cy, Lx ),

(13)

where

Gh
c (m,Cx,Cy, Lx )

= CyK (m,Cx + Cy + 1, Lx + Cy + 1, dH )

+
Cy−1∑
i=1

2iK (m, i + Cx + 1, Lx + i + Cx, dH )

is the horizontal contribution to the gained pair distances and

Gv
c (m,Cx,Cy, Lx )

= CxK (m,Cy + Cx + 1, Ly + Cx + 1, dV )

+
Cx−1∑
i=1

2iK (m, i + Cy + 1, Ly + i + Cy, dV )

is the vertical contribution to the gained pair distances.
Combining (7), (8), (12), and (13) we obtain the number of

pair distances for a cluster of inaccessible sites:

Dc(m) = PNO(m) − A(m) + I (m) − Lc(m) + Gc(m). (14)

Note that the I (m) term is positive because the inaccessible-
inaccessible pairs are counted twice and removed in A(m).
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Lost pair subdomain

= 2x +2x

Gained pair subdomain

= 2x +2x

= 3x +4x +2x = 3x +4x +2x

Lost pair subdomain

= 2x +4x +2x = 2x +4x +3x+1x

Gained pair subdomain

(a) (b)

(c)

(d)

(e)

FIG. 7. (a) Example domain with a cluster of inaccessible sites (cross-hatched) and sites contributing to shifted pairs highlighted in pink.
(b)–(c) Subdomain, and associated transformation to multiple subdomains, which contain all lost and gained pairs, respectively, for the two
rows of pink sites in panel (a). (d)–(e) Subdomain, and associated transformation to multiple subdomains, which contain all lost and gained
pairs, respectively, for the three columns of pink sites in panel (a).

E. Multiple clusters of inaccessible sites

Thus far we have considered only a single cluster of inac-
cessible sites. We now consider the generalization to multiple
clusters of inaccessible sites, as illustrated in Fig. 8(a). In
this example, we consider a domain with 1 by 1 clusters
of inaccessible sites. However, we note that the approach

generalizes to rectangular clusters of any size provided that
the clusters are arranged such that entirely accessible rows and
columns exist on either side of all clusters. We also note that
the previous definitions of the accessible-inaccessible pairs
and inaccessible-inaccessible pairs [(7) and (8)] are valid here.
Similar to the approach to obtain the lost and gained pairs for

= ++

=

+

+

+

+

+
)c()b()a(

FIG. 8. (a) Example domain with multiple inaccessible sites (cross-hatched) and sites contributing to shifted pairs highlighted in pink.
(b) Subdomain, and associated transformation to multiple subdomains, for the leftmost column of pink sites. (c) Subdomain, and associated
transformation to multiple subdomains, for the bottommost row of pink sites. Note that each transformed subdomain has both lost and gained
pairs as described previously and that the gained pair subdomains are not shown.
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a Cx by Cy cluster, a subdomain is isolated and transformed
into Bi(Bi + 1)/2 one-dimensional subdomains, where Bi is
the number of clusters within a subdomain. Consider the
column subdomain presented in Fig. 8(b). The transformation
isolates all possible combinations of inaccessible sites, and
the lost pairs and gained pairs functions are calculated for
each one-dimensional subdomain. The transformation of the
subdomain in Fig. 8(b) results in three subdomains. The
first two subdomains contain a single inaccessible site and
X total sites, where X corresponds to the maximum number
of sites from the original subdomain that are contiguous
and still contain only that single inaccessible site. The third
subdomain contains both inaccessible sites and renders all
of the intervening sites inaccessible. Here X corresponds to
the length of the original subdomain. As we are able to
calculate the lost and gained pair functions on a subdomain
with a single cluster of inaccessible sites, transforming the
subdomain with multiple separate inaccessible sites provides
a straightforward method for this calculation. We note that the
single inaccessible site subdomains provide pairs that contain
sites in the uppermost (or bottommost) region of the original
subdomain as well as in the middle of the original subdomain.
The subdomain with additional inaccessible sites provides
pairs that are located in both the uppermost and bottommost
region of the original subdomain. In Fig. 8(c) we consider

the row with three single inaccessible sites and the associated
transformation. As before, we consider all possible combi-
nations of inaccessible sites: three subdomains with a single
inaccessible site, two subdomains with inaccessible regions
bounded by two inaccessible sites, and finally a subdomain
containing all three inaccessible sites, and the sites between
them treated as inaccessible.

We now generalize this approach to B distinct clusters
within a row (column) of clusters of inaccessible sites, where
sh (sv) is the set of coordinates of the leftmost (uppermost) site
in inaccessible clusters and fh (fv) is the set of coordinates of
the rightmost (bottommost) site in inaccessible clusters:

L(m)=
B∑

i=1

B−i+1∑
j=1

Lh
c

(
m, f i+ j−1

h − s j
h − 1,Cy, si+ j

h − f j − 1
h − 1

)
.

(15)

The first summation represents the number of clusters of
inaccessible sites in the domain, and the second summation
represents the number of combinations of i neighboring clus-
ters. The f i+ j−1

h − s j
h − 1 value corresponds to the number of

sites in the cluster in the horizontal direction, and the si+ j
h −

f j−1
h − 1 value corresponds to the length of the subdomain.

Repeating this processes over all distinct rows and columns of
clusters of inaccessible sites, we obtain

L(m) =
nrows∑
i=1

Bi∑
j=1

Bi− j+1∑
k=1

Lh
c

(
m, f j+k−1

h,i − sk
h,i − 1,Cy, s j+k

h,i − f k−1
h,i − 1

)

+
ncolumns∑

i=1

Bi∑
j=1

Bi− j+1∑
k=1

Lv
c

(
m,Cx, f j+k−1

v,i − sk
v,i − 1, s j+k

v,i − f k−1
v,i − 1

)
(16)

for the lost pair distances and, following similar arguments,

G(m) =
nrows∑
i=1

Bi∑
j=1

Bi− j+1∑
k=1

Gh
c

(
m, f j+k−1

h,i − sk
h,i − 1,Cy, s j+k

h,i − f k−1
h,i − 1

)

+
ncolumns∑

i=1

Bi∑
j=1

Bi− j+1∑
k=1

Gv
c

(
m,Cx, f j+k−1

v,i − sk
v,i − 1, s j+k

v,i − f k−1
v,i − 1

)
(17)

for the gained pair distances, where nrows (ncolumns) is the
number of rows (columns) that contain distinct clusters of
inaccessible sites. A cluster that has Cx > 1 would contribute
only once to ncolumns rather than Cx times, and we note that the
domain in Fig. 8(a) has ncolumns = 3 and nrows = 2.

Therefore, the expression for the counts of pair distances
for a domain with obstacles is

D(m) = DNO(m) − A(m) + I (m) − L(m) + G(m), (18)

where DNO(m), A(m), I (m), L(m), and G(m) are defined in
(1), (7), (8), (16), and (17), respectively. Again, we note
that this expression is exact provided that the obstacles are
arranged such that each obstacle has an entirely vacant row or
column on all sides of the obstacle.

III. RESULTS

We first verify that the analytic expression (18) exactly
calculates the counts of pair distances for a domain with obsta-
cles. In Figs. 9(a), 9(c), 9(e), and 9(g) we present four different
domains with inaccessible sites highlighted in black. For each
domain we calculate the counts of pair distances numerically
using Matlab’s graphshortestpath, which calculates the
shortest distance between any two points on a graph, given the
adjacency matrix of the graph. This is the approach suggested
by Gavagnin et al. [24] for calculating general PCFs, who note
that computational cost is O[L3(2L − 2)] for a square domain
with L sites in each direction, which can become computa-
tionally infeasible even for modest L values. We then evaluate
the analytic expression (18) and present the count of pair
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FIG. 9. (a), (c), (e), (g) Domains containing various configurations of inaccessible sites (black) and (b), (d), (f), (h) the corresponding
count of pair distances obtained from the analytic expression (cyan) or numerical approach (black, dashed). The domain in panel (a) has zero
inaccessible sites. The domain in panel (c) has one cluster of inaccessible sites, with 676 sites per cluster. The domain in panel (e) has 25
clusters of inaccessible sites, with 16 sites per cluster. The domain in panel (g) has 576 clusters of inaccessible sites, with one site per cluster.

distances in Figs. 9(b), 9(d), 9(f), and 9(h). We observe that
the analytic and numerical counts are the same in each case.

We next examine the differences between the PCF and the
oPCF for a range of domains that contain inaccessible sites.
In Fig. 10 we present four domains, containing 0, 1, 25, and
576 clusters of inaccessible sites. The remaining sites are pop-
ulated with agents (red) at random such that the average occu-
pancy of accessible sites is 20%. We calculate both the PCF
and the oPCF for 100 identically prepared realizations and
present the functions in Figs. 10(b), 10(e), 10(h), 10(k), 10(c),
10(f), 10(i), and 10(l) for the PCF and the oPCF, respectively.
As the accessible sites are populated randomly, there should
be no pair correlation present, and hence P(m) = 1 for all m.
Due to the small number of pairs of sites separated by a pair
distance m > 80, and the subsequent higher variance in the
calculated PCF and oPCF for these pair distances, we present
the PCF and oPCF for 1 � m � 80 (see Appendix B for
further details). We note that this is a standard choice [19,24].
For the domain with zero inaccessible sites [Fig. 10(a)], we
expect that the PCF and oPCF will be identical, because
the oPCF reduces to the PCF in this case. As expected, we
observe that the correlation functions in Figs. 10(b) and 10(c)
are indistinguishable. For all three domains with inaccessible
sites, the PCF incorrectly suggests that pair correlation is
present within the images for a range of pair distances. For
the domain in Fig. 10(d), the PCF implies that there is a
mechanism that results in both short- and long-range aggre-
gation, because the correlation value is greater than one for
m < 10 and m > 40. Further, there appears to be a mechanism
which inhibits clustering at intermediary distances. A similar
trend is observed for the third domain [Fig. 10(g)], as well as
regular oscillations in correlation for m < 40. For the fourth
domain [Fig. 10(j)], these oscillations dominate the PCF. In

contrast, the oPCF is approximately one for all pair distances
and correctly indicates that there is no mechanism influencing
clustering present in the locations of the agents. Hence, the
correlation observed in Figs. 10(e), 10(h), and 10(k) is an
artifact associated with the inaccessible sites.

We next compare the PCF and the oPCF for the same
domains as analyzed previously, but for agents that follow a
birth-movement exclusion-based random walk process. Such
processes are discussed in detail elsewhere and have been
used to mimic the behavior of a cell population [25,37].
Briefly, we populate accessible sites with z agents at random
such that the average occupancy is 1%. Agents undergo birth
and movement events with probabilities Pb and Pm per time
step, respectively. During a time step, z agents are selected
randomly with replacement and undergo birth events, where
a daughter agent is placed at one of four randomly selected
nearest-neighbor sites [37]. This birth event is successful if the
selected nearest-neighbor site does not contain an agent, and
the selected site is not inaccessible. After the birth events have
been attempted, z agents are selected randomly with replace-
ment to undergo movement events. During a movement event,
one of four nearest-neighbor sites is selected at random, and
an agent attempts to move to that lattice site [37]. Similar to
the birth events, this event is successful if the selected site does
not contain an agent and the selected site is not inaccessible.
This random walk process is used because it is known to result
in short-range correlation between agents due to the birth
mechanism [25], since birth events inherently cause agents
to be located at neighboring sites. This clustering tendency
is countered by the movement mechanism, which acts in a
diffusive manner. Hence, for higher ratios of Pb to Pm, we
expect to see more short-range correlation, and for Pm � Pb,
we expect to see no correlation.
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FIG. 10. (a), (d), (g), (j) Domains containing various configurations of inaccessible sites (black) with agents (red) randomly placed on
accessible sites with the corresponding (b), (e), (h), (k) standard PCF, that is, the pair correlation calculated ignoring inaccessible sites, and (c),
(f), (i), (l) oPCF. The dashed black line corresponds to no correlation. All PCFs are the average of 100 identically prepared domains.

Four representative snapshots of domain occupancy for
agents following the birth-movement random walk process
are shown in Figs. 11(a), 11(d), 11(g), and 11(j). In each
simulation we use a final time that is weighted by the chance

of successfully undergoing movement or birth, because the
location and number of the inaccessible sites can influence
this chance, and hence comparisons between simulations may
have an effectively different final time. For the domain in
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FIG. 11. (a), (d), (g), (j) Domains containing various configurations of inaccessible sites (black) with agents (red) located at accessible sites
after undergoing a birth-movement random walk with the corresponding (b), (e), (h), (k) standard PCF, that is, the pair correlation calculated
ignoring inaccessible sites, and (c), (f), (i), (l) oPCF. The dashed black line corresponds to no correlation. All PCFs are the average of 100
identically prepared domains and the subsequent realization of the random walk process.

Fig. 11(j), for example, there are many sites that have only
two accessible neighbor sites. This can be compensated for by
scaling the final time by the ratio of the number of accessible

neighbor sites if all neighbor sites are accessible to the actual
number of accessible neighbor sites in the domain. Hence, for
Fig. 11(j), we scale the final time by approximately 1.48, as
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TABLE I. Average time taken to evaluate the oPCF for a randomly occupied domain at 20% density with the specified number of clusters
of inaccessible sites for the analytic expression and the numerical path-finding algorithm. Times reported are the average time taken for 100
randomly generated domains.

Domain 50 × 50 50 × 50 100 × 100 100 × 100 150 × 150 150 × 150

Number of clusters 25 100 25 100 25 100
Analytic time (s) 2.18 2.36 55.61 30.35 211.64 194.83
Numerical time (s) 6.48 6.41 310.85 75.58 738.05 573.98

there are 5196 out of a possible 7696 accessible neighbor sites.
For all simulations Pm = Pb = 0.1 and tend = 70, before scal-
ing. Compared to the randomly occupied domains presented
in Figs. 10(a), 10(d), and 10(g), 10(j) we immediately observe
that the agents are located in clusters. When we calculate the
PCFs for these domains, we therefore expect to observe pair
correlation values greater than one for short distances. We
present the PCF for all four domains in Figs. 11(b), 11(e),
11(h), and 11(k). While we observe that the pair correlation
is greater than one at short distances in all four cases, the
correlation at longer pair distances varies. For the domain with
no inaccessible sites [Fig. 11(a)], the pair correlation is below
one for m > 20 and above one for m < 20, as expected. In the
second domain, the correlation is below one for intermediate
pair distances and above one for m > 40. The correlation for
the third domain is approximately one for intermediary and
large m values. For the fourth domain, the pair correlation is
only above one for short distances, and below one otherwise.
However, there is an oscillatory pattern between odd and even
pair distances. As the proliferation mechanism in the random
walk process only explicitly produces correlation at a pair
distance of one, and we expect this correlation to decay with
pair distance due to the random movement mechanism, it is
unlikely that these oscillations of this magnitude arise from
the random walk process. To examine whether these correla-
tions are indeed present due to the random walk mechanisms,
we present the oPCF in Figs. 11(c), 11(f), 11(i), and 11(l) for
the four domains. Again, for the domain with no inaccessible
sites, the PCF and the oPCF are the same. In all cases,
we observe the expected high correlation at short distance
associated with birth events. For the domain in Fig. 11(d) the
correlation is approximately one for the remainder of the pair
distances. For the domains in Figs. 11(g), and 11(j), however,
it appears that the correlation decreases with pair distance.
This suggests that the restricted geometry of the domain may
influence the spreading of the agents, even while scaling the
final time. Interestingly, this decrease is also present in the
PCF, for the domain in Fig. 11(j), albeit in the presence of
significant oscillations. Comparing the results in Fig. 11 to
Fig. 10, we observe less qualitative difference between the

standard PCF and the oPCF. This suggests that qualitative
differences between the standard PCF and the oPCF may be
more pronounced for populations containing less aggregation.
However, for populations displaying aggregation, obtaining
robust quantitative measures of the pair correlation is criti-
cal. For all four domains the oPCF is relatively consistent,
compared to the PCF, which is strongly domain dependent.
As such, the oPCF provides a meaningful measure of the
correlation present in the domain, because it is able to isolate
the agent-agent correlation from spurious correlations arising
from domain geometry.

Finally, we compare the time taken to evaluate the oPCF
using both the path-finding algorithm described previously
and the analytic expression (18). We consider domains of
different sizes randomly occupied by agents such that 20%
of the accessible sites contain an agent for different numbers
of clusters of inaccessible sites. In Table I we present the time
required to evaluate the oPCF if the domain is randomly gen-
erated with no restriction on the number of inaccessible sites,
and in Table II we present the time required if the maximum
number of inaccessible sites is restricted to 25% of the total
number of sites. We note that the randomly generated domains
considered here satisfy the restrictions required for the oPCF
to be exact. In both cases, we observe that the numerical
approach is always slower and requires between three and six
times the computation time of the analytic approach. Interest-
ingly, the numerical approach requires additional computation
time for fewer inaccessible sites. Furthermore, as the numer-
ical algorithm requires individual calculation of the distance
from one site to all other sites for each site [approximately
(LxLy)2 algorithm realizations], memory issues become a
considerable problem as the domain increases in size.

A. Approximation

The oPCF relies on a normalization term (18) that is exact
only for certain configurations of inaccessible sites. As it is
computationally intensive to determine the normalization term
through many realizations of a path-finding algorithm [24],
which is required for the exact counts of pair distances for

TABLE II. Average time taken to evaluate the oPCF for a randomly occupied domain at 20% density with the specified number of clusters
of inaccessible sites for the analytic expression and the numerical path-finding algorithm. The maximum number of inaccessible sites is limited
to 25% of the total number of sites. Times reported are the average time taken for 100 randomly generated domains.

Domain 50 × 50 50 × 50 100 × 100 100 × 100 150 × 150 150 × 150

Number of clusters 25 100 25 100 25 100
Analytic time (s) 3.81 3.16 62.24 56.23 345.20 352.57
Numerical time (s) 19.02 14.41 348.06 304.75 2053.61 2013.19
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FIG. 12. (a)–(c) Pair distance count corresponding to the domains presented in Figs. 11(a), 11(d), and 11(g), respectively. Blue corresponds
to pair distances obtained solely from DNO(m) (i.e., uncorrected), green corresponds to pair distances from DNO(m) corrected by I (m) and A(m),
and orange represents the correction associated with S(m). The corrected count of pair distances and the approximation are superimposed by
the dashed black and red lines. (d)–(f) The approximate oPCF (blue) and exact oPCF (dashed black) for randomly located agents on the
domains presented in Figs. 11(a), 11(d), and 11(g), respectively.

such configurations, it is of interest to examine whether an
approximation of the analytic normalization term provides
a sufficiently accurate alternative. As discussed previously,
the corrected normalization term is composed of the standard
pairs, accessible-inaccessible pairs, inaccessible-inaccessible
pairs, and shifted pairs terms. The restriction to certain con-
figurations of inaccessible sites is solely due to the shifted
pairs, because the number of other pairs are calculated using
standard distance metrics rather than path distance. Hence,
if we do not consider the shifted pair distances, the restric-
tion on inaccessible site configurations can be relaxed. We
first examine the contributions of shifted pairs to the over-
all pair distances to determine the size of this contribution.
As the shifted pairs consist of both negative and positive
terms, corresponding to lost and gained pairs, respectively,
the combined terms may provide only a small contribution
to the total pairs. We note that for each lost pair there is
a corresponding gained pair, and hence the total number of
pairs is constant independently of whether the lost and gained
pairs are considered. In Fig. 12 we present the contribution of
the shifted pairs term to the overall count of pair distances
for the three domains in Figs. 11(d), 11(g), and 11(j). The
blue bars correspond to the standard pair distance counts,
DNO(m), the green bars correspond to standard pair distance
counts corrected by accessible-inaccessible and inaccessible-
inaccessible pairs, and the orange bars correspond to the cor-
rection associated with the shifted pairs. As such, the red line
corresponds to the approximation of the pair distance count,
and the black dashed line corresponds to the exact corrected

pair distance count. We observe that the shifted pairs provide
a small contribution, except in the case of a single large cluster
of inaccessible sites [Fig. 12(a)]. As such, an approximation
of the corrected normalization term may result in a valid
approximation of the oPCF, provided that the domain is not
dominated by a single large cluster of inaccessible sites. We
note that for these domains we are able to compare the analytic
pair distances with the approximation as the configuration of
inaccessible sites means that the analytic function is exact.
The approximation of the counts of the pair distances is

Dapprox(m) = DNO(m) − A(m) + I (m), (19)

where DNO(m), A(m), and I (m) are defined in (1), (7), and (8),
respectively.

For the domains considered previously we present both the
oPCF and the corresponding approximation in Figs. 12(d)–
12(f). As expected, we see that for the domain with a large
cluster of inaccessible sites, the approximation is poor for
pair distances similar in size to the cluster. For the other
two domains, the approximate oPCF performs well. Finally,
we populate domains with inaccessible sites at random and
calculate the approximate oPCF. All accessible sites on the
domain are populated by agents such that the expected pair
correlation is one for all pair distances. In Fig. 13 we present
the average approximate oPCF for 50 random identically
prepared domains for a range of numbers of inaccessible sites,
as well as the mean error associated with each approximate
oPCF. Intuitively, we observe that an increase in inaccessible
sites corresponds to an increase in the distance between the
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FIG. 13. (a) Approximate oPCF for 50 randomly generated domains containing 100 (cyan), 200 (red), 300 (green), 400 (purple), or 500
(orange) inaccessible sites for agents placed at random on accessible sites. The exact oPCF is shown via the dashed black line. (b) Error (mean
± one standard deviation) in the approximate oPCF, compared to the exact result, as a function of the number of inaccessible sites.

expected pair correlation and the approximation. Increasing
the number of inaccessible sites while populating the domain
with inaccessible sites at random introduces accessible sites
that are not connected to the remainder of the domain, and
hence we do not consider the oPCF approximation for higher
numbers of inaccessible sites. As such, the approximation
may prove useful for calculating pair correlations for domains
where the inaccessible sites do not satisfy the conditions
required for the exact pair distance calculation but have a
modest proportion of inaccessible sites compared to accessi-
ble sites.

IV. DISCUSSION AND CONCLUSIONS

Analysis of the spatial structure present in experimental
images provides valuable insight into the mechanisms gov-
erning behavior within the experiment [16,25,27]. Pair cor-
relation functions have been employed in a variety of fields,
including ecology [27], biology [22], and physics [18] and
have proven useful for elucidating the presence and impact
of spatial structure. Many experimental environments contain
immobile obstacles that influence the transport and location
of individuals within that environment [7–9]. Isolating the
spatial structure associated with the mechanisms that govern
transport, rather than the heterogeneous nature of the environ-
ment, is therefore of interest. Naively applying standard PCFs
does not account for distances between pairs of individuals
that must avoid obstacles and may result in the incorrect
suggestion of spatial correlations.

Here we have presented an exact analytic expression for
the normalization term of an obstacle PCF that incorporates
a physical path distance between individuals and hence can
be applied to environments with obstacles. We demonstrate
that this oPCF is necessary for isolating the spatial corre-
lation associated with the locations of individuals from the
spatial correlation associated with the environment itself.
Further, we highlight that the analytic expression allows for
the oPCF to be calculated significantly faster than relying
on a path-finding algorithm. We apply the oPCF to configu-
rations arising from a lattice-based movement-birth random
walk, which mimics cell motility and cell proliferation, where

short-range correlation is known to exist, and demonstrate the
oPCF recovers this correlation. Standard PCFs can introduce
spurious correlations as well as oscillations in the correlation.
Finally, we present an approximation to the oPCF that relaxes
assumptions on the locations of the inaccessible sites within
the domain and show that for modest numbers of inaccessible
sites, the approximation is accurate.

The work and analysis presented here could be extended
in a number of directions. One obvious application is to
calculate the PCF for experimental data obtained from an
environment that contains obstacles. Here we have focused
on data resulting from simulations that mimic processes such
as cell migration and proliferation [25] rather than explicitly
using experimental data. As previous investigations involving
the application of PCFs to experimental data have proved
fruitful [17,22,25], the application of the oPCF to appropriate
data may prove to be insightful. Another promising approach
would be to examine how the pair correlation changes be-
tween two experiments on different domains. As the oPCF is
able to isolate the correlation associated with the behavior of
individuals, it would be instructive to consider whether the be-
havior is dependent on environment and, if so, quantify which
mechanisms are are responsible for this change in behavior.
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APPENDIX A: STANDARD COUNTS OF PAIR
DISTANCES DERIVATION

Consider an arbitrary domain with no obstacles and Lx

by Ly lattice sites. For pair distances that satisfy 1 � m �
min(Lx, Ly), the number of pairs of sites separated by a
distance m was presented by Gavagnin et al. [24]. However,
the maximum pair distance on such a domain with no-flux
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FIG. 14. (a), (d), (g), (j) Domains containing various configurations of inaccessible sites (black) with agents (red) randomly placed on
accessible sites with the corresponding (b), (e), (h), (k) oPCF for 1 � m � 80 and (c), (f), (i), (l) oPCF for 1 � m � Lx + Ly − 2. The dashed
black line corresponds to no correlation. All PCFs are the average of 1000 identically prepared domains.

boundary conditions is Lx + Ly − 2, and we therefore must
derive counts of pair distances for m > min(Lx, Ly).

We first consider pair distances where min(Lx, Ly) < m <

max(Lx, Ly), that is, pairs of sites that cannot be connected

via a path containing only “jumps” in the shorter of the
horizontal or vertical directions. For example, if Ly < Lx,
the path connecting pairs of sites separated by distance
min(Lx, Ly) < m < max(Lx, Ly) must contain either entirely

032124-17



STUART T. JOHNSTON AND EDMUND J. CRAMPIN PHYSICAL REVIEW E 99, 032124 (2019)

horizontal “jumps” or a combination of horizontal and vertical
“jumps.” For a particular m, the number of pairs of sites
separated by m horizontal “jumps” is Ly(Lx − m). This term is
the product of the number of pairs of sites separated by m hori-
zontal “jumps” within a single row, Lx − m, and the number of
rows, Ly. The number of sites separated by m − 1 horizontal
“jumps” and one vertical “jump” is 2(Ly − 1)(Lx − m + 1).
Compared to the m horizontal “jumps” case, there is an addi-
tional number of pairs of sites separated by m − 1 horizontal
“jumps,” providing the Lx − m + 1 component. However, as

each distance contains a vertical “jump,” the rows containing
the sites must be offset by one, and hence there is one less
row where this can occur, which results in the Ly − 1 term.
Finally, as the vertical “jump” can be in either the positive or
negative vertical direction, this introduces the factor of two.
Introducing additional vertical “jumps” increases the number
of pairs of sites separated by the resulting smaller number of
horizontal “jumps,” while decreasing the effective number of
rows. Noting that Ly and Lx are interchangeable, we therefore
obtain

DNO(m) = min(Lx, Ly)[max(Lx, Ly) − m] + 2
min(Lx,Ly )∑

i=1

[min(Lx, Ly) − i][max(Lx, Ly) − m + i],

= DNO(min(Lx, Ly)) − min(Lx, Ly)2(m − min(Lx, Ly ))

for min(Lx, Ly) < m < max(Lx, Ly).
We next consider pair distances m � max(Lx, Ly), where distances between sites must include both horizontal and vertical

“jumps.” Again, without loss of generality, we assume that Ly � Lx. The minimum number of vertical “jumps” for a distance m
is m − Lx + 1, and the maximum number is Ly. The corresponding number of pairs of rows that are separated by this vertical
distance v is Ly − v, and the number of pairs of sites separated by this vertical distance and the requisite horizontal distance
h = m − v is Lx − m + v. Following the same process as above, taking a summation over the possible rows and columns, and
noting that the vertical separation can be either in the positive or negative direction, we obtain

DNO(m) = 2
min(Lx,Ly )∑

i=m−max(Lx,Ly )+1

[min(Lx, Ly) − i][max(Lx, Ly) − m + i]

= k(k + 1)(k + 2)

3
, where k = Lx + Ly − 1 − m

for m � max(Lx, Ly).

APPENDIX B: LARGE PAIR DISTANCES

As discussed previously, a standard choice is to present the pair correlation up to a threshold pair distance [19,24]. This is
due to the small number of pairs of sites separated by large pair distances and the associated variability in the pair correlation
at these distances when the domain is populated at random. For completeness, in Fig. 14 we present a comparison of the oPCF
for 1 � m � 80 and 1 � m � Lx + Ly − 2. We note that the oPCF is calculated in an identical manner as in Fig. 10, with the
exception that we use 1000 realizations of the domain population process instead of 100. We observe that the variability in
the oPCF for 1 � m � 80 is small [Figs. 14(b), 14(e), 14(h), and 14(k)] compared to the variability for 80 � m � Lx + Ly − 2
[Figs. 14(c), 14(f), 14(i), and 14(l)]. As this variability is present for large m, even with an additional 900 realizations of the
domain population process, and the small number of pairs of sites separated by large m, we make the standard choice to present
the pair correlation up to a threshold pair distance.
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