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Model reduction methods for population dynamics with fast-switching environments:
Reduced master equations, stochastic differential equations, and applications
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We study stochastic population dynamics coupled to fast external environments and combine expansions in the
inverse switching rate of the environment and a Kramers–Moyal expansion in the inverse size of the population.
This leads to a series of approximation schemes, capturing both intrinsic and environmental noise. These methods
provide a means of efficient simulation and we show how they can be used to obtain analytical results for
the fluctuations of population dynamics in switching environments. We place the approximations in relation to
existing work on piecewise-deterministic and piecewise-diffusive Markov processes. Finally, we demonstrate
the accuracy and efficiency of these model-reduction methods in different research fields, including systems in
biology and a model of crack propagation.
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I. INTRODUCTION

The study of stochastic population dynamics, coupled to
time-varying external environments, is a current challenge
from point of view of both fast simulation techniques and
the development of analytical tools. Stochastic populations
are routinely simulated using the Gillespie algorithm. Ana-
lytical approximation techniques such as Kramers-Moyal or
system-size expansions are available, but in their standard
form they have mostly been developed for closed systems
[1–3]. Applications in which varying external conditions are
important include the modeling of bacterial populations sub-
ject to antibiotic treatment [4–7] or protein production in
gene regulatory networks [8–12]. In this latter example it
is the stochastic binding and unbinding of promoters that
acts as the environmental process. Further applications are in
evolutionary dynamics [13–16], disease spreading [17], and
ecology and population dynamics [18–21]. Many of these
examples combine the extrinsic environmental noise with
intrinsic stochasticity, due to reactions in finite populations.
Examples of systems coupled to stochastic external environ-
ments go as far as reliability analysis and crack propagation in
materials, where environmental states correspond to different
strains due to external loading [22–27].

Existing literature on random processes in external en-
vironments includes approaches based on stochastic dif-
ferential equations (SDEs) coupled to continuous environ-
ments [13,28–30]. Alternatively, deterministic dynamics with
discrete external noise has been considered, for example,
in [31–33]. The quasi-steady-state approximation is used
to eliminate fast reactions [34,35] in reaction systems in
chemistry.

In the preceding paper [36] we developed reduction tech-
niques for stochastic systems with discrete states coupled
to fast external environments. More precisely, we showed
how the environment can be integrated out to result in a
reduced dynamics for the open classical system. The purpose

of [36] is to establish the formalism to do this and to discuss
the interpretation and limitations of the reduced dynamics.
Importantly, no approximation of the intrinsic dynamics of the
open system was made in [36]; the reduction methods devel-
oped there solely focused on approximating the environmental
process.

In the present work we build on the preceding paper, to also
approximate the dynamics of the population itself. The main
result of this paper is a detailed description of how expansions
in the inverse timescale of the environmental dynamics can be
combined with expansions in the inverse system size of the
population.

These are effectively weak-noise expansions for the extrin-
sic and intrinsic stochasticity of the problem, which in many
cases facilitate analytical results or more efficient simulation.
Using this approach, we obtain a number of different approx-
imation schemes, each capturing the intrinsic and extrinsic
noise to different degrees of accuracy. We put these different
schemes in relation to each other and we also put them into
context with existing approaches such as piecewise deter-
ministic Markov processes [37–45] or piecewise diffusive
dynamics [46–48]. We apply the formalism to a number of
examples ranging from gene regulatory networks to crack
propagation in materials.

The remainder of the paper is organized as follows. In
Sec. II we introduce the general model setting, a classical
stochastic system, coupled to an external environment, which
moves stochastically between discrete sates. We summarize
some of the results of [36], where we derived the reduced
master equation in the limit of fast but not infinitely fast
environmental dynamics. In Sec. III we then combine expan-
sions in the inverse size of the population with that in the
timescale of the switching dynamics and provide a systematic
classification of the different model reduction schemes which
result from this combined expansion. We discuss a set of
applications in Sec. IV, before we summarize and present
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our conclusions in Sec. V. The Appendixes contain further
examples and details of some of our calculations.

II. MODEL DEFINITIONS AND BACKGROUND

A. Model

The general model setting is the same as in [36]. We study a
stochastic system with discrete states �. In this paper this will
generally be a population of individuals who can each be of
different species, so that � = (n1, . . . , nS ), where ni describes
the number of individuals of each species in the population
(i = 1, . . . , S). We will often use the words “system” and
“population” synonymously.

The dynamics of the system consists of reactions which
either remove or create particles or convert one type of
particle into another. One can think of these as birth and
death events. The population is coupled to an environment.
The environment also takes discrete states, labeled σ . The
combined dynamics of the system and environment runs in
continuous time and the dynamics of the system depends
on the current state of the environment. The environment in
turn switches between its states with transition rates which
can depend on the state � of the system.

The dynamics of the system and environment is described
by the master equation

d

dt
p(�, σ, t )

= Mσ p(�, σ, t ) + λ
∑
σ ′

Aσ ′→σ (�)p(�, σ ′, t ), (1)

where p(�, σ, t ) is the joint probability of finding the system
in state � and the environment in state σ at time t . The object
Mσ is an operator and describes the changes of the state of
the system when the environment is in state σ .

The term proportional to λ in Eq. (1) represents the en-
vironmental switching. The rate with which the environment
transitions from state σ to state σ ′ is λAσ→σ ′ (�). These can
depend on the state � of the system. The prefactor λ > 0
sets the timescale of the environment relative to the internal
dynamics of the population. Large values of λ � 1 indi-
cate a fast environmental process. We use the convention
Aσ→σ (�) = −∑

σ ′ �=σ Aσ→σ ′ (�) for the diagonal elements of
the matrix A(�).

B. Reduced master equation

We first focus on the case in which the dynamics of the
environment is independent of the state of the population,
i.e., we assume that the Aσ→σ ′ do not depend on �. We are
interested in the case when the environment is fast, λ � 1,
and write ρ∗(σ |�) for the stationary distribution of the en-
vironmental process, given a fixed state � of the population.
Making the ansatz

p(�, σ, t ) = ρ∗(σ |�)�(�, t ) + 1

λ
wσ (�, t ) (2)

and adapting a calculation in [31], we showed in [36] that
the marginal distribution �(�, t ) = ∑

σ p(�, σ, t ) fulfills the

equation

d

dt
�(�, t ) =

∑
σ

Mσ [ρ∗(σ |�)�(�, t )] + 1

λ

∑
σ

Mσwσ (�, t ).

(3)

This approximation captures terms to subleading order in λ−1.
The leading-order contribution to wσ (�, t ) can be found from
the relation [36]∑

σ ′
Aσ ′→σ (�)wσ ′ (�, t ) = ρ∗(σ |�)

∑
σ ′

Mσ ′[ρ∗(σ ′|�)�(�, t )]

−Mσ [ρ∗(σ |�)�(�, t )]. (4)

Together Eqs. (3) and (4) describe the time evolution of
�(�, t ), neglecting corrections of order λ−2 and higher. We
note that the physical interpretation in terms of a random
process has limitations; this is discussed in detail in [36]. We
will nevertheless call Eq. (3) the reduced master equation.

Focusing on the case in which there are two environmental
states and the environmental process is independent of the
state of the population, we further showed in [36] that the
reduced master equation simplifies to

d

dt
�(�, t ) = Mavg�(�, t ) + 1

2

θ2

λ
(M0 − M1)2�(�, t ),

(5)
where

θ2 = 2k0k1

(k0 + k1)3
(6)

and Mavg = ∑
σ ρ∗

σ Mσ . The stationary distribution of the
environmental process ρ∗ does not depend on � when the
environment switches independently of the population.

We will refer to the case in which the timescale separation
between the population dynamics and environmental process
is infinite (λ → ∞) as the adiabatic limit. In this situation one
has

d

dt
�(�, t ) = Mavg�(�, t ) (7)

for the example with a population-independent environment.
In the more general case one finds, from Eq. (3),

d

dt
�(�, t ) =

∑
σ

Mσ [ρ∗(σ |�)�(�, t )]. (8)

We note a separate approach to approximating environmental
noise in the fast-switching limit which involves assuming a
large number of environmental states so that the environment
may be approximated as continuous [49,50].

C. Objective of the present work

Established methods for the approximation of Markovian
processes in population dynamics involves carrying out an
asymptotic expansion in powers of the inverse size of the pop-
ulation. In the absence of the complication of environmental
switching, this typically is achieved by performing either the
Kramers-Moyal expansion or van Kampen’s system-size ex-
pansion [1,2]. These techniques are commonly used in a num-
ber of applications of population dynamics; they have recently
been extended to the case of jump processes in switching
environments [46–48]. Following such an expansion, the state
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of the population is continuous and, for a fixed environmental
state, described by a stochastic or ordinary differential equa-
tion. Alternative approaches, based on the Wentzel-Kramers-
Brillouin (WKB) method, have been pursued, for example, in
Refs. [11,13,19,29,30,51]. These approaches, however, do not
provide a dynamical description of the population, but focus
on stationary or quasistationary states.

The purpose of this paper is to combine Kramers-Moyal-
type expansions with the expansion in the timescale sepa-
ration between the environment and population described in
Sec. II B. This leads to different levels of dynamical descrip-
tion depending on how the environmental switching and the
discreteness and intrinsic stochasticity of the population are
treated. Studying these different levels of approximation is
also useful to put our results into the context of existing
work [12,31–33,35,37–48,52–58]. We will first give a general
overview and then consider a specific example.

III. EXPANSION IN SYSTEM SIZE

A. Overview

A schematic overview is given in Fig. 1. We use the
notation � to describe the typical size of the population.
Broadly speaking the overall picture involves expansions in
the inverse switching timescale λ−1 and/or the inverse popu-
lation size �−1. The parameters λ and � correspond to the
vertical and horizontal directions, respectively, in Fig. 1. In
the top row we perform no expansion in λ−1 (i.e., we keep all
terms), in the middle row we assume λ � 1 but finite (keeping
leading and subleading terms), and in the bottom row the
adiabatic limit has been taken (λ → ∞), i.e., the noise due
to the environmental switching is discarded altogether. The
left-hand column describes models with a discrete population
(arbitrary �), in the middle column we assume � � 1 but fi-
nite, and in the right-hand column the limit � → ∞ has been
taken, i.e., all intrinsic noise in the population is disregarded.
We now discuss the relation between the different levels of
approximation in more detail.

Full model
(master equation)

Piecewise-diffusive 
process

Piecewise-
deterministic

Markov process

Reduced master 
equation

SDE with switching
noise and 

demographic noise

SDE with switching
noise

Master equation
with effective 
average rates

SDE with
demographic noise

Rate equation
(ODE)

System size Ω

la tne
mnorivn

E
 rete

marap gnihcti
ws

λ

∞

∞

FIG. 1. Schematic overview of the different model-reduction
schemes for populations coupled to external environments with
discrete states. Each column and row corresponds to a successive
layer of approximation.

1. Expansion in environmental timescale

In Sec. II B we focused on the left-hand column of Fig. 1.
The top left box is the full microscopic model, involving a
discrete population of typical size � and an environmental
process associated with a switching timescale set by λ. This
full model is defined by the master equation (1). Expanding to
subleading order in λ−1 but keeping � fixed and general, one
obtains the reduced master equation (3), as indicated in the
middle box in the left-hand column in Fig. 1. The limit λ →
∞ is the adiabatic limit, and one finds the master equation
(7). This is the bottom left-hand box in Fig. 1. As discussed in
more detail in [36], Eq. (7) describes a process with the same
types of reactions as the original dynamics, but with rates
that are weighted averages over the stationary distribution of
the environmental states. This is conceptually similar to the
quasi-steady-state approximation [34,35,53–55,58], in which
the fast-reacting species are regarded as constant at values
obtained from an appropriate weighted average. We stress
again that there are limitations to the physical interpretation of
this equation, in particular during short-term transients. This
is discussed in [36].

2. Expansion in powers of inverse system size

In a different approach one can first approximate the
intrinsic noise for large system size (� � 1), starting from
the full model (environment and population), without any
expansion in the environmental switching timescale. This is
done by carrying out a Kramers-Moyal expansion on the
dynamics of the population while simultaneously maintaining
the discrete environmental states [48]. This corresponds to
moving horizontally along the top row of Fig. 1.

If subleading-order terms in powers of the inverse system
size are retained, one obtains piecewise-diffusive dynamics
[46–48,59], corresponding to the middle box in the first row
of Fig. 1. In this approximation the population is described by
a stochastic differential equation between switches of the en-
vironmental state. The combined process of the environment
and population is approximated by

∂

∂t
pσ (x, t ) = Fσ pσ (x, t ) + λ

∑
σ ′

Aσ ′→σ pσ (x, t ), (9)

where pσ (x, t ) is a probability density over continuous states
x, obtained from discrete states � in the limit of large � (see
Sec. III B 1 for a specific example). The Fσ are Fokker-Planck
operators obtained from a Kramers-Moyal expansion on Mσ .

3. Combined expansion

Starting from the piecewise-diffusive process [top row,
middle box in Fig. 1, Eq. (9)] one can follow the same steps as
in Sec. II B and consider the limit of fast but not infinitely fast
environmental switching. In Fig. 1 this means moving down
the middle column. In considering the simultaneous limits of
large � and large λ, we assume that the ratio �/λ remains
finite. This will become more clear in the example discussed
below (Sec. III B 1). For the case of two environmental
states, one starts from Eq. (9), in which the limit � � 1 has
been taken, but where λ is still general. The only difference
between Eqs. (9) and (1) is the replacement of Mσ by Fσ .
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The result of an expansion in powers of λ−1 can then be read
off from Eq. (5) by simply replacing Mσ by Fσ , i.e.,

∂

∂t
�(x, t ) = Favg�(x, t ) + 1

2

θ2

λ
(F0 − F1)2�(x, t ). (10)

An interpretation of Eq. (10) in terms of a stochastic dif-
ferential equation can be obtained by expanding the term
(F0 − F1)2 further and keeping only terms to order 1/�. This
stochastic differential equation contains two different sources
of Gaussian noise, one representing demographic noise and
the other the stochasticity of the environmental switching.
This is the center box in Fig. 1. We will illustrate this using
specific examples below.

Finally, we could also take the adiabatic limit λ → ∞; this
leads to ∂

∂t �(x, t ) = Favg�(x, t ). In this limit, the noise due
to the environmental process has been eliminated entirely and
the resulting SDE contains only Gaussian noise coming from
the intrinsic fluctuations in the population. This is indicated
in the bottom box of the middle column in Fig. 1.

4. Piecewise-deterministic process

We can also take the limit of an infinite population � → ∞
first, keeping λ general. Thus, we neglect intrinsic fluctuations
altogether. This is achieved by retaining only the leading-
order term in the Kramers-Moyal expansion of the population.
In each fixed environment the dynamics of the population is
then described by an ordinary differential equation (ODE).
This constitutes what is known as a piecewise-deterministic
Markov process (PDMP) [37,38]. In Fig. 1 this is the right-
hand box in the top row. Mathematically, the PDMP is de-
scribed by

∂

∂t
pσ (x, t ) = Lσ pσ (x, t ) + λ

∑
σ ′

Aσ ′→σ pσ (x, t ), (11)

with Liouville operators Lσ ; they are first-order differential
operators which describe the deterministic drift of the system
in a given environmental state.

We can now use the PDMP as a starting point and move
down the right-hand column of Fig. 1, following the same
steps as before (Sec. II B), replacing Mσ by Lσ . For two
environmental states and keeping terms of order λ−1, the
result is analogous to Eqs. (5) and (10). One finds

∂

∂t
�(x, t ) = Lavg�(x, t ) + 1

2

θ2

λ
(L0 − L1)2�(x, t ). (12)

This is a Fokker-Planck equation and corresponds to an
SDE in which Gaussian noise reflects the effects of the fast-
switching environment, indicated in the middle box of the
right-hand column in Fig. 1. Equations of this type were
previously reported in Ref. [31].

A further approximation to the dynamics would again in-
volve taking the adiabatic limit: This is equivalent to ignoring
the final term in Eq. (12). The resulting Liouville equation cor-
responds to an ODE description of the system. Its dynamics
is then governed by a rate equation, where the reaction rates
are weighted averages over the different environmental states.
In such an approximation all stochasticity, both intrinsic and
environmental, has been eliminated. This is the bottom entry
in the right-hand column of Fig. 1.

B. Simple examples

1. Population with one species

We now focus on an example of a population with a single
type of particles and an environment with two states. The
purpose of this basic example is purely illustrative; specific
applications will be discussed in Sec. IV. Particles are pro-
duced at constant rate β� and they are removed with per
capita rates δσ in environments σ ∈ {0, 1}. We have

Mσ = β�(E−1 − 1) + δσ (E − 1)n, (13)

where n is the number of particles in the population. The
operator E acts on functions of n and is defined as E f (n) =
f (n + 1).

Keeping the system-size parameter � fixed and taking the
limit of large but finite λ, one obtains

d

dt
�(n) = �β(E−1 − 1)�(n)

+ (E − 1)

[
δavg − θ2

λ
(δ0 − δ1)2(2n − 1)

]
n�(n)

+ 1

2

θ2

λ
(δ0 − δ1)2[E2 − 1]n(n − 1)�(n). (14)

This corresponds to the middle box in the left-hand column
of Fig. 1, and we note that the last term in this reduced
dynamics describes reactions in which two particles are re-
moved simultaneously. Such reactions are not present in the
original dynamics; see [36] for a detailed discussion of the
interpretation and the limits of reduced master equations of
this type.

Taking λ → ∞ in Eq. (14), one has
d

dt
�(n, t ) = �β(E−1 − 1)�(n, t ) + (E − 1)δavgn�(n, t ),

(15)

where δavg = (k1δ0 + k0δ1)/(k0 + k1); this is the master equa-
tion with effective average rates (bottom box on the left in
Fig. 1).

Next, writing x = n/� and starting again from the full
model of population and environment, we carry out a
Kramers-Moyal expansion first (keeping terms up to sublead-
ing order in 1/�). One finds the Fokker-Planck operators

F0 = β

(
−∂x + 1

2�
∂2

x

)
+ δ0

(
∂x + 1

2�
∂2

x

)
x,

F1 = β

(
−∂x + 1

2�
∂2

x

)
+ δ1

(
∂x + 1

2�
∂2

x

)
x.

(16)

These operators, together with Eq. (9), describe a piecewise-
diffusive process (top row, middle column in Fig. 1); in a given
environmental state the dynamics is described by an Itô SDE

ẋ = β − δσ (t )x +
√

β + δσ (t )x

�
η(t ), (17)

where η(t ) is Gaussian white noise of unit variance.
Further approximating the piecewise-diffusive process in

the limit of fast environmental switching, we can insert the
explicit form of Fσ into Eq. (10) to give

∂

∂t
�(x, t ) = −∂x

{[
β − δavgx + 1

2 ge∂xge
]
�(x, t )

}
+ 1

2∂2
x

{[
g2

i + g2
e

]
�(x, t )

}
, (18)
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where 
 = δ0 − δ1 and

gi(x)2 = 1

�
(β + δavgx), (19)

ge(x)2 = θ2

λ

2x2. (20)

The subscript i indicates intrinsic stochasticity (demographic
noise) and e labels the contribution to the noise from envi-
ronmental switching. We note that gi(x)2 ∝ �−1 and g(x)2

e ∝
λ−1. It is interesting to note that the same Fokker-Planck
equation is obtained by a direct Kramers-Moyal expansion
of Eq. (14). Details can be found in Appendix A 1. The
contribution ge∂xge/2 to the drift term in Eq. (18) is of order
λ−1 and it can safely be neglected to the order we are working
at (see also Ref. [31]). Equation (18) then describes an Itô
SDE of the form

ẋ = β − δavgx + gi(x)ηi(t ) + ge(x)ηe(t ), (21)

in which ηi(t ) and ηe(t ) are independent Gaussian processes
of unit variance and with no correlations in time. The SDE
(21) corresponds to the center box in Fig. 1.

Equation (18) can be used as a starting point for further
approximations. In the case of infinitely fast switching λ → ∞
the term ge(x) can be neglected and one finds

∂

∂t
�(x, t ) = −∂x[(β − δavgx)�(x, t )]

+ 1

2�
∂2

x [(β + δavgx)�(x, t )]. (22)

We note that this relation can also be obtained by direct
Kramers-Moyal expansion of Eq. (15). Only the Gaussian
noise from the intrinsic stochasticity then remains in the SDE
(21). This is the bottom box in the middle column of Fig. 1.

In the case of an infinite population � → ∞, Eq. (18) turns
into

∂

∂t
�(x, t ) = −∂x[(β − δavgx)�(x, t )]

+ θ2

2λ

2∂2

x [x2�(x, t )], (23)

so the noise term containing gi(x) is no longer present in the
SDE (21). This is the middle box in the right-hand column of
Fig. 1. Equation (23) can also be found from Eq. (12) upon
using Lσ �(x) = −∂x(β − δσ x)�(x) (see Appendix A 2).

If all stochasticity is ignored altogether (λ →∞ and
� → ∞) one has gi = ge = 0. In our example one then finds
the rate equation

ẋ = β − δavgx. (24)

This corresponds to the bottom box in the right-hand column
of Fig. 1.

2. Population dynamics with two species

We next consider an example already used in [36]. In
this system there are two types of particles, labeled A and
B; they are removed with constant per capita rates γ and δ,
respectively. Particles are created with rates �ασ and �βσ .
These production rates depend on the state of the environment,
as indicated by the subscript, and as before we assume two

environmental states σ ∈ {0, 1}, with switching dynamics as
before. The state of the population can be written as � =
(nA, nB), where nA is the number of particles of type A and
nB the number of particles of type B. One then has

Mσ = �ασ

(
E−1

A − 1
) + γ (EA − 1)nA

+�βσ

(
E−1

B − 1
) + δ(EB − 1)nB, (25)

where EA f (nA, nB) = f (nA + 1, nB) and similarly for EB.
The reduced master equation for this model is derived in

[36]. Carrying out a Kramers-Moyal expansion in powers of
�−1 and retaining leading and subleading terms, we arrive at
the stochastic differential equations for xA = nA/� and xB =
nB/�,

ẋA = αavg − γ xA + ηA(t ),

ẋB = βavg − δxB + ηB(t ).
(26)

For compactness, we have absorbed the diffusion coefficients
(describing both intrinsic and extrinsic noise) into the white
noise terms ηA and ηB, so they have the covariance matrix

〈ηA(t )ηA(t ′)〉 =
(

αavg + γ xA

�
+ θ2

λ
(
α)2

)
δ(t − t ′),

〈ηB(t )ηB(t ′)〉 =
(

βavg + δxB

�
+ θ2

λ
(
β )2

)
δ(t − t ′),

〈ηA(t )ηB(t ′)〉 = θ2

λ

α
βδ(t − t ′) (27)

(see also Appendix B). We have introduced 
α = α0 − α1

and 
β = β0 − β1. This again corresponds to the center box
in Fig. 1 and we note that the noise contains contributions
from the intrinsic stochasticity (terms proportional to �−1

in the variance) and from the environmental noise (terms
proportional to λ−1).

To simplify matters we now restrict the discussion to the
case γ = δ and αavg = βavg (the latter does not imply 
α =

β). In the long run the deterministic trajectory, obtained
from Eq. (26) in the combined limit λ → ∞ and � → ∞,
converges to the fixed point given by x∗

A = x∗
B = αavg/γ . Writ-

ing xA(t ) = x∗ + ζA(t ) and xB(t ) = x∗
B + ζB(t ) and applying

the linear-noise approximation (LNA) [1,2] at the fixed point,
we find

ζ̇A = −γ ζA + ηA(t ),

ζ̇B = −γ ζB + ηB(t ),
(28)

where

〈ηA(t )ηA(t ′)〉 =
(

2αavg

�
+ θ2

λ
(
α)2

)
δ(t − t ′),

〈ηB(t )ηB(t ′)〉 =
(

2αavg

�
+ θ2

λ
(
β )2

)
δ(t − t ′),

〈ηA(t )ηA(t ′)〉 = θ2

λ

α
βδ(t − t ′).

(29)

In order to test these results we proceed and find analytical
predictions for the spectral density of fluctuations about the
fixed point. To do this we perform a Fourier transform and

032122-5



HUFTON, LIN, AND GALLA PHYSICAL REVIEW E 99, 032122 (2019)

FIG. 2. Spectra of fluctuations from direct simulations of the full
model (closed symbols) and from the linear-noise approximation of
the effective SDE capturing intrinsic and extrinsic noise (k0 = k1 = 1,
� = 20, λ = 20, α0 = 0, α1 = 1, and 
t = 0.1).

obtain

〈ζ̂A(ω)ζ̂ ∗
A (ω′)〉 = δ(ω + ω′)�−2SAA(ω),

〈ζ̂A(ω)ζ̂ ∗
B (ω′)〉 = δ(ω + ω′)�−2SAB(ω),

(30)

with

SAA(ω) = �2
2αavg

�
+ θ2

λ
(
α)2

γ 2 + ω2
,

SAB(ω) = �2
θ2

λ

α
β

γ 2 + ω2
.

(31)

As can be seen in Fig. 2, this result matches well with the
results of Gillespie simulating the full model (for � = 20
and λ = 20). We had previously used the power spectral
density of fluctuations to test simulation procedures for pop-
ulations in fast-switching environments [36]. Adding to this,
the derivation of the SDE (26) and (27) and the subsequent
LNA provides a tool to calculate these spectra analytically.

IV. APPLICATIONS

In this section we will use the formalism we have devel-
oped to a series of specific examples. Further applications are
discussed in Appendix D.

A. Bimodal genetic switch

1. Model

We now discuss a stylized model of a genetic circuit in
pluripotent stem cells. These have the ability to differentiate
into several possible cell types [44,60,61]; the basic features
of the networks of genes, transcription factors, and epigenetic
variables leading to these cell-fate decisions are a current
focus of research [62–65]. Several hypotheses exist about
the mechanisms leading to cell differentiation; among these
it has been proposed that excursions of the genetic circuit
into different areas of state space might contribute to steering
cells towards distinct differentiated states [60,61]. Bimodal
distributions are observed in a variety of biological switches
[29,39,66–68].

In this section we discuss a stylized model of processes
leading to bimodal distributions; the difference from the

model in the preceding section is that this extended model
admits a multimodal stationary distribution. In the context
of the above hypothesis, these different peaks would lead to
distinct differentiated states.

The model describes a single gene G, with a promoter site
which can bind to a total of up to N molecules of protein.
Each protein molecule binds with a rate λk+/� and unbinds
with a rate k−. Binding and unbinding are sequential [69].
Depending on the current state of the gene (i.e., the number
of bound proteins σ = 0, 1, . . . , N), mRNA molecules are
produced with rate �bσ . In turn, mRNA decays with (per
capita) rate d; its presence also leads to the production of
protein molecules, which occurs with a rate β per mRNA
molecule. Protein molecules finally decay with rate δ. The
model can be summarized by the reactions

Gσ + P
λk+/�−−−⇀↽−−−
λk−

Gσ+1 for σ < N,

Gσ
�bσ−−→ Gσ + M,

M
d−→ ∅, M

β−→ M + P, P
δ−→ ∅,

(32)

where M and P refer to molecules of mRNA and protein,
respectively.

Mathematically, the two main differences compared to the
models in the previous sections are the following: (i) The
environment (the gene) can take more than two states (σ =
0, 1, . . . , N) and (ii) the overall rate with which switches
from state σ to σ + 1 occur (σ < N) depends on the number
of protein. Each protein molecule contributes λk+/� to the
switching rate; the total rate of switching from state σ < N to
σ + 1 is λk+Np/� if the number of proteins is Np. This means
that the environmental switching depends on the state of the
population.

Different architectures of the genetic switching and asso-
ciated mRNA-production rates are discussed in the literature,
e.g., [45,62,64,65,70]. We focus on N = 2, i.e., there are three
possible environmental states σ = 0, 1, 2. We also assume
that mRNA molecules are produced with a common basal rate
in gene states σ = 0, 1, i.e., we set b0 = b1. When a maximum
of N = 2 proteins are bound to the gene mRNA is produced
with the activated rate �b2, where b2 > b0 [44].

2. Comparison of the different approximation schemes

We test the eight different approximations in Fig. 1. In
order to derive the reduced master equation, we need to go
beyond Eq. (5), as there are more than two environmental
states and because the environmental switching depends on
the state of the population of mRNA and proteins. The con-
struction therefore starts from Eqs. (3) and (4), with three
environmental states σ ∈ {0, 1, 2}. The calculation leading
to the reduced master equation for this model is tedious,
but straightforward. The expression for the reduced master
equation is lengthy and given in Appendix C 1.

For large but finite �, the piecewise-diffusive process for
this model is described by

ṁ = (bσ (t ) − dm) + �−1/2
√

bσ (t ) + dmηm(t ),

ṗ = (βm − δp) + �−1/2
√

βm + δpηp(t ).
(33)
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FIG. 3. Stationary probability distribution of the populations of mRNA and protein molecules for the full model in Sec. IV A and the eight
levels of model reduction in Fig. 1: (a) full model, (b) piecewise-diffusive process, (c) piecewise-deterministic Markov process, (d) reduced
master equation, (e) SDE with switching noise and demographic noise, (f) SDE with switching noise, (g) master equation with average rates,
(h) SDE with demographic noise, and (i) rate equation (� represents a δ peak). The parameters are N = 2, � = 50, b0 = b1 = 1, b2 = 20,
d = 9.2, β = 50, δ = 1, k− = 0.025, k+ = 1, and λ = 1250.

For fast environmental switching, the approximation corre-
sponding to the central box in Fig. 1 is given by the stochastic
differential equations

ṁ = [bavg(p) − dm] + [
gm

i (m, p)2 + gm
e (m, p)2

]1/2
ηm(t ),

ṗ = (βm − δp) + gp
i (m, p)ηp(t ), (34)

where we have

bavg(p) = b0k2
− + b0k−k+ p + b2k2

+ p2

k2− + k−k+ p + k2+ p2
,

gm
e (m, p) =

√
2k−k2+ p2[k2− + 3k−k+ p + k2+ p2]

λ(k2− + k−k+ p + k2+ p2)3
(b2 − b0)2,

gm
i (m, p) = �−1/2

√
bavg(p) + dm,

gp
i (m, p) = �−1/2

√
βm + δp. (35)

From this it is straightforward to obtain further ap-
proximations by sending the amplitude of either the in-
trinsic noise (gm

i and gp
i ) or the environmental noise

(gm
e ) to zero or both.
Figure 3 shows the stationary distributions obtained for the

full model and for the different approximations. All data are
from direct simulations, except Fig. 3(d), which is discussed
further below. The arrangement corresponds to that in the
schematic of Fig. 1, and for each approximation we report the
Jensen-Shannon divergence (JSD) relative to the stationary
distribution of the full model in Fig. 3(a). The JSD in Fig. 3(f)
is lower than that in Fig. 3(d). This is due to the following

effect. The full model in Fig. 3(a) can explore arbitrary
numbers of mRNA and protein molecules. The stationary
distribution of the PDMP in Fig. 3(c) however has bounded
support, because intrinsic noise is discarded. The distribution
in Fig. 3(f) does not include effects of intrinsic noise either,
but the environmental stochasticity has been approximated by
Gaussian noise, restoring an unbounded support. This leads
to the seemingly better agreement of Fig. 3(f) with the full
model. A similar effect is seen upon comparing Figs. 3(h)
and 3(g).

The figure also demonstrates that the bimodal structure of
the stationary distribution is induced by the intrinsic noise; it
is present in each panel in the left-hand and middle columns,
but in none of the panels in the right-hand column. We note
in particular that the model only has one single fixed point in
the deterministic limit, in contrast to other models of genetic
switches which have been studied with the WKB method
[29]. While the model is stylized and not intended to directly
model a particular biological system, Fig. 3 demonstrates
that analyses of this type may help to establish the origin of
relevant biological features; in this case bimodality linked to
pluripotency and cell-fate decision making is due to intrinsic
rather than extrinsic noise.

On a technical note, we add that the approximation in
Fig. 3(d), the reduced master equation, does not in itself define
a Markovian process for this model, due to the appearance of
negative rates (see Appendix C 1); further details of reduced
master equations with negative rates are discussed in [36]. We
have generated the data for the stationary distribution of the
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reduced master equation in two different ways. One is direct
numerical integration of the reduced master equation, which
leads to a JSD relative to the distribution for the full model
of approximately 7.6 × 10−5. The second method consists
of Gillespie simulations of an approximation to the reduced
master equation [see Eq. (C1)], in which subleading terms of
order �2/λ are kept, but those of order �/λ are discarded;
specifically, we have set �1 = �2 = 0 in Eq. (C1) for the pur-
pose of these simulations. This leads to a Markovian process,
and sample paths can hence be generated using the standard
Gillespie algorithm. The JSD for the stationary distribution
obtained in this way from that of the full model is found to be
approximately 9.1 × 10−5. Visually, the results from the two
methods are indistinguishable and their JSD from each other
is approximately 1.3 × 10−5, almost an order of magnitude
lower than the JSD of either of the two from the stationary
distribution of the full model.

3. Efficient simulations and required computing time

Although we have carried out all eight different approxima-
tions in the previous example, we remark that some are more
useful than others in terms of providing an efficient simulation
scheme for specific applications. The purpose of collating data
from the different levels of model reduction in Fig. 3 was to
give an illustration of the schematic in Fig. 1 in the context of
a concrete example.

The approximation as an SDE (center panel in Figs. 1
and 3) provides a good starting point for simulations of
systems with intrinsic noise of small and moderate amplitude
and fast-switching environments. The SDE is an approxima-
tion, but it retains both intrinsic and extrinsic noise. In the
context of simpler models, we have already used the SDE to
carry out further mathematical analysis using the LNA (see
Sec. III B 2). To further illustrate the possible advantages
of the approximation as an SDE, we have investigated the
amount of computing time needed to carry out simulations
of the full model in Eq. (32) and of the SDE (34). Broadly
speaking, the number of environmental switching events per
unit time in the full model can be expected to scale as λ and
the number of events in the population per unit time grows as
�. One would therefore expect the computing time required
to generate a given number of sample paths for the full model
up to a specified end time to grow when λ or � is increased.
This is confirmed in Table I. The time required to generate
sample paths of the SDE (34), however, is independent of λ

and �, as these only enter in the noise strength. These results
indicate that simulations of the SDE can be carried out more
efficiently than those of the full model, especially when either
the environmental switching is fast or the typical population
size is large, or both. This is also the regime in which the SDE
approximation becomes increasingly accurate.

B. Genetic circuit with exclusive binding

Next we consider a circuit with exclusive promoter binding
[71,72]. The model describes two genes GA and GB and
two corresponding proteins PA and PB. Proteins PA and PB

bind to genes of the opposing type GB and GA, respectively,
with (per capita) rates λκ1/� and λμ1/�. They unbind from
these promoters with rates λκ0 and λμ0. These binding and

TABLE I. Comparison of the simulation time of the full model
(32) and the SDE (34). The Gillespie algorithm and Euler-Maruyama
method (dt = 5 × 10−3) are used, respectively, to simulate the sys-
tem up to time 104. While the simulation time of the full model in-
creases with λ and �, the simulation time for the SDE is independent
of λ and �.

Computation time (s)
Computation time (s) for the SDE with switching

λ � for the full model and demographic noise

500 50 62.4 34.3
1000 50 74.0 34.4
1500 50 85.0 34.4
2000 50 93.2 34.4
1250 20 40.4 34.5
1250 40 67.4 34.7
1250 60 95.7 34.4
1250 80 123.2 34.3

unbinding reactions can be summarized as

GA
unbnd + GB

unbnd

nBλκ1/�−−−−⇀↽−−−−
λκ0

GA
bnd + GB

unbnd,

GA
unbnd + GB

unbnd

nAλμ1/�−−−−−⇀↽−−−−−
λμ0

GA
unbnd + GB

bnd, (36)

where the subscripts bnd and unbnd indicate whether the gene
is bound to a protein or unbound, respectively, and where nA

and nB are the numbers of molecules of proteins of types
A and B. In this model either gene GA or gene GB can be
bound, but not both simultaneously. This is due to spatial
considerations of the binding process: Owing to the protein
size and the proximity of the genes, the binding of a particular
protein blocks the other protein from binding [71,72]. When
gene GA is bound, proteins of type A are produced with rate
�α0, and when it is unbound, they are produced with rate
�α1. Similarly, when gene GB is bound, proteins of type B
are produced with rate �β0, and when it is unbound, they are
produced with rate �β1. To summarize, the protein production
rates in the three gene configurations are as follows:

Production Production
Gene configuration rate PA rate PB

GA, GB unbound �α1 �β1

GA bound �α0 �β1

GB bound �α1 �β0

In this model one protein inhibits the expression of the other,
i.e., α0 < α1 and β0 < β1. Additionally, protein A degrades
with rate γ and protein B with rate δ.

In this model the birth rates of the two types of proteins
are not independent; rather, they are connected through the
state of the environment (the binding status of the two genes).
Furthermore, when production of one protein is inhibited (for
example, protein A when GA is bound), the other protein is
expressed with a higher rate (GB unbound). This is an example
of a model of the kind considered in [36], where we show
how anticorrelations lead to negative rates in the reduced
master equation. The reduced master equation for this model
is lengthy; we present it in Appendix C 2.
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FIG. 4. Stationary distribution for the genetic circuit with exclusive binding (Sec. IV B) from numerical integration of (a) the full master
equation with explicit environment, (b) the reduced master equation (C4), and (c) the adiabatic approximation which considers average rates.
Also shown is (d) the marginal distribution of nA − nB in order to compare the three distributions. The parameters are α0 = β0 = 0, α1 = β1 = 1,
� = 20, λκ0 = λκ1 = 20, and γ = δ = 1.

Figure 4 shows the results for the stationary distribution
obtained from numerical integration of this reduced master
equation; we also show the stationary distributions of the
full model and of the adiabatic approximation. As can be
seen in Fig. 4(d), the reduced master equation reproduces the
stationary distribution of the full model with greater accuracy
than the adiabatic approximation.

C. Reliability analysis and crack propagation

The formalism we have developed can also be applied to
the calculation of time to failure in models of industrial sys-
tems. One of the challenges in this field is to capture features
of real-world systems in tractable mathematical models. In
this context, many authors have used piecewise-deterministic
processes with Markovian external environments. These mod-
els incorporate discrete environmental effects such as differ-
ent modes of operation, external stresses, or loads [25–27].
In these applications there is often a clear separation of
timescales; the environmental switching is a much faster
process than the degradation of the system. For example, a
piece of material may be subject to mechanical load which
changes several times a day or hour and the degradation of the
material occurs over months or years.

Specifically, we consider the example of fatigue crack
growth; this is an engineering problem describing the growth
in the length of a crack in a mechanical component. One
such model uses a piecewise-deterministic Markov process to
describe the growth of the length of a crack [22–24,73] as

ẋ = xb × vσ (t ), (37)

where x is the crack length, the exponent b > 0 is a constant,
and as before σ (t ) represents the state of the environment at
time t . The factor vσ takes into account that the crack grows
faster in some environments than in others. Transitions from
state σ to σ ′ occur with rate λAσ→σ ′ .

Given an initial length x0, we are interested in the time it
takes to reach the threshold length x = L; this is when the
component is deemed unreliable. We use the formalism of
the earlier sections to approximate the PDMP as an SDE in the
limit of fast (but not infinitely fast) environmental switching
(λ � 1). We then find the first-passage time of this SDE
through the threshold value. While diffusive processes have
been used as starting points in models of reliability [74,75],

we systematically reduce the PDMP to an effective stochastic
differential equation.

In the simplest case of two environmental states (and
writing A0→1 = k1 and A1→0 = k0 as before), Eq. (37) can be
approximated by the SDE,

ẋ = xbvavg + gxbη(t ), (38)

where

vavg = k0v0 + k1v1

k0 + k1
, g2 = 2k0k1(v0 − v1)2

λ(k0 + k1)3
. (39)

Higher-order terms in λ−1 have been discarded. For the special
case of exponential growth b = 1, the SDE approximation
turns into geometric Brownian motion. In a different con-
text this has been implemented in Ref. [31]. We proceed to
find the first-passage time of the process in Eq. (38) through
the threshold L. This can be done following Ref. [76], but with
a modification allowing for b �= 1. As a first step we apply the
transformation

y =
{

ln x, b = 1
x1−b−1

1−b , b �= 1.
(40)

The SDE (38) can then be written

ẏ = vavg + gη(t ). (41)

For such a process, the distribution of first-passage times
through a given threshold is known [76]. Returning to the
original variables, we obtain the probability density Q(x0, t )
of first-passage times of the process (38) through L, if started
at position x0 at time t = 0. For b = 1 one finds

Q(x0, t ) = | ln(L/x0)|
gt (2πt )1/2

exp

(
−

[
ln(L/x0) − (

vavg − g2

2

)
t
]2

2g2t

)
,

(42)

and for b �= 1 one has

Q(x0, t ) = 1

gt (2πt )1/2

∣∣∣∣∣L1−b − x1−b
0

1 − b

∣∣∣∣∣
× −[(

L1−b − x1−b
0

)/
(1 − b) − (

vavg − g2

2

)
t
]2

2g2t
.

(43)
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FIG. 5. (a) Sample path of the model of crack growth (Sec. IV C). Background shading indicates the state of the environment, with states 0,
1, and 2 shown progressively darker. (b) Survival probability as a function of time. The black line shows results from Monte Carlo simulations
and the dashed line is the prediction of Eq. (43). (c) and (d) Same quantities as in (a) and (b), respectively, for tenfold increased switching
rates. The model parameters are given in the text.

This approach can be extended to models with more than
two environmental states, leading to modifications in the noise
strength g. We demonstrate this with a numerical example.
We use the parameters suggested in Ref. [73], in particular
b = 1.5 and

λA =

⎡
⎢⎣

−40 40 0

54 −60 6

20 0 −20

⎤
⎥⎦, v =

⎡
⎢⎣

1.0

0.9

1.2

⎤
⎥⎦.

The initial crack length is x0 = 9, and we use L = 50 as the
threshold for the onset of failure. Compared to Ref. [73], we
have rescaled time. Implementing our theory shows that the
process can be approximated by the SDE (38) where vavg =
69/70 and g2 = 141/274 400. This is obtained from solving
Eq. (4) with a numerical algebra package, again replacing
the operator Mσ with the appropriate Liouville operator.
Figure 5(a) shows a sample path of the PDMP generated by
Monte Carlo simulation, while the background indicates the
state of the environment. Figure 5(b) shows the probability
that a given component is still reliable at time t . The black
line is obtained through Monte Carlo simulations, whereas the
dashed line is the prediction of Eq. (43). For the specified
parameters, the two lines show agreement. Increasing the
switching rate [Fig. 5(d)] strengthens this agreement.

V. SUMMARY AND CONCLUSIONS

We have developed methods for the reduction and ap-
proximation of the dynamics of populations’ coupled external
environments with a finite number of discrete states. Our
analysis focuses on the limit in which the environmental
dynamics is fast relative to that of the system, but where the
timescale separation is not necessarily infinite. We have com-
bined expansions in the timescale separation with expansions
in the inverse size of the population.

As a key result, we derive a stochastic differential equation
for the population, capturing both intrinsic and environmental
noise. This stochastic differential equation provides a starting
point for efficient numerical studies. Simulating the dynamics

of the original population and the discrete environment is
costly, especially if the population is large or when the dynam-
ics of the environment is very fast. The amount of computing
time needed to integrate the SDE however is independent
of the population size and the speed of the environmental
dynamics. At the same time, the approximation leading to
the SDE becomes increasingly more accurate when the pop-
ulation is large and the environmental dynamics fast. We
have also demonstrated that the SDE can be used to obtain
further analytical results; for example, spectral properties of
fluctuations can be computed analytically within the linear-
noise approximation.

We placed our reduction schemes in the context of exist-
ing work on piecewise-deterministic Markov processes and
piecewise-diffusive processes. This provides a more complete
picture of different approximations for systems with intrinsic
noise and environmental fluctuations. It may hence help to
select the most appropriate approximation method for specific
applications.

We have demonstrated how these results can be used to
study a number of problems in different areas. We discussed
models of genetic circuits and of crack propagation. Further
applications in the Appendixes include cases in which the
switching between external conditions is non-Markovian and
a more complex genetic network with multiple genes. These
applications are only a selected set of examples of situations
in which switching environments play a role. We expect that
the model-reduction schemes will be of use for the analytical
and numerical investigation of further classical open systems
in biology and the physical sciences, as well as in other
disciplines.
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APPENDIX A: FURTHER DETAILS OF THE ANALYSIS OF THE MODEL IN SEC. III B 1

1. Kramers-Moyal expansion of the reduced master equation

In this Appendix we carry out a direct Kramers-Moyal expansion of the reduced master equation (14). This master equation
can be written as

d

dt
�(n, t ) = �β(E−1 − 1)�(n) + (E − 1)δeff n�(n, t ) + 1

2

θ2

λ

2[E2 − 1]n(n − 1)�(n, t ), (A1)

where 
 = δ0 − δ1 and

δeff = δavg − 1

2

θ2

λ

2(2n − 1). (A2)

To carry out the expansion we write E2 = 1 + 2
�
∂x + 2

�2 ∂
2
x + · · · and obtain (writing x = n/�)

∂

∂t
�(x) = β

(
−∂x + 1

2�
∂2

x

)
�(x) +

(
∂x + 1

2�
∂2

x

)
δeffx�(x) + 1

2

θ2

λ
�
2

(
2∂x + 2

�
∂2

x

)
x

(
x − 1

�

)
�(x), (A3)

where neglected terms are of order 1/�2 or of order θ2

λ
/� ∝ 1/λ�. There will be further terms in Eq. (A3) which can be

neglected at the order we are working at. Next we collect terms

∂

∂t
�(x) = −∂x

{[
β − δeff x − θ2

λ
�
2x

(
x − 1

�

)]
�(x)

}
+ 1

2�
∂2

x

{[
β + δeffx + 2

θ2

λ
�
2x2

]
�(x)

}
, (A4)

where another term of order 1/λ� has been dropped. Now we use δeff = δavg − 1
2

θ2

λ
�
2(2x − 1

�
) and find

∂

∂t
�(x) = −∂x

{[
β − δavgx + 1

2

θ2

λ
�
2x

(
2x − 1

�

)
− θ2

λ
�
2x

(
x − 1

�

)]
�(x)

}

+ 1

2�
∂2

x

{[
β + δavgx − θ2

λ
�
2x2 + 2

θ2

λ
�
2x2

]
�(x)

}
, (A5)

where yet another term of order 1/λ� has been dropped. This is the same as

∂

∂t
�(x) = −∂x

{[
β − δavgx + 1

2

θ2

λ

2x

]
�(x)

}
+ 1

2
∂2

x

{[
1

�
(β + δavgx) + θ2

λ

2x2

]
�(x)

}
, (A6)

i.e., we recover Eq. (18).

2. Reduced Liouville equation

Using Lσ �(x) = −∂x(β − δσ x)�(x) in Eq. (12) gives

∂

∂t
� = −∂x(β − δavgx)�(x) + 1

2

θ2

λ

2∂xx∂xx�(x). (A7)

Next we use ∂x[x∂xx�(x)] = ∂2
x (x2�) − ∂x(x�) to write this as

∂

∂t
� = −∂x

(
β − δavgx + 1

2

θ2

λ

2x

)
�(x) + 1

2

θ2

λ

2∂2

x [x2�(x)]. (A8)

Neglecting the term 1
2 ge∂xge = 1

2
θ2

λ

2x, this is Eq. (23).

APPENDIX B: KRAMERS-MOYAL EXPANSION FOR THE TWO-SPECIES MODEL IN SEC. III B 2

The reduced master equation for the two-species model is derived in [36] and reads

d

dt
� = γ (EA − 1)nA� + δ(EB − 1)nB� + �αeff

(
E−1

A − 1
)
� + �βeff

(
E−1

B − 1
)
�

+ �2θ2

2λ
(
α)2

(
E−2

A − 1
)
� + �2θ2

2λ
(
β )2

(
E−2

B − 1
)
� + �2θ2

λ

α
β

(
E−1

A E−1
B − 1

)
�, (B1)

where 
α ≡ α0 − α1, 
β ≡ β0 − β1, and

αeff = αavg − �θ2

λ
(
α)2 − �θ2

λ

α
β,

βeff = βavg − �θ2

λ
(
β )2 − �θ2

λ

α
β. (B2)
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Carrying out the Kramers-Moyal expansion on Eq. (B1) we find

∂

∂t
�(x) = γ

(
∂x + 1

2�
∂2

x

)
x� + δ

(
∂y + 1

2�
∂2

y

)
y� + αeff

(
−∂x + 1

2�
∂2

x

)
� + βeff

(
−∂y + 1

2�
∂2

y

)
�

+ �θ2

2λ
(
α)2

(
−2∂x + 2

�
∂2

x

)
�(t ) + � θ2

λ

2 (
β )2

(
−2∂y + 2

�
∂2

y

)
�

+ �θ2

λ

α
β

(
−∂x − ∂y + 1

2�
∂2

x + 1

2�
∂2

y + 1

�
∂x∂y

)
�. (B3)

Using Eq. (B2), this simplifies to

∂

∂t
�(x) = −∂x(αavg − γ x)� − ∂y(βavg − δy)� + 1

2
∂2

x

(
αavg + γ x

�
+ θ2

λ

α2

)
�

+ 1

2
∂2

y

(
βavg + δy

�
+ θ2

λ

β2

)
� + ∂x∂y

(
θ2

λ

α
β

)
�, (B4)

which describes the dynamics of the stochastic differential equations (26) and (27).

APPENDIX C: APPLICATIONS: FURTHER DETAILS

1. Reduced master equation for the bistable genetic circuit

In this Appendix we report the reduced master equation for the model described in Sec. IV A. The reduced master equation
is obtained starting from Eq. (3), where the wσ (�) are determined from (4). We do not report the full calculation; it is laborious,
but ultimately straightforward. The final result for the reduced master equation reads

d

dt
�(Np, Nm, t ) = (

E−1
m − 1

){
�βavg(Np) − 1

λ
�2(β2 − β0)2 1

k−

2ψ2

(1 + ψ + ψ2)3
[ψ2 + 3ψ + 1]

}
�

+ (Em − 1)[δmNm�] + (
E−1

p − 1
)
[αNm + �1]� + (Ep − 1)[δpNp + �2]�

+ (
E−2

m − 1
)[1

λ
�2(β2 − β0)2 1

k−

ψ2

(1 + ψ + ψ2)3
[ψ2 + 3ψ + 1]�

]

+ (
E−1

m E−1
p − 1

)
(−�1�) + (

E−1
m Ep − 1

)
(−�2�), (C1)

where we have introduced the following shorthand (σ = 0, 1, 2):

ψ (Np) = k+Np

�k−
,

ρ∗
σ (Np) = ψ (Np)σ−1

1 + ψ (Np) + ψ (Np)2
,


σ (Np) = ρ∗
σ (Np + 1) − ρ∗

σ (Np),

βavg(Np) =
∑

σ

ρ∗
σ (Np)βσ ,

�1 = 1

λ
�(β2 − β0)

1

k−
{[ρ∗

0 (Np + 1) + ρ∗
1 (Np + 1)]
2 − ρ∗

1 (Np + 1)
0}αNm,

�2 = 1

λ
�(β2 − β0)

1

k−
{ρ∗

1 (Np − 1)
0(Np − 1) − [ρ∗
0 (Np − 1) + ρ∗

1 (Np − 1)]
2(Np − 1)}δpNp. (C2)

We note that �1 > 0, irrespective of the choice of λ, so the rate of the penultimate reaction in Eq. (C1) is negative. The rates of
all other reactions are non-negative, provided λ is large enough (all other parameters fixed).

2. Gene circuit with exclusive binding

In this Appendix we report the reduced master equation for the gene circuit with exclusive binding, discussed in Sec. IV B.
Labeling the states GA and GB not occupied, only GA occupied, and only GB occupied as σ = 0, 1, and 2, respectively, we have
the transition matrix elements

A0→1 = nAμ1/�, A0→2 = nBκ1/�, A1→0 = κ0, A2→0 = μ0, (C3)
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where all other off-diagonal entries are zero and the diagonal elements follow from the convention
∑

σ ′ Aσ→σ ′ = 0. For the
purposes of the numerical analysis we make the simplifications α0 = β0, α1 = β1, κ0 = μ0, and κ1 = μ1, as well as γ = δ. The
reduced master equation in the limit of large but finite λ is then obtained as

d

dt
PnA,nB (t ) = (

E−1
A − 1

){
�

nBα1κ̃1 + α0(κ0 + nAκ̃1)

κ0 + (nA + nB)κ̃1
− �2

λ

2nBκ0κ̃1(α0 − α1)2

[κ0 + (nA + nB)κ̃1]3

}
PnA,nB (t )

+ (
E−1

B − 1
){

�
nAα1κ̃1 + α0(κ0 + nBκ̃1)

κ0 + (nA + nB)κ̃1
− �2

λ

2nAκ0κ̃1(α0 − α1)2

[κ0 + (nA + nB)κ̃1]3

}
PnA,nB (t )

+ (
E−2

A − 1
)�2

λ

nBκ̃1
[
κ2

0 + 2nAκ0κ̃1 + nA(nA + nB)κ̃2
1

]
(α0 − α1)2

κ0[κ0 + (nA + nB)κ̃1]3
PnA,nB (t )

− (
E−1

A E−1
B − 1

)�2

λ

2nAnBκ̃2
1 [2κ0 + (nA + nB)κ̃1](α0 − α1)2

κ0[κ0 + (nA + nB)κ̃1]3
PnA,nB (t )

+ (
E−2

B − 1
)�2

λ

nAκ̃1[κ2
0 + 2nBκ0κ̃1 + nB(nA + nB)κ̃2

1 ](α0 − α1)2

κ0[κ0 + (nA + nB)κ̃1]3
PnA,nB (t )

+ γ
(
E+1

A − 1
)
nAPnA,nB (t ) + γ

(
E+1

B − 1
)
nBPnA,nB (t ), (C4)

where κ̃1 has been introduced as shorthand for κ1/�. We have discarded terms of order �/λ.

APPENDIX D: FURTHER APPLICATIONS

1. Genetic network with multiple genes

A related model, as considered in Ref. [12], involves N
identical promoter genes G(i) (i = 1, . . . , N), which can each
be in their on or off states and switch between these indepen-
dently. This is different from the model in Appendix C, where
a single gene can bind up to N molecules of protein. The N
genes operate in parallel; for the dynamics of the population
only the total number of genes in each state matters. As a
consequence, there are N + 1 different environmental states
describing the configuration of the genes. We use the number
of genes in the on state to label these states σ ∈ {0, . . . , N}.
We leave out the mRNA dynamics and focus only on protein
production and decay. We assume that each gene in its on
state contributes �b1 to the total production rate and each
gene in its off state contributes �b0. As before, the param-
eter � controls the typical size of the population of protein
molecules. We then have �bσ = (N − σ )�b0 + σ�b1 for the
total production rate. The model is defined by the reactions

G(i)
off

�b0−−→ G(i)
off + P, G(i)

off

λk1−⇀↽−
λk0

G(i)
on,

(D1)

G(i)
on

�b1−−→ G(i)
on + P, P

δ−→ ∅,

where the reactions for different genes i = 1, . . . , N run inde-
pendently. The SDE description of the model in the limit of
large but finite � and λ is of the form

ṗ = Nbavg − δp + [gi(p)2 + ge(p)2]1/2η(t ), (D2)

where each gene contributes an average rate of production
bavg = (b0k0 + b1k1)/(k0 + k1). The contribution to the noise
from intrinsic fluctuations has amplitude

gi(p)2 = 1

�
(Nbavg + δp). (D3)

The environmental noise comes from the switching between
the N + 1 gene configurations; each gene switches between its

on and off states independently. Following the earlier exam-
ples, one expects a contribution 2k0k1(b0 − b1)2/λ(k0 + k1)3

to the variance of the environmental noise from each gene so
that the total variance is

ge(p)2 = 2Nk1k0(b0 − b1)2

λ(k0 + k1)3
. (D4)

We note that the relative fluctuations of the total production
rate [i.e., the ratio ge(p)/Nbavg] scale as N−1/2.

Mathematically, the transition rate matrix for the N + 1
environmental states may be written as the tridiagonal matrix

Aσ→σ−1 = λk0σ for σ � 1,

Aσ→σ+1 = λk1(N − σ ) for σ � N − 1, (D5)

Aσ→σ± j = 0 for j � 2,

together with the convention Aσ→σ = −Aσ→σ−1 − Aσ→σ+1.
The formalism of Secs. II B and III can then be applied,
but becomes algebraically tedious. Using numerical algebra
packages, we have verified Eq. (D4) up to N = 100.

2. Staged switching of the environment

In many situations the switching between environmental
states is not purely Markovian. Periodic switching between
environmental states has been considered in experimental
and theoretical studies of bacterial populations, for example,
the presence or absence of antibiotic treatment according to
a periodic protocol. As a bet-hedging strategy, the bacteria
respond to time-dependent external stresses with phenotypic
heterogeneity [9,59,77–79]. In this context it is therefore
important to be able to study stochastic populations coupled
to environments with non-Markovian dynamics.

In this Appendix we consider an example in which there
are two distinct environmental conditions, labeled 0 and 1. In
contrast with the previous examples, each of these conditions
consists of several identical internal states (or stages), which
are traversed in sequence. Similar setups have been used to
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FIG. 6. (a) Schematic illustrating an environment with two distinct conditions, with N and M identical stages, respectively. (b) Stationary
distribution for different values of N = M. Histograms show the results of simulations and lines are from the theory described in the text.
(c) Variance of the stationary distribution as a function of N (again for the case N = M). The black line shows the results of the theory and
orange circles are from simulations of the piecewise-deterministic Markov process. The parameters N and M have been generalized to include
noninteger values, by considering γ -distributed waiting-time distributions in the two conditions (see the text). The dashed line shows the
variance of the limit cycle obtained in the limit of a periodic environment. The parameters are b0 = 100/3, b1 = 500/3, and λk0 = λk1 = 20.

model dynamics which fall between the purely periodic and
purely Markovian limits (see, e.g., Refs. [9,80,81]).

The model is illustrated in Fig. 6(a). There are N environ-
mental states which correspond to environmental condition 0
and M states that correspond to environmental condition 1.
States in condition 0 transition to the next state with rate
λk1N and states corresponding to condition 1 transition to the
next state with rate λk0M. The environment cycles through all
states in order, as indicated in the figure.

In this way, the time spent in condition 0 before switching
to 1 is �(N, λNk1) distributed and similarly the time spent in
condition 1 follows a �(M, λMk0) distribution. Independent
of N and M, the environment spends an average time (λk1)−1

in condition 0 before it switches to 1 and then an average time
(λk0)−1 in condition 1 before it switches back to condition 0.
Increasing the number of states N and M leads to an increased

regularity of time spent in each condition. The limit N, M →
∞ in particular corresponds to periodic switching between the
two conditions.

For simplicity, we disregard intrinsic noise in this example
and focus on a piecewise-deterministic process. We assume
that the dynamics is given by ẋ = v0(x) if the environment is
in condition 0 and by ẋ = v1(x) if it is in condition 1. We use a
symbolic algebra package to solve Eq. (4), where the operator
Mσ is replaced by the Liouville operator Lσ = −∂xvσ (x).
We use this to derive an SDE in the limit of fast but finite
environmental dynamics. We find

ẋ = vavg(x) + ge(x)η(t ), (D6)

where η(t ) is white Gaussian noise and the drift and diffusion
terms are given by

vavg(x) = k0v0(x) + k1v1(x)

k0 + k1
, ge(x) = λ−1/2

√
k1k0(N + M )[v0(x) − v1(x)]2

NM(k1 + k0)3
. (D7)

We have not attempted to formally prove this for general N
and M; rather, we tested this result for a range of combinations
N, M < 150 and found it to be true for all tested values.

In Fig. 6(b) we use a specific example, where the drift is
v0(x) = b0 − x and v1(x) = b1 − x. In this figure we compare
the stationary distributions obtained from simulation of the
PDMP with the stationary distribution obtained analytically
from solving the one-dimensional Fokker-Planck equation for
Eq. (D6). We show these data for different choices of N and
M in Fig. 6(b), restricting the values to N = M for simplicity.

Similarly, we compare the variance of the stationary dis-
tributions from the PDMP and the SDE in Fig. 6(c). The
parameters λ, k1, and k0 are kept fixed; we focus again on
the case N = M and vary this number of internal states.
Analytical results from the SDE and numerical simulation of
the PDMP agree well for N, M < 100, but there are deviations
when N = M becomes large. This is due to fact that the PDMP

tends to a deterministic limit cycle; this limit cycles leads to a
finite variance of the corresponding distribution, indicated by
the dashed line of Fig. 6(c). This limit cycle dynamics is not
captured by the SDE.

The model as described above is only defined for integer
values of N and M. However, the distribution of waiting times
in either environmental condition can be generalized to the
case of γ distributions with noninteger shape parameters. The
interpretation as a series of internal states within conditions
σ = 0 and σ = 1 then no longer holds, but simulations of
the model can still be carried out, drawing waiting times
directly from the appropriate γ distributions. The SDE (D7)
remains unaltered and it provides an accurate description of
the dynamics of the model also when N and M are not
integers. This can be seen in Fig. 6(c), where many of the
markers (circles) correspond to simulations for noninteger
values of N and M.
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