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Classical stochastic systems with fast-switching environments: Reduced master equations,
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We study classical Markovian stochastic systems with discrete states, coupled to randomly switching external
environments. For fast environmental processes we derive reduced dynamics for the system itself, focusing on
corrections to the adiabatic limit of infinite timescale separation. We show that this can lead to master equations
with bursting events. Negative transition rates can result in the reduced master equation, leading to unphysical
short-time behavior. However, the reduced master equation can describe stationary states better than a leading-
order adiabatic calculation, similar to what is known for Kramers-Moyal expansions in the context of the Pawula
theorem [R. F. Pawula, Phys. Rev. 162, 186 (1967); H. Risken and H. Vollmer, Z. Phys. B 35, 313 (1979)]. We
provide an interpretation of the reduced dynamics in discrete time and a criterion for the occurrence of negative
rates for systems with two environmental states.
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I. INTRODUCTION

Physical and biological systems can never be fully iso-
lated from their environment. This includes the dynamics of
microbes in time-varying external conditions (e.g., antibiotic
treatment) [1–4] or protein production in gene regulatory
networks, influenced by the stochastic binding and unbinding
of promoters [5–9]. Other examples can be found in models
of evolutionary dynamics [10–13], the spread of diseases
[14], ecology and population dynamics [15–18]. Many of the
models of these phenomena contain two types of randomness:
one intrinsic to the system itself and another generated by
the noise in the environmental dynamics. The study of open
quantum systems defines an entire area of research [19–21].

These examples share a common structure: There is the
system proper and the environment, and a coupling between
them; this interaction can act either in one way or in both
directions. In such situations it is often not possible (or
desirable) to track and analyze in detail the dynamics of the
system and that of the environment. Instead the focus is on
deriving reduced dynamics for the system itself, which in
some way accounts for the influence of the environment on the
system. Work on open quantum systems, for example, focuses
on understanding the dynamics of reduced density matrices
after integrating out the environment [19–21].

Existing work on open classical systems includes those de-
scribed by stochastic differential equations coupled to contin-
uous environments [10,22–24] and deterministic models with
discrete external noise [25–27]. A specific case of Brownian
particles subject to random external gating is considered in
Ref. [28]. In chemical or biological systems the quasi-steady-
state approximation or related adiabatic reduction techniques
can be used to eliminate fast reactions [29,30].

In this paper we consider open stochastic systems with
discrete states. While some of our work is applicable more
generally, we mostly focus on populations of interacting

individuals. We will often use the words “system” and “popu-
lation” synonymously. Examples we have in mind are chemi-
cal reaction systems with discrete molecules, or populations
in biological systems, composed of members of different
species. For a fixed environment, such a system is described
by a (classical) master equation defined by the transition rates
between its discrete states. These transitions are typically
events in which particles are produced or removed from the
population, or in which a particle of one type is converted
into another type. In biological populations they can represent
birth or death events. We are interested in cases in which such
a population is coupled to an external environment, which also
takes discrete states. The environmental states in turn affect
the transition rates within the population.

Our aim is to study the reduced dynamics of such sys-
tems after the environmental dynamics are integrated out. In
particular, we focus on the limit in which the environmental
dynamics are fast compared to those of the population, but
where the separation of timescales is not infinite. We ask
what the reduced dynamics looks like, if and how it can
be interpreted, and how one might go about simulating it
efficiently. In the following paper [31] we build on these
results and carry out expansions of the reduced dynamics for
weak intrinsic and environmental noise.

The remainder of the paper is organized as follows. In
Sec. II we introduce the type of model we address, a classical
stochastic system with discrete states coupled to an external
environment, also with discrete states. We derive an effec-
tive master equation in the limit of fast timescales of the
environmental switching; specifically, our analysis includes
next-order corrections to the adiabatic limit of infinitely fast
environments. In Sec. III we focus on the case of two envi-
ronmental states and use a simple example of a population
with two species and two environmental states to illustrate the
reduced dynamics. We show how negative transition “rates”
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can arise in the reduced master equation. Section IV then
focuses on the analysis of this reduced master equation in
continuous time. We show that negative solutions can result
at short timescales for a certain initial condition. We comment
on the origin of these unphysical transients and demonstrate
that the reduced master equation can nevertheless describe
stationary distributions at long times with more accuracy than
the dynamics in the adiabatic limit. In Sec. V we provide a
physical interpretation of the reduced dynamics in discrete
time. Specifically we show that a discrete-time process with
reaction rates drawn from a Gaussian distribution at each time
step can capture dynamical features of the full dynamics of the
system and environment. In Sec. VI we establish a criterion
for the occurrence of negative rates for models in which the
environmental dynamics has two states and is independent
of the state of the population. We summarize our results
in Sec. VII and discuss their relevance and future lines of
research which follow on from the work presented here.

II. GENERAL DEFINITIONS AND REDUCED
MASTER EQUATION

A. Model

We focus on a classical system with discrete states, labeled
�, which is coupled to an environment also taking discrete
states, which we label σ . The system and the environment
evolve in continuous time. The dynamics of the system itself
depends on the current state of the environment. The environ-
ment in turn switches between its states, with transition rates
which can depend on the state � of the system. The combined
dynamics of system and environment is then governed by the
master equation

d

dt
p(�, σ, t ) = Mσ p(�, σ, t ) + λ

∑
σ ′

Aσ ′→σ (�)p(�, σ ′, t ),

(1)

where p(�, σ, t ) is the joint probability of finding the system
in state � and the environment in state σ at time t . The
object Mσ is an operator and determines how the state of the
system can change when the environment is in state σ . More
specifically, the effect of the operator can be written in the
form

Mσ p(�, σ, t ) ≡
∑
�′

R(σ )
�′→� p(�′, σ, t ). (2)

The matrix element R(σ )
�′→� describes the rate at which the sys-

tem transitions from state �′ to state � when the environment is
in state σ . For a chemical reaction system, the types of allowed
transitions are specified by the stoichiometric coefficients;
together with associated reaction rates, these determine the
transition matrix. In the context of population dynamics the
matrix R(σ )

�′→� is defined by the underlying birth and death
processes (see, e.g., Refs. [32,33]).

The second term in Eq. (1), proportional to λ, characterizes
the environmental switching. The rate with which the envi-
ronment transitions from state σ to state σ ′ is λAσ→σ ′ (�).
In the most general setup, these can depend on the state
� of the system. We write λA(�) for the corresponding
transition matrix. The prefactor λ > 0 has been introduced

to parametrize the timescale of the environment, relative to
the internal dynamics of the population. To fix the diagonal
elements of both transition matrices, we use the convention
R(σ )

�→� = −∑
�′ �=� R(σ )

�→�′ and Aσ→σ (�) = −∑
σ ′ �=σ Aσ→σ ′ (�).

We introduce the notation �(�, t ) = ∑
σ p(�, σ, t ) for the

marginal of the probability distribution after integrating out
the environment. The general objective of this paper is to
study the time evolution of this marginal distribution in the
limit of fast-switching environments λ � 1.

B. Simplification in the adiabatic limit

We first consider the so-called adiabatic limit of infinitely
fast environmental switching λ → ∞. In this limit and similar
to [25], we find, from Eq. (1),∑

σ ′
Aσ ′→σ (�)p(�, σ ′, t ) = 0 (3)

for all �. Writing the joint distribution p(�, σ, t ) in terms of
the marginal �(�, t ) and a conditional probability ρ(σ |�, t ),
we have p(�, σ, t ) = ρ(σ |�, t )�(�, t ). Substituting this into
Eq. (3) we find ∑

σ ′
Aσ ′→σ (�)ρ∗(σ ′|�) = 0, (4)

for all �, for the stationary distribution of the environment
conditioned on the state of the system. We label this stationary
distribution by an asterisk. In the adiabatic limit we then have

p(�, σ, t ) = ρ∗(σ |�)�(�, t ). (5)

We will use this relation as a starting point for further analysis;
in the course of this analysis we also obtain the reduced
dynamics for �(�, t ) in the adiabatic limit.

C. Reduced master equation for large but
finite separation of timescales

Our next aim is to derive reduced dynamics in the limit
of fast environmental switching, but keeping the timescale
separation finite (i.e., λ large, but finite). Specifically, the ob-
jective is to derive a closed equation for the time evolution of
the distribution of states �(�, t ). This is done by performing
an expansion of the joint master equation for the system and
environment in powers of the timescale separation λ−1. We
then retain the leading and subleading terms and integrate
out the environment. The algebraic steps are similar to those
in Ref. [25], in which the authors work in the context of
piecewise-deterministic Markov processes. We carry out the
calculation starting from a system with discrete states �. As we
will see below, this leads to interesting features of the reduced
dynamics, not necessarily seen for continuous states.

To separate leading-order terms from subleading contribu-
tions we start with the decomposition

p(�, σ, t ) = ρ∗(σ |�)�(�, t ) + 1

λ
wσ (�, t ). (6)

The term wσ (�, t ) describes deviations from the adiabatic
limit [Eq. (5)], due to a finite timescale of the environment. It
includes corrections of order λ−1 and higher, i.e., wσ (�, t ) is
in itself a power series. Because of normalization, this ansatz
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requires
∑

σ wσ (�, t ) = 0 for all �. We proceed by inserting
Eq. (6) into Eq. (1) and obtain

ρ∗(σ |�)
d

dt
�(�, t ) + 1

λ

d

dt
wσ (�, t )

= Mσ [ρ∗(σ |�)�(�, t )] +
∑
σ ′

Aσ ′→σ (�)wσ ′ (�, t )

+ 1

λ
Mσwσ (�, t ), (7)

where one further term has been eliminated using Eq. (4).
Next we sum over the environmental states σ for each �. We
find

d

dt
�(�, t ) =

∑
σ

Mσ [ρ∗(σ |�)�(�, t )] + 1

λ

∑
σ

Mσwσ (�, t ).

(8)

Once the wσ (�, t ) are expressed in terms of �(�, t ), this
equation describes the time evolution of �(�, t ), valid to
subleading order in λ−1.

To find the leading contribution to wσ (�, t ) we collect the
terms of order (1/λ)0 in Eq. (7),∑

σ ′
Aσ ′→σ (�)wσ ′ (�, t ) = ρ∗(σ |�)

∑
σ ′

Mσ ′ [ρ∗(σ ′|�)�(�, t )]

− Mσ [ρ∗(σ |�)�(�, t )], (9)

where we have used Eq. (8) to further simplify the result.
Effectively, we have disregarded terms of order λ−1 in Eq. (7).
This procedure indicates that the wσ (�, t ) are to be obtained
as the solution of Eq. (9), subject to

∑
σ wσ (�, t ) = 0 for

all � and t . The truncation of higher-order terms leads to
an error in Eq. (9) of order λ−1. We note that in specific
cases master equations for the system can be obtained in
closed form without truncation (examples can be found in
Refs. [34,35]). These usually rely on specific properties of
the model, such as linearity. Equations (8) and (9), while
constituting an approximation to subleading order in λ−1, hold
more generally; we have not made significant restrictions on
the dynamics of the system (i.e., on the operators Mσ ). For
example, the approach can be used for population dynamics
defined by birth and death processes, and with an arbitrary
number of species. It can also be applied to spatially extended
or networked systems.

III. TWO ENVIRONMENTAL STATES: REDUCED
MASTER EQUATION AND BASIC EXAMPLE

A. Environmental dynamics independent
of the state of the system

We now make a simplifying assumption and consider
the case in which the environmental switching dynamics is
independent of the state of the population. That is to say,
the transition rate matrix Aσ→σ ′ does not depend on �. In
this case, the stationary distribution of the environment in the
adiabatic limit is independent of the state of population, i.e.,
ρ∗(σ |�) = ρ∗

σ . The more general case is discussed further in
Appendix A and also in a further example in [31].

In this simplified case the dynamics in the adiabatic limit
is given by

d

dt
�(�, t ) = Mavg�(�, t ), (10)

where Mavg = ∑
σ ′ ρ∗

σ ′Mσ ′ is an effective average operator.
Equation (10) is obtained from Eq. (8) by sending λ → ∞
and using ρ∗(σ |�) = ρ∗

σ . Equation (9), on the other hand,
reduces to∑

σ ′
Aσ ′→σwσ ′ (�, t ) = ρ∗

σ [Mavg − Mσ ]�(�, t ). (11)

While the above procedure applies to an arbitrary number
of discrete environmental states, it is useful to look at the case
of two states, which we label σ = 0 and σ = 1. We then have
w0(�, t ) = −w1(�, t ) for all � and t . To shorten the notation,
we write k0 and k1 for the switching rates A1→0 and A0→1,
respectively. In the adiabatic limit, the probabilities of finding
the environment in each of its two states are then given by

ρ∗
0 = k0

k0 + k1
, ρ∗

1 = k1

k0 + k1
. (12)

From Eq. (11) we obtain

wσ (�, t ) = kσ

(k0 + k1)2
[Mσ − Mavg]�(�, t ). (13)

Substituting in Eq. (8) and simplifying, we arrive at

d

dt
�(�, t ) = Mavg�(�, t ) + 1

2

θ2

λ
(M0 − M1)2�(�, t ),

(14)

where

θ2 = 2k0k1

(k0 + k1)3
. (15)

For systems with two environmental states and with
population-independent environmental switching, Eq. (14) is
a general result approximating the dynamics in the limit of
fast switching. It captures the time evolution of �(�, t ) up to
and including subleading terms in λ−1. We discuss limitations
to its physical interpretation below. Despite these limitations,
we will refer to Eq. (14) (and its analog for more complicated
setups) as a reduced master equation. An expression similar
to Eq. (14) was derived in Ref. [25] for systems with continu-
ous states. We note that (M0 − M1)2 = (M2

0 − 1) + (M2
1 −

1) − (M0M1 − 1) − (M1M0 − 1), indicating that Eq. (14)
preserves total probability, i.e., d

dt

∑
� �(�, t ) = 0.

B. Example: Population with two species

1. Reduced dynamics

We next consider a specific example. This will help reveal
a number of interesting features which can emerge in the
reduced dynamics.

The example describes a population with two types of
particles, labeled A and B. Particles of either type are removed
with constant per capita rates γ and δ, respectively, and are
created with rates 
ασ and 
βσ . These production rates
depend on the state of the environment, as indicated by the
subscript. The population takes states � = (nA, nB), where nA
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is the number of particles of type A and nB the number of
particles of type B. We then have operators

Mσ = 
ασ

(
E−1

A − 1
) + γ (EA − 1)nA

+ 
βσ

(
E−1

B − 1
) + δ(EB − 1)nB, (16)

where EA f (nA, nB) = f (nA + 1, nB) and similarly for EB. The
switching between environmental states is the same as in the
preceding section. Using Eq. (14) we find, to subleading order
in λ−1,

d

dt
� = γ (EA − 1)nA� + δ(EB − 1)nB�

+ 
αeff
(
E−1

A − 1
)
� + 
βeff

(
E−1

B − 1
)
�

+ 
2θ2

2λ
(α)2

(
E−2

A − 1
)
�

+ 
2θ2

2λ
(β )2

(
E−2

B − 1
)
�

+ 
2θ2

λ
αβ

(
E−1

A E−1
B − 1

)
�, (17)

where α ≡ α0 − α1, β ≡ β0 − β1, and

αeff = αavg − 
θ2

λ
(α)2 − 
θ2

λ
αβ,

βeff = βavg − 
θ2

λ
(β )2 − 
θ2

λ
αβ. (18)

The quantity αavg is given by αavg = (k0α0 + k1α1)/(k0 + k1)
and similar for βavg. We have suppressed the explicit depen-
dence of � on nA, nB, and t to keep the notation compact.

We can interpret the reduced master equation as a set
of reactions. The first two terms on the right-hand side of
Eq. (17) describe particle removal, present already in the orig-
inal model and independent of the state of the environment.
The terms in the second line are birth reactions, as appeared
originally in the model. They describe the production of single
particles of type A or B. These reactions now occur with
effective birth rates, indicated in Eq. (18). For a given set
of model parameters these effective rates αeff and βeff are
non-negative, provided the switching is fast enough. Given
that the reduced dynamics is derived in the limit λ � 1, we
always assume that the timescale separation λ is large enough
so that αeff , βeff � 0.

The remaining terms in Eq. (17) represent reactions which
are not present in the original model; they arise from the ef-
fects of integrating out the environment. These terms represent
bursting reactions; they describe events in which two particles
of type A are produced simultaneously, or two particles of
type B, or one of either type. This is illustrated in Fig. 1.
Figure 1(a) is a schematic showing the four states that the
population can reach from a given state in the next event in the
original model. Figure 1(b) shows that the reduced dynamics
allows three additional destinations (indicated by gray dashed
arrows). The rates of the first two bursting reactions in Eq. (17)
are proportional to (α)2 and (β )2 and are always positive
[lines three and four on the right-hand side of Eq. (17)]. The
rate of the third bursting reaction [last term on the right-hand
side of Eq. (17)] is positive only if α and β have the same

(b)

nA

(a)

nB

FIG. 1. Illustration of the possible reactions for (a) the model
described by Eq. (16) and (b) the approximation to the model de-
scribed by Eq. (17). In the original model the next event can take the
population from (nA, nB ) to four possible destinations (nA ± 1, nB )
and (nA, nB ± 1). The bursting reactions in the reduced model lead
to further states which can be reached, indicated by gray dashed
arrows; these are (nA + 2, nB ), (nA, nB + 2), and (nA + 1, nB + 1).
For certain choices of parameters the transition to (nA + 1, nB + 1)
can have a negative rate. In this case the flow of probability is from
(nA + 1, nB + 1) to (nA, nB ) as indicated by the red dotted arrow; see
Sec. IV A for details.

sign. We therefore distinguish between the cases αβ > 0
and αβ < 0.

2. Positive correlation between the species

In the case αβ > 0, the correlations between nA and
nB are positive. There is one state of the environment which
favors both species, i.e., they each have a higher birth rate in
this environmental state than in the other. All rates in Eq. (17)
are positive (provided λ is sufficiently large so that αeff , βeff �
0). There is then a clear and unique way of interpreting this
master equation as a continuous-time Markov process. The
events described by the various terms are as above: single
deaths, single births, and bursting reactions in which two
particles are produced. The notion of sample paths is well
defined; they can be generated using the standard Gillespie
algorithm [36,37].

Some support for the validity of the reduced master equa-
tion in describing stationary states is given in Figs. 2(a)–2(c).
In Fig. 2(a) we show the stationary distribution obtained from
numerically integrating the full master equation (1), i.e., from
the full dynamics of population and environment. This is for
the case αβ > 0. Figure 2(b) shows the corresponding
distribution from numerical integration of the reduced master
equation (17). In Fig. 2(c) we have taken the adiabatic limit
λ → ∞. In each case the numerical integration is carried out
using a Runge-Kutta scheme. The reduced dynamics capture
the correlations between nA and nB in the original model; this
correlation is no longer seen in the adiabatic approximation.
Figure 2(d) shows the marginal distribution for the quantity
nA + nB to allow better comparison.

These observations lead to the following physical picture.
In the case of infinitely fast environments (adiabatic limit) the
noise from the environmental process is entirely neglected,
resulting in a narrower stationary distribution [Fig. 2(d)]. In
addition, our analysis shows that the environmental process
introduces a positive correlation between nA and nB. This
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FIG. 2. Stationary distribution of the model defined in Sec. III B [see Eq. (16)] for (a)–(d) αβ > 0 and (e)–(h) αβ < 0. The
distributions are obtained by numerical integration of (a) and (e) the full master equation with explicit environment, (b) and (f) the reduced
master (17), and (c) and (g) the adiabatic approximation. Also shown are the marginal distribution of (d) nA + nB and (h) nA − nB. Markers
labeled SSA in (h) are from the stochastic simulation algorithm described in Appendix B 1. The parameters are (a)–(d) α0 = 0, α1 = 1, β0 = 0,
and β1 = 1 and (e)–(h) α0 = 0, α1 = 1, β0 = 1, and β1 = 0. The remaining parameters are 
 = 20, λ = 20, and k0 = k1 = 1.

correlation is lost in the limit of infinitely fast environmental
switching.

3. Anticorrelations and negative transition rates

When α and β have opposite signs, the interpretation
of Eq. (17) presents an interesting feature. In this situation the
(pseudo)rate of the last reaction (
2θ2/λ)αβ is negative,
irrespective of the value of λ. The interpretation of this term is
then not clear a priori and Eq. (17) is not a master equation in
the usual sense. We will nevertheless refer to it as the reduced
master equation; a prefix “pseudo” or quotation marks are
implied. Similarly, we will continue to speak of rates, even
if these are negative. From Eq. (17) it is clear that negative
rates of this type are present in this example if and only if
αβ < 0.

We discuss the interpretation and limitations of the master
equation with negative rates in the next section.

IV. INTERPRETATION OF NEGATIVE RATES:
CONTINUOUS TIME

A. Flow of probability and renormalized reaction rates

In order to better understand a master equation with nega-
tive rates, we focus on a pair of states, which we label � and
�′, and on a single reaction of type � → �′ occurring with
a rate R�→�′ . In the specific example above one would have
� = (nA, nB) and �′ = (nA + 1, nB + 1). The corresponding
terms in the master equation are then

d

dt
�(�, t ) = −R�→�′�(�, t ), (19a)

d

dt
�(�′, t ) = R�→�′�(�, t ). (19b)

In conventional cases the rate is positive, R�→�′ > 0. The
master equation then describes a non-negative probability
flow R�→�′ �(�) from � to �′ [we suppress the time depen-
dence of �(�) for convenience].

For R�→�′ < 0, the flow of probability per unit time in
Eqs. (19) is |R�→�′ | �(�) � 0 from �′ to �. This is different
from the situation in conventional Markovian systems. The
flow is directed from �′ to �, but proportional to the probability
already present at �. This is illustrated for the two-species
model by the red arrow from (nA + 1, nB + 1) to (nA, bN )
in Fig. 1. Furthermore, the magnitude of this flow does not
depend on �(�′). Instead it is proportional to �(�), the proba-
bility of the state toward which the flow is directed. In making
this argument, we have assumed �(�) � 0. This assumption
is not always justified in master equations with negative rates
(discussed below). However, the above argument holds more
generally: A negative value of R�→�′ �(�) indicates a positive
probability flux |R�→�′ �(�)| from �′ to �.

An approach to renormalizing master equations with neg-
ative rates has been proposed in Refs. [38,39] in the context
of open quantum systems. We illustrate this using Eqs. (19),
assuming again R�→�′ < 0. For �(�′) > 0 we define the renor-
malized transition rate

T�′→�(t ) ≡ �(�, t )

�(�′, t )
|R�→�′ |. (20)

The master equation (19) can be then written as

d

dt
�(�, t ) = T�′→�(t )�(�′, t ), (21a)

d

dt
�(�′, t ) = −T�′→�(t )�(�′, t ). (21b)

Equations (21) then resemble a more traditional master equa-
tion and T�′→� is the rate for transitions from �′ to �. How-
ever, this rate depends on the probability distribution �; in
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0 0.05 0.1 0.15 0.2
 t

-0.05

0

0.05

0.1

0.15

0.2

0.25
Π(9,9,t )
Π(10,10,t )
Π(11,11,t )

FIG. 3. Time evolution of several entries �(nA, nB, t ) for the
example defined in Sec. III B. The solid lines show results from
integrating the reduced master equation (17), starting from a δ

distribution �(nA, nB, t = 0) = δnA,10δnB,10. Markers are from the
numerical simulation scheme described in Appendix B 2. The model
parameters are α0 = 0, α1 = 1, β0 = 1, β1 = 0, 
 = 20, λ = 20, and
k0 = k1 = 1.

particular T�′→� is a function of �(�). This indicates non-
Markovian properties [20,38,39]. The renormalized reaction
rates can be used to adapt Gillespie’s simulation algorithm for
the generation of sample paths of stochastic systems [36,37].
We describe these adaptations in Appendix B 1. We have
tested the resulting algorithm on the two-species example with
αβ < 0 and, as seen in Fig. 2(h), it captures the anticorre-
lation of nA and nB in the stationary distribution. However,
the algorithm does not reproduce all dynamical features of
the original dynamics of the system and environment (see
Appendix B 1). A separate sampling algorithm is described in
Appendix B 2. This method simulates the solution of reduced
master equations (including those with negative rates), but it
does not attempt to generate sample paths.

B. Lack of positivity in initial transients

The reduced master equation (8) preserves overall proba-
bility, in the sense that

∑
�

d�(�,t )
dt = 0. However, if a negative

rate is present, one can always find initial conditions so that
negative solutions result at short times. Assume, for example,
that R�→�′ < 0 for a particular pair of states � and �′. We now
choose the initial condition �(�, t = 0) = 1 and vanishing
initial probability for all other states. From Eq. (19) we
then see that d�(�,0)

dt = −R�→�′ > 0 and d�(�′,0)
dt = R�→�′ < 0.

Thus, �(�′, t ) will go negative.
We have verified this by numerically integrating the re-

duced master equation (17). For example, if the initial con-
dition is chosen as a δ peak concentrated on one state � =
(nA, nB), the numerical solution for �(nA + 1, nB + 1) is neg-
ative for a limited time as shown in Fig. 3. We analyze this
further in Fig. 4, where we show the duration t∗ of the initial
transient in which negative probabilities are accumulated. The
data suggest that this time window is limited to a duration of
order λ−1.

It is not surprising that Eq. (17) should become unphysical
on short timescales. The typical time between switches of
the environmental state is of order λ−1 and the reduced dy-
namics was derived by integrating out the fast environmental
dynamics. We cannot expect Eq. (17) to resolve the physics
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FIG. 4. Timescale t∗ over which negative probabilities are accu-
mulated. Specifically, t∗ is the time at which the sum of all negative
entries in � has maximal magnitude; data are from numerical
integration of Eq. (17). The solid line is a guide and corresponds
to t∗ ∝ 1/λ. The parameters and initial condition are the same as in
Fig. 3.

of the problem on timescales shorter than order λ−1, as then
the detailed mechanics of the environment become important.
We note that negative transients have been observed before
in reduced dynamics for open classical and quantum systems
[40–43].

We have verified that the appearance of transient negative
solutions can be cured by first integrating the full master
equation describing the population and the environment for
a short period of time and then subsequently changing to
the reduced master equation (17). Alternatively, the reduced
dynamics can be started from “slipped” initial conditions
[40,42].

Parallels can be drawn between the occurrence of negative
transients in reduced master equations and the well-known
Pawula theorem for Kramers-Moyal expansions [44,45]. This
theorem shows that carrying out a Kramers-Moyal expansion
on a discrete stochastic system only produces physical results
for the dynamics if the expansion truncated after terms of
order one (resulting in a Liouville equation describing the
deterministic flow in the limit of infinite populations) or of
order two (resulting in a Fokker-Planck equation describing
the diffusion approximation of the individual-based model).
Truncation at any higher order can lead to negative transients.
This does not, however, imply that such expansions are of
no use. On the contrary, outside the initial transient a trun-
cation to order n � 3 of the Kramers-Moyal expansion can
produce better agreement with the probability distribution of
the system that is being approximated than the traditional
Fokker-Planck truncation (n = 2) (see Ref. [45] for details
and examples). Even though the expansion may lead to un-
physical results at short times, it may still be valuable at long
times, for example, to calculate stationary distributions.

We have tested this for the model with two types of parti-
cles defined in Sec. III B. The stationary distribution obtained
from numerical integration of the reduced master equation
(17) for αβ < 0 captures the negative correlation of nA

and nB in the original dynamics. This can be seen in Figs. 2(e)
and 2(f). Working in the adiabatic limit, however, one finds
significant deviations [Figs. 2(g) and 2(h)].
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V. INTERPRETATION IN DISCRETE TIME

The results of the preceding section indicate that the re-
duced master equation containing negative transition rates
does not have a physical interpretation at short timescales.
Solutions can go negative at short times, and as a consequence
reduced master equations with negative rates do not describe
the statistics of a continuous-time stochastic processes. In this
section we show that a valid physical reduced dynamics can
be formulated for discrete time steps. To do this we look at the
full dynamics of the system and environment in discrete time
and provide an interpretation of the reduced dynamics at the
level of discrete-time sample paths.

A. Effective time-averaged reaction rates

We focus again on the two-species example given in
Sec. III. An interpretation of the terms in Eq. (17) can be
obtained by looking at one sample path of the full model (pop-
ulation and environment) for a time interval I ≡ [t0, t0 + t].
We focus on the birth reactions. If the production rate 
α of
particles of type A were constant in time, the number of birth
events in the interval would be a Poissonian random variable
with parameter 
αt and similarly for particles of type B
(see also Ref. [46]). In the present model, the production rates
are not constant as they depend on the time-dependent state of
the environment. For a given trajectory of the environment we
introduce the quantity

α = 1

t

∫ t0+t

t0

dt ′ασ (t ′ ) (22)

and a similar definition for β; the quantities 
α and 
β are
time-averaged production rates in the time interval I .

We note that α and β are random variables when t is
finite, as they depend on the random path of the environment,
σ (t ′), t ′ ∈ I . We suppress the dependence of α and β on t0
in our notation. The quantities α and β will in general be
correlated, as they derive from the same realization of the
environment. The main principle of the calculation that fol-
lows is to approximate α and β as correlated Gaussian random
variables, while capturing their first and second moments.
This Gaussian approximation is justified provided that there
is a large number of switches of the environment during the
time interval I , i.e., when λt � 1. The number of production
events of particles of type A in I can then be expected to be
Poissonian with parameter 
αt and similarly for B.

B. Averaging out the environmental process

Correlations of the environmental process decay on
timescales proportional to λ−1. This means that the envi-
ronment is in its stationary distribution, except for a short
period of order λ−1 at the beginning. For λt � 1 this period
constitutes a negligibly small fraction of the time interval,
and the distribution of σ (t ′) can hence be assumed to be
the stationary one at all times t ′ during the interval. Writing
〈· · ·〉 for averages over the environmental process we have
〈α〉 = αavg and 〈β〉 = βavg.

For the second moment of α we find

〈α2〉 = (t )−2
∫

I

∫
I

dt dt ′〈ασ (t )ασ (t ′ )〉,

= (t )−2
∑
σσ ′

ασασ ′

∫
I

∫
I

dt dt ′ρ[σ, min(t, t ′)]

× ρ(σ ′, |t − t ′||σ ), (23)

where ρ[σ, min(t, t ′)] is the probability distribution of σ at the
earlier of the two times t and t ′. It is given by the stationary
distribution of the environment, ρ[σ, min(t, t ′)] = ρ∗

σ , with
ρ∗

σ as in Eq. (12). The notation ρ(σ ′, τ |σ ) in Eq. (23) indicates
the probability of finding the environment in state σ ′ if τ units
of time earlier it was in state σ (τ > 0). These can be ob-
tained straightforwardly from the asymmetric telegraph pro-
cess for the environment, ρ(0, τ |0) = ρ∗

0 [1 + k1
k0

e−λ(k0+k1 )τ ],

and ρ(0, τ |1) = ρ∗
0 [1 − e−λ(k0+k1 )τ ]. Using this in Eq. (23) we

find

〈α2〉 = α2
avg +

[
2

λ(k0 + k1)t
+ 2

λ2(k0 + k1)2t2

× (e−λ(k0+k1 )t − 1)

]
k0k1

(k0 + k1)2
(α0 − α1)2. (24)

For λt � 1 the first term in the square brackets dominates
relative to the second, so we can approximate

〈α2〉 − α2
avg ≈ θ2

λt
(α)2, (25a)

with θ2 = 2k0k1/(k0 + k1)3 as before [see Eq. (15)]. Follow-
ing similar steps one finds

〈β2〉 − β2
avg ≈ θ2

λt
(β )2, (25b)

〈αβ〉 − αavgβavg ≈ θ2

λt
αβ. (25c)

We therefore approximate the joint probability distribution
of ᾱ and β̄ in the fast-switching limit as a bivariate normal
distribution with these parameters.

C. Resulting event statistics

The probability that exactly mA production events for
species A occur during the time interval t , and mB for species
B, is given by

P(mA, mB) = 〈e−t
(α+β ) (t
α)mA

mA!

(t
β )mB

mB!
〉α,β, (26)

resulting from Poissonian statistics for given α, β, subse-
quently averaged over the Gaussian distribution for α and β

(this average is indicated as 〈· · ·〉α,β ). Expanding in powers of
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t , and carrying out the Gaussian average we find

P(mA = 1, mB = 0) = t


[
αavg − 
θ2

λ
(α)2 − 
θ2

λ
αβ

]
− t2
2(α2

avg + β2
avg

)
,

P(mA = 0, mB = 1) = t


[
βavg − 
θ2

λ
(β )2 − 
θ2

λ
αβ

]
− t2
2

(
α2

avg + β2
avg

)
,

P(mA = 2, mB = 0) = 1

2
t


2θ2

λ
(α)2 + 1

2
t2
2α2

avg,

P(mA = 0, mB = 2) = 1

2
t


θ2

λ
(β )2 + 1

2
t2
2β2

avg,

P(mA = 1, mB = 1) = 
2θ2

λ
tαβ + t2
2αavgβavg, (27)

where we have ignored higher-order terms (those which go
like t3 or t2/λ). Larger numbers of production events
(mA + mB � 3) do not contribute at this order.

It is tempting to consider the limit of infinitesimally small
t , and to use the first-order terms in t in Eq. (27) to
construct reaction rates. If one does so, one recovers the rates
exactly as they appear in the reduced master equation (17);
for example, one would infer a rate of 1

2 (
2θ2/λ)(α)2 for
events in which two particles of type A are produced and
none of type B (mA = 2 and mB = 0). The rate of an event
in which one A and one B are produced simultaneously would
be (
2θ2/λ)αβ, which is negative if αβ < 0.

However, taking the limit t → 0 at fixed λ is not compat-
ible with the assumption that a large number of environmental
switching events occur in a given time step, i.e., λt � 1.
To illustrate this we carried out simulations of the full model
of population and environment, and measured how many
birth events of either particle type occur in a typical time
interval of length t . Specifically we focus on the probability
P(mA = 1, mB = 1) of seeing exactly one birth event of type
A and one birth event of type B during such a time interval;
note that in the full model these births occur in two separate
events. Results are shown in Fig. 5. The solid lines show the
predictions of Eqs. (27), results from simulations of the full
model are shown as markers. We first notice that simulations
deviate from the results of Eqs. (27) at large values of t .
This is to be expected as Eqs. (27) are derived neglecting

FIG. 5. Probability of seeing mA = 1 and mB = 1 in a given time
interval of duration t . Circles show the results of simulation of the
full model (population and environment); solid lines show Eq. (27).
The dashed line shows a slope of 2 for comparison. Data are shown
for different values of λ; all other model parameters are as in the
earlier figures. Here (a) αβ > 0 and (b) αβ < 0.

higher-order terms in t . Simulations and the above expres-
sions agree to good accuracy at intermediate values of the
time step; we write t∗ for the lower end of this range, and
t∗ for the upper end. As seen in Fig. 5, the lower threshold
t∗ decreases as the switching of the environment becomes
faster (i.e., λ is increased). The reduction of the threshold is in
line with the requirement λt � 1 for the theoretical analysis
above.

When the predictions of Eqs. (27) for P(mA = 1, mB = 1)
match simulations of the full model they are largely deter-
mined by the term of order t2, see again Fig. 5 (the slope
of the simulation data in the log-log plot is then approx-
imately two as indicated by the dashed lines). This term,
t2
2αavgβavg, is positive, irrespective of the sign of αβ.
At low values of t � t∗, we observe systematic deviations
between simulations of the full model and the expressions in
Eqs. (27). For the case αβ < 0 it is obvious that this must
occur: at small t , Eqs. (27) predict P(mA = 1, mB = 1) ≈
(
2θ2/λ)tαβ < 0, whereas P(mA = 1, mB = 1) is non-
negative in simulations by definition. Deviations at small
time steps are also seen when αβ > 0 [see Fig. 5(a)].
The expression in Eqs. (27) shows a crossover to linear
scaling in t , whereas simulation results scale approximately
as t2.

The construction in this section confirms the limitations of
the reduced master equation when negative rates are present.
Some of the expressions in Eq. (27) become unphysical at
short timescales, just like the transient solutions of the reduced
master equation. This is due to the expansion used when
going from Eq. (24) to Eq. (25), where we explicitly assumed
λt � 1. At the same time, the discrete-time approach re-
veals that a physically meaningful reduced process can be
defined provided t is not too small. We use this to describe a
concrete algorithm for the simulation of discrete-time sample
paths in the next section.

D. Simulation procedure for discrete-time sample paths

The analysis of the preceding section is based on a dis-
cretization of time into intervals of length t . In the limit
of fast switching of the environment it then assumes that the
time-averaged birth rates 
α and 
β are Gaussian random
variables with statistics given in Eqs. (25). We will now
use this interpretation to define an algorithm with which to
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approximate sample paths of the full model in discrete time.
We note that α and β can take negative values in this Gaussian
approximation. This issue arises irrespective of the sign of
αβ and is separate from the problem of negative rates in
the reduced master equation. The probability for α and/or β

to be negative is exponentially suppressed in λt , as the mean
of the Gaussian distribution, (αavg, βavg), does not depend
on λ or t , and the covariance matrix is of order (λt )−1

[Eq. (25)]. As the switching of the environment becomes
faster the distributions of α and β become increasingly peaked
around their mean. For the purposes of the numerical scheme
we truncate the distribution at zero.

The algorithm uses ideas from the τ -leaping variant of the
Gillespie algorithm [46], and proceeds as follows:

(1) Assume the simulation has reached time t and that
the current particle numbers are nA and nB. Draw correlated
Gaussian random numbers α and β, from a distribution with
〈α〉 = αavg, and 〈β〉 = βavg, and with second moments as in
Eqs. (25). If α < 0 set α = 0 and similarly for β.

(2) Using the α and β just generated, draw independent
integer random numbers mA and mB from Poissonian distribu-
tions with parameters 
αt and 
βt , respectively.

(3) For the death processes draw Poissonian random vari-
ables m′

A and m′
B from Poissonian distributions with parame-

ters γ nAt and δnBt , respectively.
(4) Update the particle numbers to nA + mA − m′

A and nB +
mB − m′

B, respectively (if this results in nA < 0 set nA = 0 and
similarly for nB).

(5) Increment time by t and go to 1.
We have introduced a cutoff procedure in step 4, in order

to prevent particle numbers from going negative. This is
necessary due to the discrete-time nature of the process, and
well-known in the context of τ leaping [46]. In particular,
this is not related to the appearance of negative rates in the
reduced master equation, and applies in the case αβ > 0
as well.

We have carried out simulations using this algorithm for
both cases αβ > 0 and αβ < 0. To test whether
the algorithm captures dynamical properties of sample paths
we have measured the power spectral density SAA(ω) =
〈|n̂A(ω)|2〉, where n̂A(ω) is the Fourier transform of the ran-
dom process nA(t ). Similarly, we also look at the cross power
spectral density SAB(ω) = 〈n̂†

A(ω)n̂B(ω)〉 (the dagger super-
script denotes complex conjugation). These are the Fourier
transforms of the autocorrelation and cross-correlation func-
tions respectively.

As shown in Fig. 6 the resulting spectra of fluctuations
are in agreement with those of the full model, at least to rea-
sonable approximation. We attribute remaining discrepancies
to the discretization of time and the assumption of Gaussian
effective birth rates.

It is important to stress that agreement with the full model
requires a careful choice of the time step t . On the one hand,
one needs t � 1/λ, otherwise it is not justified to replace
α and β by Gaussian random variables. On the other hand,
the so-called leap condition for τ leaping must be fulfilled
[46], that is, the time step t must not be long enough for the
population to change significantly in one step. More precisely
the changes in particle numbers must remain of order 
0 in
each step.
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FIG. 6. Spectra of fluctuations from direct simulations of the
full model (closed symbols) and using the discrete-time algorithm
in Sec. V D (open symbols). The model is the same as in previous
figures (k0 = k1 = 1, 
 = 20, λ = 20, α0 = 0, α1 = 1, and t =
0.1).

VI. CRITERION FOR THE EMERGENCE
OF NEGATIVE RATES

In the context of the example of Sec. III we have already
established that reduced master equations with positive rates
describe well-defined Markov processes. If negative rates
emerge initial conditions can always be found so that negative
solutions result at short times. It is therefore of primary
interest to establish what properties of the original system lead
to negative rates at the level of the reduced master equation.

In this section we establish a criterion for the occurrence
of negative rates in equations of the type (14). It covers the
class of processes in which the environmental dynamics has
two states, and is independent of the state of the population.
We also assume that switches of the environmental state do
not change the state of the population.

A. Model and notation

We look at a general population in which each individual is
of one of S species, labeled i = 1, . . . , S. We write ni for the
number of individuals of species i in the population, and n =
(n1, . . . , nS ). We label the different reactions that can occur in
this system by r = 1, 2, . . . , rmax. We write Rrσ (n) for the rate
with which reaction r occurs if the population is in state n and
the environment in state σ .

We also introduce stoichiometric coefficients νr,i, i.e., if a
reaction of type r occurs, the number of particles of species i
changes by νr,i. These coefficients can be positive, negative
or zero. We write νr = (νr,1, . . . , νr,S ). In other words, if a
reaction of type r occurs the state of the population changes
from n to n + νr . The operators Mσ are then given by

Mσ =
∑

r

(Eνr − 1)Rrσ (n), (28)

where we have used the notation

Eν f (n) = f (n + ν), (29)

that is to say, Eν = ∏
i E

νi
i , where Ei is the creation operator

for individuals of species i.
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B. Reduced master equation

The operator on the right-hand side of the reduced master
equation (14) is of the form

Mred = Mavg + 1

2

θ2

λ
(M0 − M1)2, (30)

where Mavg = ∑
r (Eνr − 1)Rr,avg(n). After some algebra we

find, for the current system,

Mred =
∑

r

(Eνr − 1)Rr,eff (n)

+
∑

rq

(EνrEνq − 1)R(rq)(n), (31)

where we have

Rr,eff (n) = Rr,avg(n) − θ2

2λ
r (n)

∑
q

[q(n) + q(n − νr )],

R(rq) = θ2

λ
r (n − νq)q(n), (32)

with the shorthand r (n) = Rr,0(n) − Rr,1(n).
Reaction r occurs in the reduced dynamics with effective

rate Rr,eff (n). For large enough λ, these rates are always posi-
tive. Further, one has burst reactions in the reduced dynamics.
These are combinations of two original reactions r and q [see
the second term on the right-hand side of Eq. (31)]. These
reactions occur with rates R(rq)(n). The rates R(rr)(n) are
manifestly non-negative.

Always assuming that λ is sufficiently large so that the
Rr,eff (n) are all non-negative, we conclude that if all rates
R(rq)(n) are non-negative, then the reduced master equation
describes a well-defined Markov process. If this is not the
case, there exist initial conditions so that the solution of the
reduced master equation will have negative transients.

The criterion can be simplified further if the reactions
rates do not depend on n (i.e., when different particles do
not interact). The reduced master equation then guarantees
positivity if and only if all r = Rr,0 − Rr,1 have the same
sign (in the weak sense, some of the {r} may be zero). This
is the case when there is one environmental state in which all
reactions happen with a rate which is equal to or higher than in
the other environmental state, i.e., if one environmental state
speeds up all reactions compared to the other environment (or
at least it does not make them slower).

VII. SUMMARY AND CONCLUSIONS

In summary, we have studied Markovian stochastic sys-
tems with discrete states, coupled to an external environment
switching between discrete states. Our analysis focuses on the
limit in which the environmental dynamics is fast relative to
that of the system, but where the timescale separation is not
necessarily infinite. In particular, we have derived reduced dy-
namics for the open system, capturing next-order corrections
to the adiabatic limit.

The reduced master equation shows reactions which are not
present in the original dynamics. These are bursting reactions,
typically combinations of two individual reactions of the
original dynamics. In some cases negative transition rates
emerge.

We have demonstrated that negative (pseudo)probabilities
can arise in the presence of negative rates. Numerical inte-
gration of the reduced master equation further suggests that
these negative transients only occur on timescales shorter than
that of the environmental process. The reduced dynamics is
obtained by coarse graining the environmental process and as
a consequence it does not resolve the physics of the problem
on such fine timescales. Despite the unphysical transients,
the reduced master equation can be useful to characterize the
stationary distribution of the open system. It approximates this
stationary distribution better than an adiabatic approach, in
which the timescale separation is assumed to be infinite.

The emergence of bursting reactions can be understood
further by looking at the time evolution of individual sample
paths of system and environment over a finite time interval.
This leads to a discrete-time approximation for the dynamics
of the open system. The path of the environment in one
time step can be approximated by Gaussian random vari-
ables; bursting in the system results from fluctuations of this
discrete-time Gaussian process. We have used this approach to
propose a simulation method for stochastic systems coupled to
a fast-switching environment with two states.

We note that Refs. [8,10,16,23,24] use the Wentzel-
Kramers-Brillouin (WKB) method to calculate stationary dis-
tributions of populations with fast environmental dynamics.
While some dynamical properties can be derived from this
(e.g., mean first-passage times), the method is not in itself a
dynamic approach. It does not provide immediate access to
two-time objects such as correlation functions. Our approach
is different; it reduces the dynamics of the system by integrat-
ing out the environment. The result is a dynamical process.
For example, we study spectra of fluctuations in Fig. 6 (see
also Fig. 7 in Appendix B). We also note that the WKB
approach is based on a limit of large population size and that
it often requires the existence of fixed points of the limiting
deterministic model. In our derivation of the reduced master
equation we have not made these assumptions.

Negative rates can also be found in the reduced dynamics
for open quantum systems. In this context one starts from
a unitary dynamics of the system and environment [20,21].
Upon tracing out the environment a quantum master equation
with temporarily negative decay rates can result. We note
one potentially important difference between the classical
and the quantum cases; the origin of negative rates in open
quantum systems is often attributed to a two-way exchange of
information between the system and the environment [20,21].
This mechanism is not available for the two-species example
we have looked at (Sec. III). Still, the reduced master equation
for this model can have negative rates.

Our work provides several starting points for future work.
In the following paper [31] we build on the reduction tech-
nique developed herein by combining it with approximations
to the dynamics of the population itself through expansions in
the inverse system size. We describe a number of weak-noise
expansions which allow for analytical results or more efficient
simulation. The construction in Sec. V and the associated
discrete-time simulation algorithm could be extended to more
general models with multiple environmental states. This could
provide a powerful tool for the simulation of systems coupled
to fast external environments. Further, it would be interesting
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to study in more detail the analogies and differences between
the reduced dynamics for open quantum systems and for
classical systems coupled to fast environments. As a first step,
one might focus on classical systems in which the dynamics of
the environment depends on the state of the system itself and
try to characterize the information flow between the system
and environment. A separate further line of research might
focus on systems in which the environment takes continuous
states (see, e.g., Ref. [10,23,24]) and on the comparison with
the discrete case.
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APPENDIX A: STATE-DEPENDENT ENVIRONMENTAL
PROCESS

We briefly consider the case in which the transition matrix
for the environmental process depends on the state of the
system proper, i.e., Aσ→σ ′ = Aσ→σ ′ (�). From Eq. (8) we have
d

dt
�(�, t ) =

∑
σ

Mσ [ρ∗(σ |�)�(�, t )] + 1

λ

∑
σ

Mσ wσ (�, t )

(A1)

and from Eq. (9)∑
σ ′

Aσ ′→σ (�)wσ ′ (�, t )

= ρ∗(σ |�)
∑
σ ′

Mσ ′[ρ∗(σ ′|�)�(�, t )]

− Mσ [ρ∗(σ |�)�(�, t )]. (A2)

1. Adiabatic limit

It is useful to define the operators, acting on functions f (�),

M̂σ f (�) = Mσ [ρ∗(σ |�) f (�)], (A3)

where the right-hand side indicates that the operator Mσ acts
on the object inside the square brackets. In the adiabatic limit
one finds [by sending λ → ∞ in Eq. (A1)]

d

dt
�(�, t ) = M̂avg�(�, t ), (A4)

where we now have

Mavg =
∑

σ

M̂σ . (A5)

To illustrate the principle we use a population with n
individuals of a single species and a birth reaction with rate
bσ (n), which may potentially depend on n. We then have
Mσ = [E−1 − 1]bσ (n). We find

Mavg�(n, t ) = [E−1 − 1]bavg(n)�(n, t ), (A6)

where

bavg(n) =
∑

σ

ρ∗(σ |n)bσ (n). (A7)

We note that bavg(n) carries a dependence on n, even when
bσ (n) is itself independent of n.

2. Next-order contribution

We focus on the case of two environmental states, with
switching rates A1→0(�) = k0(�) and A0→1(�) = k1(�). In this
case we have ρ∗(0|�) = k0(�)/[k0(�) + k1(�)] and ρ∗(1|�) =
k1(�)/[k0(�) + k1(�)]. From Eq. (A2) we then find

w0(�, t ) = −w1(�, t ) = 1

k0(�) + k1(�)
[ρ∗(1|�)M̂0 − ρ∗(0|�)M̂1]�(�, t ). (A8)

Inserting into Eq. (A1) we have
d

dt
�(�, t ) = Mavg�(�) + 1

λ
(M0 − M1)

1

k0(�) + k1(�)
[ρ∗(1|�)M̂0 − ρ∗(0|�)M̂1]�(�, t ), (A9)

which can be written as
d

dt
�(�, t ) = Mavg�(�) + 1

λ
[M̂0ρ

∗(0|�)−1 − M̂1ρ
∗(1|�)−1]

1

k0(�) + k1(�)
[ρ∗(1|�)M̂0 − ρ∗(0|�)M̂1]�(�, t ). (A10)

While this object is quite lengthy, it formally describes the
reduced dynamics to subleading order in 1/λ and can be used
for further analysis.

APPENDIX B: CONTINUOUS-TIME SIMULATION
ALGORITHMS FOR REDUCED MASTER EQUATIONS

WITH NEGATIVE RATES

1. Path-level simulation

a. Description of the simulation algorithm

A stochastic simulation algorithm was discussed in
Ref. [38] for non-Markovian jumps in quantum systems.

This method simulates processes defined by quantum master
equations with temporarily negative decay rates. The central
idea is to represent the solution of the master equation by an
ensemble of sample paths, which are generated in parallel.
In contrast with standard methods [36,37], these paths are
correlated with each other.

We have adapted the algorithm to the case of the classical
master equation

d

dt
�(�, t ) =

∑
�′

R�′→��(�′, t ), (B1)
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FIG. 7. Spectra of fluctuations for the model defined in Sec. III B for (a) and (b) αβ > 0 and (c) and (d) αβ < 0. We show (a) and
(c) the power spectral density SAA(ω) and (b) and (d) the cross spectral density SAB(ω); the insets show the same quantities on a logarithmic
scale. The parameters are α0 = 0, α1 = 1, λk0 = λk1 = 20, 
 = 20, and (a) and (b) β0 = 0 and β1 = 1 and (c) and (d) β0 = 1 and β1 = 0.

where some of the rates R�′→� may be negative. The algorithm
uses Eqs. (20) and (21) to convert reactions with negative
rates into reactions in the opposite direction and with positive
renormalized rates. In order to do this we need the entries of
the probability distribution �(�) and �(�′) [see Eq. (20)].
These in turn are estimated from the ensemble of sample
paths. In this way, the trajectories are correlated with each
other [38,39].

We index each trajectory individually so that we can follow
the time evolution of each sample path. At each point in
time the ensemble is specified by the state of each of the
sample paths. We write N� for the number of sample paths
in state �. To keep the notation compact we suppress the time
dependence of N�. One has

∑
� N� = M at all times, where M

is the size of the ensemble.
Before we detail the algorithm we describe the construc-

tion of a matrix S with elements S�→�′ which give the rate
of a reaction � → �′ to occur in the ensemble. The matrix
is needed frequently in the algorithm and is constructed as
follows. (i) Start with S�→�′ = 0 for all � and �′. (ii) For all
reactions � → �′ with positive rate R�→�′ increase S�→�′ by
R�→�′ . (iii) For reactions with negative rate R�→�′ and N�′ > 0
construct T�′→� as in Eq. (20), where N�/N�′ is used as a proxy
for �(�)/�(�′). If N�′ = 0 set T�′→� = 0. Increase S�′→� by
T�′→�. (iv) Finally, for all pairs � and �′ multiply S�→�′ by
N�. For a given master equation (i.e., a given matrix R) the
matrix S is a function of the current state of the ensemble,
i.e., of the {N�}. All entries S�→�′ (� �= �′) are non-negative.
The diagonal elements are zero. The element S�→�′ indicates
the rate for a reaction � → �′ to occur, given the current
state of the ensemble. One has S�→�′ = 0 if no sample path
in the ensemble is in state �. We also note that the total
rate for a reaction of any type to happen

∑
� �=�′ S�→�′ scales

linearly with M. This guarantees that each time step in the
procedure below is of order M−1 or, in other words, that order
M reactions occur per unit time.

The algorithm proceeds as follows:
(1) Given the current state of the ensemble, compute the

matrix S as described above.
(2) Draw a random time increment τ from an exponential

distribution with parameter s = ∑
�,�′ S�→�′ .

(3) Randomly select an origin � and a destination �′ with
a probability weighted by S�→�′ (i.e., the probability that � is
picked as an origin and �′ as a destination is S�→�′/s).

(4) Randomly (with equal probabilities) pick one of the
sample paths currently in state � and change its state to �′.

(5) Increment time by τ and go to step 1.
We note that this algorithm does not allow for any state

� to ever have a negative occupancy N�. Furthermore, if all
R�→�′ are non-negative the simulation reduces to the standard
Gillespie algorithm [36,37]. In this case the sample paths
remain uncorrelated.

b. Test of the algorithm

Here we show that this method can fail to produce sample
paths which are representative of the full model. We use the
example in Eq. (17). The algorithm captures the stationary dis-
tribution accurately, as illustrated by the markers in Fig. 2(h).
Next we test whether the simulation reproduces dynamical
properties of the sample paths of the full model. Specifi-
cally, we focus on the power and cross spectra defined in
Sec. V D.

Results are shown in Fig. 7. These are measured in the
regime when �(nA, nB) has reached the stationary state and
are averaged over a large ensemble of trajectories.

i. Only positive rates in the reduced master equation.
Figures 7(a) and 7(b) serve as a benchmark and show the
case αβ > 0 when all rates in the reduced master equation
are positive. The above simulation scheme then reduces to
the standard Gillespie method. As seen in the figure, the
power and cross spectra SAA(ω) and SAB(ω) obtained from
simulating paths of the reduced master equation agree well
with those from simulations of the full model, at least at
sufficiently low frequencies ω. At larger frequencies devia-
tions are seen; this is particularly visible for the cross spec-
trum [see the inset of Fig. 7(b)]. These deviations between
reduced and the full model are not surprising; the reduced
model does not resolve the mechanics of the environment
on short timescales. Spectra obtained from sample paths of
the master equation in the adiabatic limit show significant
deviations from those of the full model; we note in particular
that the cross spectrum SAB(ω) vanishes [dotted red line in
Fig. 7(b)].

ii. Negative rates. Results for the case with negative rates in
the reduced master equation are shown in Figs. 7(c) and 7(d).
We find marked differences between the spectra generated
from the reduced master equation with the above algorithm
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and those of sample paths of the full model. This is partic-
ularly noticeable in the cross spectrum in Fig. 7(d), which
is strictly negative in the full model, but comes out positive
at intermediate frequencies if the above simulation method is
used for the reduced dynamics.

We conclude that the trajectories generated by the simu-
lation algorithm in Appendix B 1 a do not represent sample
paths of the full model when the reduced master equation con-
tains negative rates. Our findings invite the question whether
algorithms of this type [38,39] provide a faithful representa-
tion of the full dynamics of open quantum systems and their
environment.

2. Distribution-level simulation

The time-dependent solution �(�, t ) can be obtained by
direct numerical integration of the reduced master equation,
for example, using a Runge-Kutta scheme. However, for large
state spaces this approach can become slow. The technique
described in this section can, in some cases, provide a faster
alternative.

We consider a large number M of discrete units of proba-
bility 1/M. At each point in time the state of the simulation is
defined by the occupation numbers N� for all states �; some of
the N� may be negative. One has

∑
� N� = M.

The algorithm proceeds along the following steps:
(1) For given occupation numbers N� at time t , make a list

of all possible reactions, labeled by index γ . Each reaction
has a site of origin �γ , a destination site �′

γ , and rate rγ =
R�γ →�′

γ ,
N�γ

. Some of the rγ may be negative.
(2) Draw a random number τ from an exponential distribu-

tion with parameter
∑

γ |rγ |.
(3) Pick a reaction from the list created in step 1. The

probability to pick γ is |rγ |/∑
γ ′ |rγ ′ |.

(4) If rγ > 0 increase N�′
γ

by one and reduce N�γ
by one. If

rγ < 0 reduce N�′
γ

by one and increase N�γ
by one.

(5) Increment time by τ and go to step 1.
The process in step 4 allows occupation numbers to go

negative. The typical time step of this scheme is given
by 1/

∑
γ |rγ |, and reaction γ is triggered with probability

|rγ |/(
∑

γ ′ |rγ ′ |). Thus |rγ | reactions of type γ are triggered
per unit time. The sign convention in step 4 ensures correct
sampling of the reduced master equation.

We tested this procedure for the example given by Eq. (17).
Results are shown in Fig. 3; there is near perfect agreement
between the Monte Carlo procedure and direct numerical
integration of the reduced master equation. We stress that
this algorithm does not generate sample paths for the reduced
master equation.
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[4] P. Thomas, N. Popović, and R. Grima, Proc. Natl. Acad. Sci.

USA 111, 6994 (2014).
[5] T. B. Kepler and T. C. Elston, Biophys. J. 81, 3116 (2001).
[6] M. Thattai and A. Van Oudenaarden, Genetics 167, 523 (2004).
[7] P. S. Swain, M. B. Elowitz, and E. D. Siggia, Proc. Natl. Acad.

Sci. USA 99, 12795 (2002).
[8] M. Assaf, E. Roberts, Z. Luthey-Schulten, and N. Goldenfeld,

Phys. Rev. Lett. 111, 058102 (2013).
[9] A. Duncan, S. Liao, T. Vejchodský, R. Erban, and R. Grima,

Phys. Rev. E 91, 042111 (2015).
[10] M. Assaf, M. Mobilia, and E. Roberts, Phys. Rev. Lett. 111,

238101 (2013).
[11] P. Ashcroft, P. M. Altrock, and T. Galla, J. R. Soc. Interface 11,

20140663 (2014).
[12] K. Wienand, E. Frey, and M. Mobilia, Phys. Rev. Lett. 119,

158301 (2017).
[13] R. West, M. Mobilia, and A. M. Rucklidge, Phys. Rev. E 97,

022406 (2018).
[14] A. J. Black and A. J. McKane, J. Theor. Biol. 267, 85 (2010).
[15] C. Escudero and J. Á. Rodríguez, Phys. Rev. E 77, 011130

(2008).
[16] M. Assaf, A. Kamenev, and B. Meerson, Phys. Rev. E 78,

041123 (2008).
[17] Q. Luo and X. Mao, J. Math. Anal. Appl. 334, 69 (2007).
[18] C. Zhu and G. Yin, J. Math. Anal. Appl. 357, 154 (2009).
[19] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002).

[20] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod.
Phys. 88, 021002 (2016).

[21] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001
(2017).

[22] P. C. Bressloff, Phys. Rev. E 94, 042129 (2016).
[23] M. Assaf, E. Roberts, and Z. Luthey-Schulten, Phys. Rev. Lett.

106, 248102 (2011).
[24] E. Roberts, S. Be’er, C. Bohrer, R. Sharma, and M. Assaf,

Phys. Rev. E 92, 062717 (2015).
[25] P. C. Bressloff and J. M. Newby, Phys. Rev. E 89, 042701

(2014).
[26] P. C. Bressloff, Phy. Rev. E 95, 012124 (2017).
[27] P. C. Bressloff, Phys. Rev. E 95, 012138 (2017).
[28] P. C. Bressloff, Phys. Rev. E 95, 012130 (2017).
[29] J. Bowen, A. Acrivos, and A. Oppenheim, Chem. Eng. Sci. 18,

177 (1963).
[30] L. A. Segel and M. Slemrod, SIAM Rev. 31, 446 (1989).
[31] P. G. Hufton, Y. T. Lin, and T. Galla, Phys. Rev. E 99,

032122 (2019).
[32] W. Ewens, Mathematical Population Genetics 1 (Springer, New

York, 2004).
[33] A. Traulsen and C. Hauert, in Reviews of Nonlinear Dynam-

ics and Complexity, edited by H. G. Schuster (Wiley-VCH,
Weinheim, 2010), pp. 25–61.

[34] J. M. Sancho and M. San Miguel, J. Stat. Phys. 37, 151
(1984).

[35] E. Hernández-García, L. Pesquera, M. A. Rodríguez, and M.
San Miguel, J. Stat. Phys. 55, 1027 (1989).

[36] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[37] D. T. Gillespie, J. Chem. Phys. 81, 2340 (1977).
[38] J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen,

Phys. Rev. Lett. 100, 180402 (2008).

032121-13

https://doi.org/10.1534/genetics.104.035352
https://doi.org/10.1534/genetics.104.035352
https://doi.org/10.1534/genetics.104.035352
https://doi.org/10.1534/genetics.104.035352
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1073/pnas.0912538107
https://doi.org/10.1073/pnas.0912538107
https://doi.org/10.1073/pnas.0912538107
https://doi.org/10.1073/pnas.0912538107
https://doi.org/10.1073/pnas.1400049111
https://doi.org/10.1073/pnas.1400049111
https://doi.org/10.1073/pnas.1400049111
https://doi.org/10.1073/pnas.1400049111
https://doi.org/10.1016/S0006-3495(01)75949-8
https://doi.org/10.1016/S0006-3495(01)75949-8
https://doi.org/10.1016/S0006-3495(01)75949-8
https://doi.org/10.1016/S0006-3495(01)75949-8
https://doi.org/10.1534/genetics.167.1.523
https://doi.org/10.1534/genetics.167.1.523
https://doi.org/10.1534/genetics.167.1.523
https://doi.org/10.1534/genetics.167.1.523
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1103/PhysRevLett.111.058102
https://doi.org/10.1103/PhysRevLett.111.058102
https://doi.org/10.1103/PhysRevLett.111.058102
https://doi.org/10.1103/PhysRevLett.111.058102
https://doi.org/10.1103/PhysRevE.91.042111
https://doi.org/10.1103/PhysRevE.91.042111
https://doi.org/10.1103/PhysRevE.91.042111
https://doi.org/10.1103/PhysRevE.91.042111
https://doi.org/10.1103/PhysRevLett.111.238101
https://doi.org/10.1103/PhysRevLett.111.238101
https://doi.org/10.1103/PhysRevLett.111.238101
https://doi.org/10.1103/PhysRevLett.111.238101
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1098/rsif.2014.0663
https://doi.org/10.1103/PhysRevLett.119.158301
https://doi.org/10.1103/PhysRevLett.119.158301
https://doi.org/10.1103/PhysRevLett.119.158301
https://doi.org/10.1103/PhysRevLett.119.158301
https://doi.org/10.1103/PhysRevE.97.022406
https://doi.org/10.1103/PhysRevE.97.022406
https://doi.org/10.1103/PhysRevE.97.022406
https://doi.org/10.1103/PhysRevE.97.022406
https://doi.org/10.1016/j.jtbi.2010.08.014
https://doi.org/10.1016/j.jtbi.2010.08.014
https://doi.org/10.1016/j.jtbi.2010.08.014
https://doi.org/10.1016/j.jtbi.2010.08.014
https://doi.org/10.1103/PhysRevE.77.011130
https://doi.org/10.1103/PhysRevE.77.011130
https://doi.org/10.1103/PhysRevE.77.011130
https://doi.org/10.1103/PhysRevE.77.011130
https://doi.org/10.1103/PhysRevE.78.041123
https://doi.org/10.1103/PhysRevE.78.041123
https://doi.org/10.1103/PhysRevE.78.041123
https://doi.org/10.1103/PhysRevE.78.041123
https://doi.org/10.1016/j.jmaa.2006.12.032
https://doi.org/10.1016/j.jmaa.2006.12.032
https://doi.org/10.1016/j.jmaa.2006.12.032
https://doi.org/10.1016/j.jmaa.2006.12.032
https://doi.org/10.1016/j.jmaa.2009.03.066
https://doi.org/10.1016/j.jmaa.2009.03.066
https://doi.org/10.1016/j.jmaa.2009.03.066
https://doi.org/10.1016/j.jmaa.2009.03.066
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevE.94.042129
https://doi.org/10.1103/PhysRevE.94.042129
https://doi.org/10.1103/PhysRevE.94.042129
https://doi.org/10.1103/PhysRevE.94.042129
https://doi.org/10.1103/PhysRevLett.106.248102
https://doi.org/10.1103/PhysRevLett.106.248102
https://doi.org/10.1103/PhysRevLett.106.248102
https://doi.org/10.1103/PhysRevLett.106.248102
https://doi.org/10.1103/PhysRevE.92.062717
https://doi.org/10.1103/PhysRevE.92.062717
https://doi.org/10.1103/PhysRevE.92.062717
https://doi.org/10.1103/PhysRevE.92.062717
https://doi.org/10.1103/PhysRevE.89.042701
https://doi.org/10.1103/PhysRevE.89.042701
https://doi.org/10.1103/PhysRevE.89.042701
https://doi.org/10.1103/PhysRevE.89.042701
https://doi.org/10.1103/PhysRevE.95.012124
https://doi.org/10.1103/PhysRevE.95.012124
https://doi.org/10.1103/PhysRevE.95.012124
https://doi.org/10.1103/PhysRevE.95.012124
https://doi.org/10.1103/PhysRevE.95.012138
https://doi.org/10.1103/PhysRevE.95.012138
https://doi.org/10.1103/PhysRevE.95.012138
https://doi.org/10.1103/PhysRevE.95.012138
https://doi.org/10.1103/PhysRevE.95.012130
https://doi.org/10.1103/PhysRevE.95.012130
https://doi.org/10.1103/PhysRevE.95.012130
https://doi.org/10.1103/PhysRevE.95.012130
https://doi.org/10.1016/0009-2509(63)85003-4
https://doi.org/10.1016/0009-2509(63)85003-4
https://doi.org/10.1016/0009-2509(63)85003-4
https://doi.org/10.1016/0009-2509(63)85003-4
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091
https://doi.org/10.1103/PhysRevE.99.032122
https://doi.org/10.1103/PhysRevE.99.032122
https://doi.org/10.1103/PhysRevE.99.032122
https://doi.org/10.1103/PhysRevE.99.032122
https://doi.org/10.1007/BF01012909
https://doi.org/10.1007/BF01012909
https://doi.org/10.1007/BF01012909
https://doi.org/10.1007/BF01012909
https://doi.org/10.1007/BF01041077
https://doi.org/10.1007/BF01041077
https://doi.org/10.1007/BF01041077
https://doi.org/10.1007/BF01041077
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402


PETER G. HUFTON, YEN TING LIN, AND TOBIAS GALLA PHYSICAL REVIEW E 99, 032121 (2019)

[39] H.-P. Breuer and J. Piilo, Europhys. Lett. 85, 50004 (2009).
[40] A. Suárez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97,

5101 (1992).
[41] P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).
[42] S. Gnutzmann and F. Haake, Z. Phys. B 101, 263 (1996).

[43] F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. A 67, 042110
(2003).

[44] R. F. Pawula, Phys. Rev. 162, 186 (1967).
[45] H. Risken and H. Vollmer, Z. Phys. B 35, 313 (1979).
[46] D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001).

032121-14

https://doi.org/10.1209/0295-5075/85/50004
https://doi.org/10.1209/0295-5075/85/50004
https://doi.org/10.1209/0295-5075/85/50004
https://doi.org/10.1209/0295-5075/85/50004
https://doi.org/10.1063/1.463831
https://doi.org/10.1063/1.463831
https://doi.org/10.1063/1.463831
https://doi.org/10.1063/1.463831
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1007/s002570050208
https://doi.org/10.1007/s002570050208
https://doi.org/10.1007/s002570050208
https://doi.org/10.1007/s002570050208
https://doi.org/10.1103/PhysRevA.67.042110
https://doi.org/10.1103/PhysRevA.67.042110
https://doi.org/10.1103/PhysRevA.67.042110
https://doi.org/10.1103/PhysRevA.67.042110
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1007/BF01319854
https://doi.org/10.1007/BF01319854
https://doi.org/10.1007/BF01319854
https://doi.org/10.1007/BF01319854
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1378322



