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First passage under stochastic resetting in an interval

Arnab Pal1,2,3,* and V. V. Prasad4,†

1School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
2Center for the Physics and Chemistry of Living Systems. Tel Aviv University, 6997801, Tel Aviv, Israel

3The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
4Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel

(Received 16 December 2018; published 20 March 2019)

We consider a Brownian particle diffusing in a one-dimensional interval with absorbing end points. We study
the ramifications when such motion is interrupted and restarted from the same initial configuration. We provide
a comprehensive study of the first-passage properties of this trapping phenomena. We compute the mean first-
passage time and derive the criterion on which restart always expedites the underlying completion. We show
how this set-up is a manifestation of a success-failure problem. We obtain the success and failure rates and relate
them with the splitting probabilities, namely the probability that the particle will eventually be trapped on either
of the boundaries without hitting the other one. Numerical studies are presented to support our analytic results.
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I. INTRODUCTION

The paradigm of diffusion with stochastic resetting has
paved our way of understanding restarted processes [1,2].
Consider a Brownian particle which is being reset to a pre-
ferred configuration with certain rate. This simple yet pivotal
model markedly captures the quintessential features of such
processes. There are two cornerstones of this phenomena. In
the first case, one is interested in the concentration density of
the particles performing such stochastic dynamics. In partic-
ular, it has been shown that resetting renders nonequilibrium
steady states in generic stochastic processes [1–24]. Canonical
examples are diffusion in free space [1,2] or in a potential
landscape [6]. These studies have also been extended to
systems where resets are intermittent [7] or the waiting times
between reset events are governed by a generic time distribu-
tion [25,26]. Moreover, dynamics with resetting exhibit many
interesting transient features such as relaxation of the density
[9,25] to the steady state and its transport properties [27,28].

Second, restart has emerged as a conceptual framework to
study search processes [29–39]. Consider a simple diffusive
searcher looking for a target. It is well known that the mean
search time diverges thus making such strategies undesirable
[40–43]. On the contrary, stochastic resetting works in ad-
vantage by facilitating long moves from arbitrary location
to the resetting location therefore cutting short those long
trajectories which are detrimental. Thus restart works in favor
of fast completion which otherwise would hinder. This simple
observation has led the researchers to study first passage under
generic restart mechanisms. Moreover, it has been demon-
strated that it is even possible to find an optimal restart rate
which can minimize the mean first-passage time. Remarkably,
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one discovers various universality classes displayed by any
restarted processes which are at optimality [35–37].

The subject of resetting or restart has been in the limelight
recently due to its numerous applications in many interdisci-
plinary fields. Apart from applications in search processes or
animal foraging, restart has been found to be an indispensable
part of chemical reactions [44] and randomized computer
algorithms [45]. Further progress has seen applications of
restart mechanisms in biophysics [46–48], stochastic thermo-
dynamics [49,50], and quantum mechanics [51,52].

In this paper, we have investigated the motion of a Brow-
nian particle (subjected to resetting) confined in a box [a, b]
in one dimension. The boundaries are absorbing (Fig. 1). In

FIG. 1. Schematic of a Brownian particle diffusing in a bounded
domain [a, b] in the presence of resetting which reinstates the particle
at its initial position x0 with a rate r.
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other words, they can be called targets or possible outcomes.
In our set-up, we have two distinct possible outcomes: While
the absorption at “a” can be defined as a failure or unwanted
outcome, absorption at “b” can be coined as a success or an-
ticipated outcome. If the underlying process completes prior
to reset, then the process immediately ends. Otherwise, restart
occurs: The particle is taken back to x0 and allowed to start
again given that it was not absorbed meanwhile. Thus, this
model is reminiscent of a first-passage process under restart
which has different possible outcomes. Another example of
such kind is a Bernoulli-like first-passage process, which can
also end with one of two possibilities. This set-up was studied
recently in Ref. [37] within the general framework of first
passage under restart [36]. In Ref. [37], the authors have
shown how restart can affect the success or failure probabil-
ities of a Bernoulli trial. Moreover, it was shown that there
are optimal restart rates which could maximize or minimize
these outcome probabilities. We investigate akin properties
by following the motion of the Brownian particle in the box
and illustrate that by tuning the restart rate it is possible
to manipulate the process to complete in a desired way.
Furthermore, we extend our study to demonstrate how restart
can overall accelerate or hinder the completion of the process.
We provide numerical studies to support our results. A similar
study on diffusion with resetting in a bounded domain was
studied recently in Ref. [12]. However, the boundaries were
taken reflecting and an absorbing potential was introduced
inside the interval. So, our set-up is very different from that
of Ref. [12].

The paper is organized in the following way. We first com-
pute the survival probability which serves as an essential result
of the paper. We illustrate two different methods, namely the
backward Fokker-Planck approach (Sec. II A) and the renewal
formalism (Sec. II B) to derive this result. This, in turn, allows
us to compute the unconditional mean first-passage time as
a function of restart rate. This we do in Sec. III. We derive
a closed form expression for the unconditional mean first-
passage time in Sec. III A. Using that, we extract the essential
criterion which has to be respected for restart to mitigate the
completion in Sec. III B. We study the optimal restart rate in
Sec. III C. Section IV is devoted to the conditional exit times.
We compute the success, failure rates in Sec. IV A and their
respective probabilities in Sec. IV B. Furthermore, connec-
tions between the unconditional and conditional probabilities
are analyzed in details in Sec. IV B. Optimization properties of
these probabilities are discussed in Sec. IV C. Central results
of this paper are summarized in Sec. V with a future outlook.
The Appendix contains proofs of some our central results.

II. SURVIVAL PROBABILITY

We consider a Brownian particle, initially located at x0,
diffusing in an interval [a, b] in one dimension. The particle
can get absorbed by any of these boundaries. In addition,
the particle is stochastically reset to the initial position x0

with a constant rate r. We are interested in the first-passage
properties of the particle to see the trade-off between the
resetting and the natural absorption of the particle. To see this,
we first provide a through analysis of the survival probability
Qr (x0, t ), defined as the probability that the particle has hit

neither of the boundaries until time t in the presence of
resetting, starting from any x0. In other words, it estimates
the probability that the particle survives (within the interval)
until time t . We present two different approaches to derive our
results on the survival probability in the presence of resetting.

A. Backward Fokker-Planck approach

It is quite well known that using the backward Fokker-
Planck equation can be an advantageous approach to treat
the first-passage properties. In this case, one first considers
the initial position as a variable and then solve the backward
Fokker-Planck equation with suitable boundary conditions
self-consistently. To this end, we now consider the initial
position to be x (which is a variable), while keeping resetting
position x0 to be fixed. We solve the equations and at the end
set x to be x0. Following Ref. [1], the backward Fokker-Planck
equation for the survival probability then reads

∂Qr (x, t )

∂t
= D

∂2Qr (x, t )

∂x2
− rQr (x, t ) + rQr (x0, t ), (1)

where the boundary conditions are Qr (a, t ) = Qr (b, t ) = 0
and the initial condition is Qr (x, 0) = 1. The Laplace trans-
form qr (x, s) = ∫ ∞

0 dte−st Qr (x, t ) and then satisfies [1]

D
∂2qr (x, s)

∂x2
− (r + s)qr (x, s) = −1 − rqr (x0, s), (2)

where qr (a, s) = qr (b, s) = 0. Solving Eq. (2) with the above
boundary conditions, and finally setting x = x0, we obtain
the following expression for the survival probability in the
Laplace space

qr (x0, s) = 1 − gr (x0, s)

s + rgr (x0, s)
, (3)

where we have defined

gr (x0, s) = sinh(b − x0)α + sinh(x0 − a)α

sinh(b − a)α
(4)

and α =
√

r+s
D . In the case of one absorbing boundary located

at a = 0, one recovers gr (x0, s) = e−αx0 by setting b → ∞.
Substituting this expression in Eq. (3), we find qr (x0, s) =
1−e−αx0

s+re−αx0
, as derived earlier in Ref. [1].

B. Renewal approach

One can also realize the restarted processes within the
elegant formalism of renewals where one makes use of the
fact that on each reset, the system renews itself. Following
Ref. [25], we can write the survival probability in the follow-
ing way:

Qr (x0, t ) = e−rt Q0(x0, t )

+ r
∫ t

0
dτe−rτ Q0(x0, τ )Qr (x0, t − τ ), (5)

where Q0(x0, t ) is the survival probability of the particle in
the interval to time t in the absence of resetting. Equation (5)
has a simple interpretation. The first term on the right-hand
side implies that the particle survives until time t without
experiencing any reset event. The second term considers the
possibility when there are multiple reset events. One can
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then look at a long trajectory where the last reset event had
occurred at time t − τ , and after that there has been no reset
for the duration τ . This probability is given by rdτe−rτ . But
then this has to be multiplied by Qr (x0, t − τ ), i.e., the prob-
ability that the particle survives until time t − τ with multiple
reset events and Q0(x0, τ ), i.e., the survival probability of the
particle for the last nonresetting interval τ [25]. The Laplace
transform qr (x0, s) then satisfies

qr (x0, s) = q0(x0, s + r)

1 − rq0(x0, s + r)
, (6)

where q0(x0, s) is the Laplace transform of Q0(x0, t ). Fol-
lowing Refs. [40–42], we use the well-known expression for
Q0(x0, t ),

Q0(x0, t ) = 2
∞∑

n=1

ψn(x0)φ(n)e−knt , (7)

where ψn(x) = sin [ (x−a)nπ

b−a ] are the eigenfunctions with

φ(n) = 1−cos(nπ )
nπ

. Also kn = n2π2D/(b − a)2 is the rate at
which the nth eigenmode ψn(x) decays with time. Thus
the longest decay time k−1

1 = (b − a)2/Dπ2 characterizes
the diffusing dynamics within the interval. Making use
of the renewal formula [Eq. (6)], we obtain an expression of
the Laplace transform qr (x0, s),

qr (x0, s) = 2
∑∞

n=1 ψn(x0)φ(n)/�(n, r, s)

1 − 2r
∑∞

n=1 ψn(x0)φ(n)/�(n, r, s)
, (8)

where

�(n, r, s) = kn + r + s. (9)

The expressions obtained via backward Fokker-Planck equa-
tion [Eq. (3)] or the renewal approach [Eq. (8)] are equivalent
(see Appendix A for more details).

C. Position density of the particle

In the presence of two absorbing boundaries, the particle
will be absorbed in the absence of resetting. Question is
by relocating the particle repeatedly to its initial position
whether one can still find a finite probability to observe the
particle within the domain at large time. To see this, we first
define the position density Pr (x, t |x0, 0), which estimates the
probability of finding the particle at x at time t given that it had
started from x0 in the presence of multiple resetting at x0. We
can write a time-dependent equation for the position density
Pr (x, t |x0, 0) using a renewal formalism

Pr (x, t |x0, 0) = e−rt P0(x, t |x0, 0)

+ r
∫ t

0
dτe−rτ P0(x, τ |x0, 0)Qr (x0, t − τ ),

(10)

where P0(x, t |x0, 0) is the probability density of finding the
particle in the interval in the absence of resetting. Also, recall
that Qr (x0, t ) = ∫ b

a dx Pr (x, t |x0, 0) is the survival probability
until time t . We emphasize that Eq. (10) can be interpreted in
an identical manner as in Eq. (5). By taking Laplace transform
on both sides of Eq. (10) and using Eq. (6), we find

pr (x, s|x0, 0) = p0(x, s + r|x0, 0)

1 − rq0(x0, s + r)
. (11)

The probability density P0(x, t |x0, 0) is a classical result and
known from the literature [40]

P0(x, t |x0, 0) = 2

b − a

∞∑
n=1

ψn(x0)ψn(x)e−knt . (12)

Using the Laplace transform of P0(x, t |x0, 0) and substituting
q0(x0, s) in Eq. (11) one obtains

pr (x, s|x0, 0) = α

2

cosh[(b − a − |x − x0|)α] − cosh[(b + a − x0 − x)α]

s sinh[(b − a)α] + r sinh[(x0 − a)α] + r sinh[(b − x0)α]
. (13)

In order to find the asymptotic behavior of the position
density (i.e., the steady state), we can make use of the
final value theorem. The theorem asserts that Pss(x) =
limt→∞ Pr (x, t |x0, 0) = lims→0 spr (x, s|x0, 0) [25]. By doing
a s → 0 expansion on the right-hand side of Eq. (13), we
note that there are no terms which are of order 1/s for any
resetting rate r. This indicates an absence of finite value for
the probability density in the large-time limit, i.e., no particle
will survive given long-enough time. Once the spread of the
concentration becomes comparable to the interval size, the
flux of probability through the boundaries becomes significant
and the density inside the interval decays rapidly despite the
resetting dynamics.

III. UNCONDITIONAL FIRST PASSAGE TIME

In the preceding section, we have studied the survival
probability of the Brownian particle in the interval bounded
between a and b. It is only natural to ask the time it will take
for the particle to exit or get absorbed for the first time by any

of these boundaries in the presence of resetting at x0. These
first-passage times are random, and one is in general interested
in the statistics of such time. In this section, we will focus
on this time statistics in the presence of resetting. It is worth
mentioning that this situation is analogous to a first-passage
process with multiple outcomes, and the cumulative first-
passage-time statistics for any possible outcome is statistically
identical to that of unconditional first-passage time.

A. Mean first-passage time

We will first characterize the average time it takes for a par-
ticle to exit through any of the boundaries. We call this uncon-
ditional mean first-passage time, denoted by 〈Tr (x0)〉. By not-
ing that 〈Tr (x0)〉 = ∫ ∞

0 dt t fTr (t ), where fTr (t ) = − ∂Qr (x0,t )
∂t , is

the unconditional first-passage-time density. Hence, by doing
integration by parts, one can write

〈Tr (x0)〉 = qr (x0, s → 0) = 1

r

[
1

gr (x0, 0)
− 1

]
, (14)
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FIG. 2. Plot for the unconditional mean first-passage time as
a function of restart rate for two different boundary conditions:
(i) a = 0, b = 3 and (ii) a = 0, b = 5, with the initial condition
fixed at x0 = 1 for both cases. The diffusion constant has the value
D = 1/2. The theoretical formulas [dashed and solid lines for (i) and
(ii) respectively], as in Eq. (15), are corroborated by their respective
simulation data (in markers).

where we have used Eq. (3). Further simplification using
Eq. (4) leads us to the following expression for the mean
first-passage time:

〈Tr (x0)〉 = 1

r

[
sinh(b − a)α0

sinh(b − x0)α0 + sinh(x0 − a)α0
− 1

]
, (15)

where

α0 = α|s→0 =
√

r

D
. (16)

In the limit of vanishing restart rate (r → 0), we obtain 〈T0〉 =
(x0 − a)(b − x0)/2D [40]. We can also obtain 〈Tr (x0)〉 using
the renewal formula obtained in Ref. [36], which requires
a prior knowledge of the underlying first-passage-time dis-
tribution (without resetting). In Fig. 2, we have plotted 〈Tr〉
using Eq. (15) as a function reset rate for two different set of
parameters: (i) a = 0, b = 3 and (ii) a = 0, b = 5 for fixed
x0 = 1. In the first case 〈Tr〉 increases monotonically with rate
r, unlike in the latter case. In fact, in the second case, restart
lowers the mean first-passage time and thus accelerating the
completion. Nevertheless, it is not evident what sets the crite-
rion for restart either to prolong or expedite the completion.
To characterize this transition, we do a detailed analysis of the
restart criterion in the next subsection.

B. Analysis of the restart criterion

It is well understood from the theory of first passage under
restart that restart has the ability to expedite the underlying
completion if CV > 1, where CV stands for the ratio between
the standard deviation σ (T0) and the mean first-passage time
〈T0〉 of the underlying (i.e., without restart) first-passage-time
process. One can arrive at this criterion by simply setting
d〈Tr〉

dr |r→0 < 0 [36]. In the case of a diffusive first-passage
process (where the first-passage-time distribution is given by
Lévy-Smirnov distribution [40–42]), the criterion is inher-
ently satisfied. Thus restart will always expedite the comple-
tion of such process. On the other hand, as we have shown in
Fig. 2, restart can both expedite or hinder the completion of a

diffusive motion in an interval. To understand the criterion in
terms of the relevant parameters of the system, we first set the
criterion CV > 1 which yields

L2 + 3L + 1 − 5(L + 1)u + 5u2 > 0, (17)

where L = a/b and u = x0/b. We arrive at this expression
by recalling that the mean first-passage time is given
by 〈T0〉 = (x0 − a)(b − x0)/2D and the second moment
is given by 〈T 2

0 〉 = −2[dq0(x0, s)/ds]|s→0. Obtaining
q0(x0, s) from Eq. (3) by taking r → 0 limit yields 〈T 2

0 〉 =
(x0 − a)(b − x0)(a2 − 3ab + b2 + ax0 + bx0 − x2

0 )/12D2.
Substituting these expressions in the criterion CV > 1, we
obtain Eq. (17). A crucial observation is that the criterion is
independent of the diffusion coefficient D (hence, the motion
of the particle), thus only the combination of length scales
(x0, a, b) will set the criterion. Further simplifications can
be made if we choose a = 0. Then from Eq. (17), we obtain
5u2 − 5u + 1 > 0. This determines the domain in which
restart expedites the completion of the underlying process:
D = [(0, u−) ∪ (u+, 1)], where u± = (5 ± √

5)/10. Hence,
if the particle starts closer to either of the boundaries (i.e.,
0 < x0 < bu−, or bu+ < x0 < b), then the completion will be
accelerated. On the other hand, if u− < u < u+, then restart
will not be beneficial. This means if the particle starts in the
region bu− < x0 < bu+ which is centered around x0 = b/2,
then restart will only prolong the completion.

C. Optimal restart rate

The above analysis asserts that restart can accelerate the
completion of the underlying process in certain regimes of
the parameter values. This regime was fully characterized in
the previous section and also will be a focus of our analysis
here. In this regime, restart not only expedites the completion,
one also observes that the mean first-passage time can be
minimized at a certain value of restart rate. To further illustrate
on this optimal restart rate, we first note that Eq. (15) can be
scaled in the following way:

〈Tr〉 = b2

4D
G (β, u), (18)

after setting the left boundary a = 0. In Eq. (18), we have de-
fined a new scaling variable β = b

2α0 and the scaling function
G (β, u), which is now a function of restart rate for a given set
of (x0, b), is given by

G (β, u) = 1

β2

[
cosh(β )

cosh β(1 − 2u)
− 1

]
. (19)

To find the optimal restart rate, one sets ∂G
∂β

|β=β∗ = 0. This, in

turn, gives the optimal restart rate r∗ = 4Dβ∗2/b2, in terms
of β∗. In Fig. 3, we optimize the scaling function G (β, u)
numerically as a function of β in three different regimes of
u defined by the domain D . It is evident from Fig. 3 that when
u− < u < u+, the function is minimum at β∗ = 0, meaning
〈Tr〉 cannot be made lower by introducing a finite restart
rate. On the other hand, when u ∈ D , we see that the scaling
function G (β, u) is minimized at a finite β implying that the
mean first-passage time is optimized at a finite restart rate.
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u− < u < u+

u < u−
u > u+

FIG. 3. Plot for the scaling function G (β, u) [Eq. (19)] as a
function of β. The function has minima when u takes value from
the domain D , as shown for u = 0.2 < u− (short dashed line in
the middle) and u = 0.85 > u+ (long dashed line at the bottom).
However, when u− < u = 0.65 < u+ (solid line at the top), there is
no minimum for G (β, u) at any finite r, indicating that restart is not
beneficial.

IV. CONDITIONAL FIRST PASSAGE TIME

So far, we have focused only on the unconditional mean
first-passage time, i.e., the exit time irrespective of boundaries
or the particular choice of outcomes within the success-failure
set-up (see Fig. 4). We devote this section to study observables
conditioned on the “outcome of our choice.” Examples of such
observables are as follows: conditional mean exit times from
boundary “b” or “a.” Recalling that a “successful” event was
defined by an absorption at the boundary “b” and “failure”
by absorption at the boundary “a,” the conditional exit times
provide us estimations of success or failure rates. Another nat-
ural quantity to investigate would be the splitting probability

FIG. 4. Depiction of first passage under resetting in an interval
as a success-failure problem. A “successful” event is defined by an
absorption at the boundary “b,” while a “failure” event occurs when
an absorption takes place at the boundary “a.”

namely the probability to escape through a specified boundary
without hitting the other ones which is, in fact, a measure
of success or failure probability. Interestingly, restart could
optimize the success or failure probabilities. In other words,
by modulating restart rate one can reduce the occurrence of
failure events, while facilitating the probability of success to
its maximum.

A. Mean conditional exit times

Mean conditional exit time is the average time for the par-
ticle to hit a specific boundary without hitting the other one.
Let us define 〈t (x0)〉± to be the conditional mean exit times
through the boundaries b and a, respectively. To compute this
time statistics, it is best to first measure the flux of current
flowing through each one of these boundaries. Probability
flux current at any point x in space at time t is defined by
J (x, t ) = −D ∂Pr (x,t |x0,0)

∂x . The exit times and the flux are then
related to each other by the following relation [40]:

〈t (x0)〉± =
∫ ∞

0 dttJ±(x0, t )∫ ∞
0 dtJ±(x0, t )

, (20)

where J±(x0, t ) denote the currents at each of the boundaries,
as given below:

J+(x0, t ) = −D
∂Pr (x, t |x0, 0)

∂x

∣∣∣∣
x=b

,

J−(x0, t ) = D
∂Pr (x, t |x0, 0)

∂x

∣∣∣∣
x=a

. (21)

The expression for the conditional exit times Eq. (20) can
be understood as follows. Note that the currents, defined in
Eq. (21), are identical to the conditional first-passage-time
densities through each one of these boundaries. Hence, to
obtain 〈t (x0)〉±, one needs to average over these conditional
first-passage-time densities. The conditional mean exit times
in Eq. (20) can be rewritten in terms of the currents in Laplace
space

〈t (x0)〉± = − ∂ j±(x0,s)
∂s

∣∣
s→0

j±(x0, s = 0)
, (22)

where j±(x0, s) = ∫ ∞
0 dt e−st J±(x0, t ) satisfy

j+(x0, s) = −D
∂ pr (x, s|x0, 0)

∂x

∣∣∣∣
x=b

,

j−(x0, s) = D
∂ pr (x, s|x0, 0)

∂x

∣∣∣∣
x=a

. (23)

Substituting pr (x, s|x0, 0) in Eq. (23) from Eq. (13), we get
the following expressions for the currents:

j+(x0, s) = Dα2 sinh[(x0 − a)α]/F (s, r),

j−(x0, s) = Dα2 sinh[(b − x0)α]/F (s, r), (24)

where

F (s, r) = s sinh[(b − a)α]

+ r(sinh[(x0 − a)α] + sinh[(b − x0)α]). (25)
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FIG. 5. We have plotted the conditional exit times 〈t〉+ and 〈t〉−
as a function of restart rate r for a system with the end points a =
0, b = 3 and resetting position x0 = 1 with D = 1/2. The dashed and
solid lines represent analytical expressions for 〈t〉+ and 〈t〉− [given
by Eq. (26)], respectively. Markers in circle and triangle represent
the corresponding simulation data points. The inset shows the plot
for the function ε+〈t〉+ + ε−〈t〉− (dashed line) against 〈Tr〉 (markers)
as a function of restart rate. The match between the two provides a
numerical demonstration of Eq. (33).

Now using Eqs. (24) and (25) in Eq. (22) one gets the exact
formula for the conditional exit times,

〈t (x0)〉+ = F1(x0−a, b − x0, b−a)

2Dα2
0 (1 + cosech(α0[x0−a]) sinh(α0[b−x0]))

,

〈t (x0)〉− = F1(b−x0, x0 − a, b − a)

2Dα2
0 (1 + cosech(α0[b − x0]) sinh(α0[x0−a]))

,

(26)

where

F1(k1, k2, k3)

= −2 + cosech(α0k1){α0k2 cosh(α0k2) + 2 sinh(α0k3)

+ [−2 + α0k1 coth(α0k1)] sinh(α0k2)}. (27)

The success and failure rates are then given by

ks = 〈t (x0)〉−1
+ , k f = 〈t (x0)〉−1

− . (28)

Note that the conditional exit times are monotonic function
of the restart rate, and, moreover, they diverge as restart rate
increases (see Fig. 5). In the limit of vanishing restart rate, the
mean conditional exit times through the boundaries b and a
are given by

〈t (x0)〉+|r→0 = 1

6D
(b − x0)(b + x0 − 2a),

〈t (x0)〉−|r→0 = 1

6D
(x0 − a)(2b − x0 − a). (29)

In Fig. 5, we have plotted simulation data against the theoret-
ical formulas [obtained in Eq. (26)] for conditional exit times
as a function of restart rate, for a system with boundaries a =
0, b = 3 and the resetting position x0 = 1, when D = 1/2.
The r → 0 limit values are also in accordance with Eq. (29),
as expected.

FIG. 6. Plot of splitting probabilities ε+(x0 ) and ε−(x0 ) as a
function of restart rate (in solid and dashed lines, respectively). The
parameters are taken as a = 0, b = 3, x0 = 2, and D = 1/2.

B. Splitting probabilities

We present now analytical expressions for the splitting
probabilities, the probability that the process starting at x0 and
evolving in a box [a, b] hits the right boundary b before hitting
the left boundary at a, and vice versa. Let us define these
probabilities as ε±(x0), respectively. Thus, ε+, ε− denote the
success and failure probability, respectively. To compute these
probabilities, one needs to integrate the current flux flowing
through each of the boundaries over the time as follows:

ε±(x0) =
∫ ∞

0
dtJ±(x0, t ) = j±(x0, s = 0). (30)

Using the formulas for j±(x0, s) from Eq. (24) and substi-
tuting for s = 0, we obtain the following expressions for the
splitting probabilities:

ε+(x0) = sinh[(x0 − a)α0]

sinh[(x0 − a)α0] + sinh[(b − x0)α0]
, (31)

ε−(x0) = sinh[(b − x0)α0]

sinh[(x0 − a)α0] + sinh[(b − x0)α0]
. (32)

At r → 0 limit, these probabilities of winning or losing
will be given by ε+|r→0 = x0−a

b−a , ε−|r→0 = b−x0
b−a . Further tak-

ing a → 0, we find ε+ = x0
b , ε− = 1 − x0

b . Thus the probabil-
ity of reaching one end point is just the relative distance to the
other end point, which is quite remarkable [40]. On the other
hand, in the large-r limit, behavior of splitting probabilities
has a strong dependence on the resetting (initial) position x0.
If x0 > a+b

2 , then we have ε+ → 1, ε− → 0, i.e., the particle
which starts (and resets) on the positive side of the middle of
the interval eventually reaches the boundary b with probability
one. Conversely, when x0 < a+b

2 , one finds ε+ → 0, ε− → 1,
which is exactly one would expect. However, if x0 = a+b

2 , then
we have ε± = 1

2 for any restart rate. In Fig. 6, we have plotted
the splitting probabilities as a function of restart rate. It is
also evident from the figure that these probabilities saturate
either to maximum or minimum as a function of restart rate.
In Sec. IV C, we will show how one can utilize this particular
property to engineer restart as a tool to the fulfillment of the
required outcomes.

A careful observation of the exact expressions for the con-
ditional exit times and the splitting probabilities immediately
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FIG. 7. Plot for the conditional mean exit times 〈t〉± (in long
and short dashed lines, respectively) and the unconditional mean exit
time 〈Tr〉 (in solid line) as a function of the resetting position x0.
The boundaries are taken at a = 0, b = 3 for the parameter values:
D = 0.5, r = 0.3. The times coincide for the symmetric case (when
x0 = 3/2), as pointed out in the text.

leads us to establish the following relation:

〈Tr〉 = ε+〈t〉+ + ε−〈t〉−, (33)

which holds for any restart rate. This means that the uncon-
ditional mean exit time (independent of which side is exited)
is the appropriately weighted average of the conditional mean
exit times to each boundary. These weights are the conditional
splitting probabilities. But this is no surprise and can be under-
stood by simple path enumeration. The splitting probability
ε+(x0) sums over all the paths that start from x0 and exit
through boundary b without hitting the boundary a. Thus,
ε+(x0) = ∑

p+ σp+ (x0), where σp+ (x0) denotes the weight of a
single trajectory from x0 to b that avoids a. On the other hand,
〈t (x0)〉+ is the exit time through boundary b conditioned on
the fact that it has survived the boundary a. Thus, 〈t (x0)〉+ =∑

p+ σp+ (x0 )tp+ (x0 )∑
p+ σp+ (x0 ) , where tp(x0) is the exit time of a specific

trajectory that starts at x0 through a boundary. One can use
a similar argument for ε−(x0) and 〈t (x0)〉−. Equation (33) is
also demonstrated in the inset of Fig. 5.

It is also interesting to examine the behavior of the exit
times as a function of resetting (initial) position x0. Note
that when x0 = a+b

2 (i.e., the particle starts from the middle

of the interval) we get 〈t〉+ = 〈t〉− = 2
r sinh [ (b−a)α0

4 ]
2

and
〈Tr〉 = 〈t〉+ = 〈t〉− by using Eq. (33) Moreover, if the par-
ticle starts from either x0 = a or x0 = b, then the particle
will get absorbed immediately, so that 〈Tr (a)〉 = 〈Tr (b)〉 = 0.
However, note that 〈t (x0 → a)〉+ 
= 0, which is quite nonin-
tuitive. This is because 〈t (x0 → a)〉+ is conditioned on the
fact that the particle survives boundary a even if it had started
from x0 → a. There will be rare trajectories which will do
so, and these will contribute to 〈t〉+. A similar argument
justifies the complementary case 〈t (x0 → b)〉− 
= 0. Since
these limits are symmetric with respect to the interval, they
are identical and given by 〈t (x0 → a)〉+ = 〈t (x0 → b)〉− =
1
2r [−1 + (b − a)α0 coth(b − a)α0]. In Fig. 7, we have plotted
the unconditional and the conditional exit times as a function
of different x0. In particular, we have assumed a = 0 and b= 3,
where we have varied x0. As expected, in the symmetric case,

FIG. 8. Plot of the slope S (x0, r) as a function of x0 (where
a = 0, b = 3) for three different values of restart rate r = 0.01 (short
dashed line), r = 0.5 (long dashed line), and r = 3.0 (solid line). The
slope S (x0, r) becomes zero at x0 = a when r = 0.01. However,
when r = 0.5, the slope can be both positive or negative with a zero
at x0 (a < x0 < a+b

2 ). The behavior remains identical when r = 3.0
except that the function S (x0, r) has a zero at x0 = a+b

2 , which is
the middle of the interval. In the inset we have plotted 〈t (x0)〉+ as a
function of x0 for the same set of values of r mentioned above. The
plot conforms the same behavior as mentioned above.

i.e., when x0 = 1.5, the system does not distinguish between
left and right boundaries so that 〈t〉+ = 〈t〉− = 〈Tr〉. The other
limits are also evident from the figure.

A closer look at Fig. 7 reveals that both the conditional
exit times 〈t (x0)〉± are nonmonotonic functions of the initial
position x0. To understand this behavior of 〈t (x0)〉+ with
respect to x0, we consider the slope

S (x0, r) = d〈t (x0)〉+
dx0

. (34)

We investigate S (x0, r) as a function of x0 by varying r as
a parameter. In the r → 0 limit, S (x0, r) = 2(a − x0) which
is zero only at x0 = a, otherwise negative. Thus 〈t (x0)〉+ is
strictly monotonic as a function of x0. In sharp contrast, as
r → ∞, we note that S (x0, r) = 0 only when x0 = a+b

2 . In
fact, both 〈t (x0)〉± and 〈Tr〉 will have a single maximum at
x0 = a+b

2 . While for any finite r, the slope S (x0, r) becomes
zero for a < x0 < a+b

2 . Consequently, the maximum of the
conditional exit time 〈t (x0)〉+ spans in the range a < x0 <
a+b

2 . It is worth emphasizing that such nonmonotonic behavior
of 〈t (x0)〉+ is robust to restart and is lost in the absence of
restart when 〈t (x0)〉± always become monotonic functions.
We have plotted S (x0, r) as a function of x0 for different
values of restart rate in Fig. 8. In the inset we have given plots
for 〈t (x0)〉+ as a function of x0 for the values of r used in the
main plot. A similar analysis also follows for 〈t (x0)〉− which
we skip here to avoid redundancy.

C. Restart optimizes success and failure probabilities

In the previous sections, we showed how restart can op-
timize the mean completion time of a first-passage process
under restart. In addition, restart can also optimize the suc-
cess or failure probabilities. This will be the focus of this
section. As mentioned before, similar questions were posed
and surveyed in a generic set-up in Ref. [37]. We will refer
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to Ref. [37] for the general proofs which was based on the
general approach proposed by one of the current authors [36].
However, in this paper we have taken different approach and
presented alternative proofs of some of the central results.

Let T +
0 , T −

0 be the conditional (success and failure) exit
times and T0 the unconditional exit time (also considered
in Sec. III A) in the absence of restart. The density of the
latter is given by fT0 (t ) = − dQ0(x0,t )

dt , where Q0(x0, t ) is given
by Eq. (7). Using this, one can write the Laplace transform
T̃0(λ) ≡ ∫ ∞

0 dt e−λt fT0 (t ) as

T̃0(λ) = 2
∞∑

n=1

knφ(n)ψn(x0)/�(n, λ, 0). (35)

The conditional exit time distributions in the absence of restart
are identical to the conditional current fluxes through each one
of these boundaries [see, e.g., Eq. (21) at the r → 0 limit].
Hence, one can write

fT +
0

(t ) = J0
+ ≡ J+|r→0 = 2Dπ

(b − a)2

∞∑
n=1

n(−1)n+1ψn(x0)e−knt ,

fT −
0

(t ) = J0
− ≡ J−|r→0 = 2Dπ

(b − a)2

∞∑
n=1

nψn(x0)e−knt . (36)

One can now compute the Laplace transforms T̃ +
0 (r), T̃ −

0 (r)
evaluated at r using Eq. (36). Furthermore, they can be utilized
to recover the success and failure probabilities ε±(x0). These
two quantities are related by

ε±(x0) = T̃ ±
0 (r)/T̃0(r), (37)

and, moreover, one can show

〈t (x0)〉± = 〈Tr (x0)〉 − 1

ε±(x0)

dε±(x0)

dr
. (38)

See Appendices B and C for a detailed derivation of these
two results. It is important to note that the proofs presented
here offer an alternative derivation in comparison to that of
demonstrated in Ref. [37]. Remarkably, Eq. (38) offers us
a deep insight on how restart could maximize or minimize
the chances of our desired outcomes. To see this, let us first
consider the case when dε+

dr > 0 (see Fig. 6, for instance).
Equation (38) then tells us that 〈t (x0)〉+ < 〈Tr (x0)〉 so that
the mean conditional time to exit through the boundary b
(equivalently rendering “success”) is reduced by regulating
the restart rate r. In other words, by carefully choosing a
restart rate, the process can be completed faster in our desired
way. On the other hand, when dε−

dr < 0, we observe 〈t (x0)〉− >

〈Tr (x0)〉. This implies that the exit time through the boundary
a will take longer time, and thus by regulating restart, one
can hinder the outcome of “failure.” The present model at
our disposal provides a nice demonstration of how using the
restart mechanism one could moderate the chances of desired
outcomes of a first-passage process that can, in principle, end
with multiple eventualities.

V. CONCLUSION

First passage with restart under various set-ups has been
a focal point in recent studies. The fact that restart has

the ability to speedup underlying completion is noteworthy,
and this is perhaps the fingerprint of most of these studies.
In this paper, we have studied first-passage properties of a
Brownian particle in a bounded domain in the presence of
stochastic resetting. We have shown how this set-up can be
visualized as a success-failure problem. We have computed
the unconditional mean first-passage time and characterized a
rich optimization phenomena with respect to the restart rate.
We extend the methodology to give estimation of success and
failure rates and furthermore show how restart could optimize
the success and failure probabilities. Finally, we would like
to emphasize that in this problem, we have considered sharp
binary outcomes in the sense that the outcomes are either
success (full absorption at “b”) or failure (full absorption
at “a”). However, these outcomes may not necessarily be
sharp but rather mixed. In other words, the Brownian particle
can mix the probabilities of getting absorbed or reflected
with certain rate at each boundary [53]. We believe that the
formalism presented in this paper should be useful to tackle
such problems and is left for future studies.
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APPENDIX A: EQUIVALENCE BETWEEN
EQS. (3) AND (8)

In this section, we will show the equivalence between
Eqs. (3) and (8). To see this, let us first recall from
Eq. (8) that qr (x0, s) contains the following summation:
S ≡ ∑∞

n=1 ψn(x0) φ(n)/�(n, r, s) in the numerator and the
denominator. To evaluate this sum, we explicitly use the
expressions for ψn(x0) and φ(n) and rewrite S in the following
way:

S =
∞∑

n=1

1

nπ

sin(nz)
n2π2D
(b−a)2 + r + s

−
∞∑

n=1

(−1)n

nπ

sin(nz)
n2π2D
(b−a)2 + r + s

, (A1)

where we have defined z = x0−a
b−a π , such that 0 < z < π . We

can now make use of the following identities to compute the
sums:

∞∑
n=1

1

n

sin(nz)

n2 + β2

= π

2β2

cosh(βπ ) sinh(βz) − cosh(βz) sinh(βπ )

sinh(βπ )

− z

2β2
+ π

2β2
, 0 � z � 2π (A2)

and
∞∑

n=1

(−1)n

n

sin(nz)

n2 + β2
= π

2β2

sinh(βz)

sinh(βπ )
− z

2β2
, −π � z � π.

(A3)
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Using the identities above, we can now convert the sums in
Eq. (A1). After doing a bit of simplification we arrive at

S = 1 − gr (x0, s)

2(r + s)
,

where gr (x0, s) is given by Eq. (4),

gr (x0, s) = sinh(b − x0)α + sinh(x0 − a)α

sinh(b − a)α
. (A4)

Substituting S in Eq. (8), we obtain

qr (x0, s) = 2S

1 − 2rS
= 1 − gr (x0, s)

s + rgr (x0, s)
,

which is indeed Eq. (3), as reported earlier.

APPENDIX B: PROOF OF EQ. (37)

In this section, we provide a proof for the following rela-
tions:

ε±(x0) = T̃ ±
0 (r)/T̃0(r). (B1)

Here we will demonstrate the proof for ε+(x0) while an
analysis for ε−(x0) can also be made in a similar manner. Let
us first recall the definition from Eq. (30),

ε+(x0) =
∫ ∞

0
dtJ+(x0, t ) = j+(x0, s = 0), (B2)

where j+(x0, s) follows from Eq. (23),

j+(x0, s) = −D
∂ pr (x, s|x0, 0)

∂x

∣∣∣∣
x=b

, (B3)

which can be rewritten as

j+(x0, s) = 1

1 − rq0(x0, s + r)

[
−D

∂ p0(x, s + r|x0, 0)

∂x

∣∣∣∣
x=b

]
,

(B4)

by replacing pr (x, s|x0, 0) with p0(x, s|x0, 0) using Eq. (11).
Setting s = 0 in the above equation, we find

ε+(x0) = j+(x0, s = 0)

= 1

1 − rq0(x0, r)

[
−D

∂ p0(x, r|x0, 0)

∂x

∣∣∣∣
x=b

]
. (B5)

We now note that

T̃0(r) =
∫ ∞

0
dte−rt fT0 (t ) =

∫ ∞

0
dte−rt

[
−dQ0

dt

]
, (B6)

where Q0(x0, t ) is the survival probability (see the results from
Sec. IV C). Doing an integration by parts in Eq. (B6), we find

T̃0(r) = 1 − rq0(x0, r). (B7)

On the other hand, let us define

j0
+(x0, r) ≡

∫ ∞

0
dte−rt J0

+(x0, t )

=
∫ ∞

0
dte−rt

[
−D

∂P0(x, t |x0, 0)

∂x

∣∣∣∣
x=b

]

=
[
−D

∂ p0(x, r|x0, 0)

∂x

∣∣∣∣
x=b

]
, (B8)

where J 0
+ (x0, t ) was introduced in Eq. (36). But also note that

J 0
+ (x0, t ) = fT +

0
(t ). Hence

T̃ +
0 (r) =

∫ ∞

0
dte−rt fT +

0
(t )

=
∫ ∞

0
dte−rt J0

+(x0, t )

= j0
+(x0, r). (B9)

Thus, we have proven

j0
+(x0, r) = T̃ +

0 (r) =
[
−D

∂ p0(x, r|x0, 0)

∂x

∣∣∣∣
x=b

]
. (B10)

Using Eqs. (B7) and (B10) in Eq. (B5), we finally arrive at the
following relation we were seeking after:

ε+(x0) = T̃ +
0 (r)

T̃0(r)
. (B11)

APPENDIX C: PROOF OF EQ. (38)

In this Appendix, we will provide the proofs of the following
relations:

〈t (x0)〉± = 〈Tr (x0)〉 − 1

ε±(x0)

dε±(x0)

dr
. (C1)

Like in the preceding Appendix, here we will only demon-
strate the proof for 〈t (x0)〉+ and leave 〈t (x0)〉− for a likewise
proof.

We start by writing a renewal equation for the current
J+(x0, t ) given by

J+(x0, t ) = e−rt J0
+(x0, t )

+ r
∫ t

0
dτe−rτ J0

+(x0, τ )Qr (x0, t − τ ). (C2)

Such kind of renewal equations served as a bedrock already
for many of our central results. Taking Laplace transform on
both sides of the above equation, we obtain

j+(x0, s) = j0
+(x0, s + r)[1 + rqr (x0, s)]

= j0
+(x0, s + r)

1 − rq0(x0, s + r)
, (C3)

where we have used Eq. (6). Now, recall from Eq. (22)

〈t (x0)〉+ = − ∂ j+(x0,s)
∂s

∣∣
s→0

j+(x0, s = 0)
, (C4)

which can be rewritten as

〈t (x0)〉+ = −
[

∂

∂s
ln j+(x0, s)

]
s→0

. (C5)

Substituting j+(x0, s) from Eq. (C3) in the above equation
gives us

〈t (x0)〉+ = −
[

∂

∂s
ln j0

+(x0, s + r)

]
s→0

+
{

∂

∂s
ln[1 − rq0(x0, s + r)]

}
s→0

. (C6)
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We have already proven in the last section that T̃ +
0 (s) = j 0

+(x0, s) [see, e.g., Eq. (B9)], such that j 0
+(x0, s + r)|s→0 = T̃ +

0 (r).
Furthermore, it is also evident from Eq. (B9) that

∂ j0
+(x0, s + r)

∂s

∣∣∣∣
s→0

= d

dr
T̃ +

0 (r). (C7)

On the other hand, note that{
∂

∂s
ln[1 − rq0(x0, s + r)]

}
s→0

= 1

1 − rq0(x0, s + r)

∣∣∣∣
s→0

× ∂

∂s
[1 − rq0(x0, s + r)]

∣∣∣∣
s→0

= 1

1 − rq0(x0, s + r)

∣∣∣∣
s→0

×
[
−r

∂q0(x0, s + r)

∂s

]
s→0

= r

1 − rq0(x0, r)

∫ ∞

0
dtte−rt Q0(x0, t ) = r

1 − rq0(x0, r)

[
−dq0(x0, r)

dr

]
. (C8)

Now from Eq. (B7), recall that T̃0(r) = 1 − rq0(x0, r). Taking derivative on both sides with respect to r, we find

dT̃0(r)

dr
= −r

dq0(x0, r)

dr
− q0(x0, r). (C9)

Substituting dq0(x0, r)/dr from the above expression in Eq. (C8), we arrive at{
∂

∂s
ln[1 − rq0(x0, s + r)]

}
s→0

= 1

T̃0(r)

[
q0(x0, r) + dT̃0(r)

dr

]
. (C10)

Replacing all the expressions obtained from Eqs. (C7) and (C10) in Eq. (C6), we finally arrive at

〈t (x0)〉+ = − 1

T̃ +
0 (r)

dT̃ +
0 (r)

dr
+ 1

T̃0(r)

[
q0(x0, r) + dT̃0(r)

dr

]
= q0(x0, r)

T̃0(r)
− 1

T̃ +
0 (r)

dT̃ +
0 (r)

dr
+ 1

T̃0(r)

dT̃0(r)

dr

= 1 − T̃0(r)

rT̃0(r)
− d

dr
ln T̃ +

0 (r) + d

dr
ln T̃0(r) = 〈Tr〉 − d

dr
ln

T̃ +
0 (r)

T̃0(r)

= 〈Tr〉 − d

dr
ln ε+(x0) = 〈Tr〉 − 1

ε+(x0)

dε+(x0)

dr
, (C11)

which is our desired result Eq. (38). This completes the proof.
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