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We derive macroscopically deterministic flow equations with regard to the order parameters of the ferro-
magnetic p-spin model with infinite-range interactions. The p-spin model has a first-order phase transition
for p > 2. In the case of p � 5, the p-spin model with antiferromagnetic XX interaction has a second-order
phase transition in a certain region. In this case, however, the model becomes a nonstoquastic Hamiltonian,
resulting in a negative sign problem. To simulate the p-spin model with antiferromagnetic XX interaction,
we utilize the adaptive quantum Monte Carlo method. By using this method, we can regard the effect of the
antiferromagnetic XX interaction as fluctuations of the transverse magnetic field. A previous study [J. Inoue,
J. Phys. Conf. Ser. 233, 012010 (2010)] derived deterministic flow equations of the order parameters in the
quantum Monte Carlo method. In this study, we derive macroscopically deterministic flow equations for the
magnetization and transverse magnetization from the master equation in the adaptive quantum Monte Carlo
method. Under the Suzuki-Trotter decomposition, we consider the Glauber-type stochastic process. We solve
these differential equations by using the Runge-Kutta method, and we verify that these results are consistent
with the saddle-point solution of mean-field theory. Finally, we analyze the stability of the equilibrium solutions
obtained by the differential equations.

DOI: 10.1103/PhysRevE.99.032120

I. INTRODUCTION

Finding the best solution in combinatorial optimization
problems is computationally intractable. Nevertheless, effi-
cient solutions to such problems have been studied in var-
ious fields. Quantum annealing (QA) stochastically solves
combinatorial optimization problems with the aid of quantum
fluctuations [1,2]. To do so, the cost function is regarded as the
physical energy of the system, and the minimizer corresponds
to the ground state of the physical system.

The protocol of QA is realized in an actual quantum
device using present-day technology, namely the quantum
annealer [3–9]. The output from the current version of the
quantum annealer, D-Wave 2000Q, is not always a minimizer
due to limitations of the device and environmental effects
[10]. Nevertheless, the quantum annealer has been tested for
numerous applications, such as portfolio optimization [11],
protein folding [12], the molecular similarity problem [13],
computational biology [14], job-shop scheduling [15], traffic
optimization [16], election forecasting [17], machine learning
[18–20], and automated guided vehicles in a factory [21]. In
addition, research has been performed on implementing the
quantum annealer for various problems [22–25].
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In conventional QA, the Hamiltonian is described by H =
H0 + H1. The symbol H0 denotes the target Hamiltonian
where we want to solve the ground state. This Hamiltonian
consists of z components of Pauli matrices (σ z

1 , . . . , σ z
N ),

where N is the total number of spins. We add the quantum
driver Hamiltonian H1 as the quantum fluctuation, which
is written H1 = −�

∑N
i=1 σ x

i . Here, � denotes the strength
of the transverse magnetic field, and σ x

i is the x component
of the Pauli matrix at site i. In QA, we initially set the
strength of the transverse magnetic field very high such that
the system explores a wide range of the state space to obtain
the ground state. We then gradually decrease the strength
of the transverse magnetic field. Following the Schrödinger
equation, the initial ground state evolves adiabatically into
a nontrivial final ground state, which is the solution to the
combinatorial optimization problem.

The theoretically sufficient condition to obtain the ground
state in QA is assured by the quantum adiabatic theorem [26].
The total evolutionary time τ of the Schrödinger equation to
obtain the ground state depends on the minimum energy gap
�min from the ground state: τ � �−2

min. In a system with a
second-order phase transition, the minimum energy gap poly-
nomially decays with the system size as �min ∝ N−α . Thus,
the total evolutionary time increases polynomially: τ ∝ N2α .
In this case, QA efficiently solves the problems. On the other
hand, when the system has a first-order phase transition, the
minimum energy gap decays exponentially with the system
size as �min ∝ exp(−αN ). Since the total evolutionary time
increases exponentially such that τ ∝ exp(2αN ), QA cannot
be performed efficiently.
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Seki and Nishimori proposed that QA with antiferromag-
netic XX interaction can avoid the first-order phase transition
for the ferromagnetic p-spin model with infinite-range interac-
tions [27–30]. This entails an exponential efficiency speedup
of conventional QA, because the second-order phase transi-
tion has a minimum energy gap that decreases polynomially
as a function of the system size. A nonstoquastic Hamiltonian
like the model with antiferromagnetic XX interaction cannot
be simulated with the standard quantum Monte Carlo method
(QMC) because the nonstoquastic Hamiltonian has positive
values in off-diagonal elements in the computational basis to
diagonalize the z component of the Pauli matrix, and it has a
negative sign problem [31–34].

However, a method has been proposed to avoid the negative
sign problem involved in a particular class of nonstoquastic
Hamiltonians [35]. This method is called the adaptive quan-
tum Monte Carlo method (AQMC). The AQMC treats the
effect of the antiferromagnetic XX interaction as a fluctuation
of the transverse magnetic field by using the δ function and
its Fourier integral transformation. We can calculate various
physical quantities of the nonstoquastic Hamiltonian by esti-
mating the transverse magnetization and changing the corre-
sponding transverse magnetic field obtained by a saddle-point
solution.

In this paper, we focus on the dynamics of the AQMC. To
simulate QA, we often utilize the QMC, which is mainly de-
signed for sampling from a Boltzmann distribution. Although
the dynamics of QMC differ from those of QA [36], it has
been found that some aspects of the dynamics of QA can be
expressed by QMC [37,38]. Therefore, it is useful to consider
the dynamics of QMC or AQMC for QA with and without a
nonstoquastic Hamiltonian.

We analyze the dynamics of the order parameters of a
p-spin model with antiferromagnetic XX interaction [39–43].
For cases with a stoquastic Hamiltonian, Inoue analytically
derived macroscopically deterministic flow equations of the
order parameter, for example longitudinal magnetization in
infinite-range quantum spin systems [44–46]. The differential
equations with respect to the macroscopic order parameter are
obtained from the master equation by considering the transi-
tion probability of the Glauber-type dynamics of microscopic
states under the Suzuki-Trotter decomposition.

Following this approach, we derive the macroscopi-
cally deterministic flow equations of order parameters with

antiferromagnetic XX interaction in AQMC. The adaptive
transverse magnetic field is changed by the transverse mag-
netization in AQMC. Therefore, we introduce the dynamics
of transverse magnetization and derive differential equations
for magnetization and transverse magnetization. We compare
the nontrivial behavior of the dynamics of order parameters
with and without antiferromagnetic XX interaction.

It is useful to establish a way of simulating a class of
nonstoquastic Hamiltonians with a classical computer in order
to validate a new quantum annealer. To date, conventional
QA with a transverse magnetic field has been implemented
in the D-Wave machine. However, a quantum annealer for
nonstoquastic Hamiltonians is being developed. Analyzing
the dynamics of order parameters with nonstoquastic Hamil-
tonians will help us to verify the performance of this new
quantum annealer for nonstoquastic Hamiltonians.

The remainder of this paper is organized as follows. In
Sec. II, we show the algorithm for AQMC. In Sec. III,
we derive the macroscopically deterministic flow equations
with respect to a nonstoquastic Hamiltonian from the master
equation. In Sec. IV, we analyze the stability of the solutions
obtained by the macroscopically deterministic flow equations.
In Sec. V, we show the numerical results of the differential
equations of order parameters. Finally, in Sec. VI, we summa-
rize our results and discuss future research directions.

II. ADAPTIVE QUANTUM MONTE CARLO METHOD

In this paper, we treat the ferromagnetic p-spin model with
infinite-range interactions as the target Hamiltonian, which is
written as

H0 = −N

(
1

N

N∑
i=1

σ z
i

)p

. (1)

We add the quantum driver Hamiltonian as

H1 = −�

N∑
i=1

σ x
i + γ

2N

(
N∑

i=1

σ x
i

)2

, (2)

where γ is the strength of the XX interaction. The partition
function of the total Hamiltonian is given by

Z = Tr

⎧⎨
⎩exp

⎡
⎣Nβ

(
1

N

N∑
i=1

σ z
i

)p

+ β�

N∑
i=1

σ x
i − N

βγ

2

(
1

N

N∑
i=1

σ x
i

)2
⎤
⎦
⎫⎬
⎭, (3)

where β is the inverse temperature. We employ the Suzuki-Trotter decomposition to divide the total Hamiltonian into two parts
[31]. After that, we introduce the δ function as

1 =
∫

dmxkδ

(
Nmxk −

N∑
i=1

σ x
ik

)
. (4)
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We utilize the Fourier integral representation of the δ function and introduce the auxiliary variable m̃xk on the Trotter slice k. We
obtain the partition function as

Z ≈ lim
M→∞

Tr

{
M∏

k=1

∫
dmxk

∫
dm̃xk exp

[
Nβ

M

(
1

N

N∑
i=1

σ z
ik

)p]
exp

[
N

β�

M
mxk − N

βγ

2M
m2

xk − β

M
m̃xk

(
Nmxk −

N∑
i=1

σ x
ik

)]}
, (5)

where M is the Trotter number. We have dropped a trivial co-
efficient 1/2π in the above expression. This partition function
(5) is equivalent to the partition function of the transverse-
field Ising model. Furthermore, we use static approximation
m̃xk = m̃x and mxk = mx to simplify the problem. Finally, the
partition function is written as

Z ≈ lim
M→∞

∑
σ

{∫
dmx

∫
dm̃xλ

NMφM (mx, m̃x ) exp(−Heff )

}
,

(6)

where we define

λ = cosh

(
β

M
m̃x

)
exp (−B), (7)

φ(mx, m̃x ) = exp

(
N

β�

M
mx − N

βγ

2M
m2

x − N
β

M
m̃xmx

)
, (8)

Heff = − N

M

M∑
k=1

(
1

N

N∑
i=1

σik

)p

− B

β

N∑
i=1

M∑
k=1

σikσik+1, (9)

B = −1

2
ln tanh

(
β

M
m̃x

)
. (10)

Here, we regard σ z
ik as the classical spin σik ∈ {−1,+1}. We

rewrite the Tr into the summation of classical spins as
∑

σ .
In the thermodynamic limit, we may take the saddle-point

in the integral. The saddle-point is evaluated by m̃x = � −
γ mx. Thus, the instantaneous transverse magnetic field is
determined by the transverse magnetization mx. To estimate
the transverse magnetization, we consider the conditional
probability distribution as P(σ|m̃x ) = Z (m̃x )−1 exp (−βHeff ),
where Z (m̃x ) = ∑

σ exp (−βHeff ) is the partition function of
the effective spin model defined by the conditional probability
distribution. The transverse magnetization is written as mx =
〈(NM )−1 ∑N

i=1

∑M
k=1 tanh (βm̃x/M )σikσik+1〉, where the angu-

lar brackets denote the expectation with respect to the weight
of the conditional probability distribution P(σ|m̃x ). We can
realize the classical simulation of the nonstoquastic Hamilto-
nian with antiferromagnetic infinite-range XX interactions by
estimating the transverse magnetization in the standard QMC
method and updating the instantaneous transverse magnetic
field m̃x according to the saddle-point solution.

III. THE DYNAMICS OF THE ADAPTIVE QUANTUM
MONTE CARLO METHOD

In this section, we introduce the dynamics of the p-spin
model with XX interaction in AQMC. Following Sec. II,
we can rewrite the p-spin model with XX interaction to the
p-spin model with the transverse magnetic field fluctuated
by the transverse magnetization as Eq. (9). The fluctuated
transverse magnetic field is determined by the saddle-point

solution m̃x = � − γ mx. Here, the transverse magnetization
is fixed by the previous one.

The effective Hamiltonian (9) is a classical system under
the Suzuki-Trotter decomposition. Therefore, the dynamics of
AQMC can be written as a Glauber-type stochastic process
whose transition probability is given by

wi(σk ) = 1
2 [1 − σik tanh (βi(σk : σik±1))], (11)

where i(σk : σik±1) is an instantaneous local field at site i on
the kth Trotter slice as

βi(σk : σik±1) = βp

M

(
1

N

N∑
i=1

σik

)p−1

+ B

2
(σik−1 + σik+1).

(12)

Here, we neglect the term less than O(1).
The master equation for the probability pt ({σk}), which

represents the probability of a macroscopic state including the
M-Trotter slices {σk} ≡ (σ1, . . . , σM ), σk = (σ1k, . . . , σNk ) at
time t , is written as follows:

d pt ({σk})

dt
=

M∑
k=1

N∑
i=1

[
pt

(
F (k)

i (σk )
)
wi

(
F (k)

i (σk )
)

−pt (σk )wi(σk )
]
, (13)

where we define the probability of a macroscopic state on the
kth Trotter slice as pt (σk ) and a spin-flip operator F (k)

i (σk ) as

F (k)
i (σk ) = (σ1k, σ2k, . . . ,−σik, . . . , σNk ). (14)

We impose the periodic boundary conditions σ1 = σM+1.
Next, we introduce a probability distribution Pt ({mk}, {mxk})
of the macroscopic order parameters

mk (σk ) = 1

N

N∑
i=1

σik, (15)

mxk (σk, σk+1) = K

N

N∑
i=1

σikσik+1 (16)

as

Pt ({mk}, {mxk}) =
M∏

k=1

∑
σk

pt (σk )δ(mk − mk (σk ))δ(mxk

− mxk (σk, σk+1)), (17)

where we define K = [tanh2(βm̃x/M ) − 1]/[2 tanh
(βm̃x/M )], which is the correction term of the instantaneous
transverse magnetic field generated from the derivative
of ln Z (m̃x ), the set of the longitudinal magnetization
as {mk} ≡ (m1, . . . , mM ), and the set of the transverse
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magnetization as {mxk} ≡ (mx1, . . . , mxM ). The notation
∑

σk

is written as

∑
σk

(· · · ) ≡
N∑

i=1

∑
σik=±1

(· · · ). (18)

We regard mk as the magnetization on the Trotter slice k,
and mxk as the transverse magnetization between the Trotter
slice k and k + 1. Following Ref. [45], we take the deriva-
tive of Eq. (17) with respect to t and obtain differential
equations as

dPt ({mk}, {mxk})

dt

=
∑

k

∂

∂mk
mkPt ({mk}, {mxk}) −

∑
k

∂

∂mk

{
Pt ({mk}, {mxk})

1

N

N∑
i=1

tanh (βi(σk : σik±1))

}

+
∑

k

∂

∂mxk
mxkPt ({mk}, {mxk}) −

∑
k

∂

∂mxk

{
Pt ({mk}, {mxk})

K

N

N∑
i=1

σik+1 tanh (βi(σk : σik±1))

}
. (19)

From Eq. (19), we can obtain these deterministic flow
equations as

dm

dt
= −m + (pmp−1)

tanh(β
√

(pmp−1)2 + (� − γ mx )2)√
(pmp−1)2 + (� − γ mx )2

,

(20)

dmx

dt
= −mx+(�−γ mx )

tanh(β
√

(pmp−1)2+(�−γ mx )2)√
(pmp−1)2+(�−γ mx )2

.

(21)

Here, we use the saddle-point solution m̃x = � − γ mx. The
derivations of Eqs. (20) and (21) are described in Appendix.

IV. STABILITY ANALYSIS OF THE EQUILIBRIUM
SOLUTIONS

In this section, we derive the stability of the solutions
obtained by the deterministic flow equations [47–49]. To
simplify the problem, we consider the zero-temperature limit
β → ∞. We can rewrite the deterministic flow equations (20)
and (21) as

dm

dt
= −m + pmp−1√

(pmp−1)2 + (� − γ mx )2
= f (m, mx ), (22)

dmx

dt
= −mx + � − γ mx√

(pmp−1)2 + (� − γ mx )2
= g(m, mx ).

(23)

We assume the existence of the equilibrium solutions
(m∗, m∗

x ). These solutions satisfy f (m∗, m∗
x ) = 0 and

g(m∗, m∗
x ) = 0. We consider infinitesimal increments of

m and mx around the equilibrium solutions as

m = m∗ + u, (24)
mx = m∗

x + v. (25)

The Taylor expansions for f (m, mx ) and g(m, mx ) around the
equilibrium solutions yield

f (m, mx ) ≈ f (m∗, m∗
x ) + ∂ f

∂m

∣∣∣∣
m∗,m∗

x

(m − m∗)

+ ∂ f

∂mx

∣∣∣∣
m∗,m∗

x

(mx − m∗
x ) (26)

and

g(m, mx ) ≈ g(m∗, m∗
x ) + ∂g

∂m

∣∣∣∣
m∗,m∗

x

(m − m∗)

+ ∂g

∂mx

∣∣∣∣
m∗,m∗

x

(mx − m∗
x ). (27)

From Eqs. (24)–(27), the time differential of infinitesimal
increments is written as follows:

d

dt

(
u
v

)
=

(
fm fmx

gm gmx

)(
u
v

)
, (28)

where we define the Jacobian matrix as

J ≡
(

fm fmx

gm gmx

)
. (29)

To determine the stability of the equilibrium solutions, we
consider the characteristic polynomial of the Jacobian matrix
whose eigenvalues are λ1 and λ2. By evaluating the trace of
the Jacobian matrix trJ = λ1 + λ2, the determinant detJ =
λ1 · λ2, and whether the eigenvalues are complex, we can
investigate the stability of the equilibrium solutions. The
condition with real roots of eigenvalues is (trJ )2 > 4 detJ .
This condition determines whether the equilibrium solutions
have oscillations.

V. EXPERIMENTAL RESULTS

In this section, we describe our numerical experiments. We
numerically solve differential equations (20) and (21) using
the Runge-Kutta method with a sufficiently low-temperature
T and inverse temperature β = 1/T = 100. The ferromag-
netic p-spin model has a first-order phase transition for p > 2
[50]. We set the parameters γ = 0 or 18. In the case of γ =
18, the p-spin model has a second-order phase transition for
p > 4 following the phase diagram in [27]. In this study, we
consider p = 5 and compare the dynamics of order parameters
with and without antiferromagnetic XX interaction.

First, we show the dynamics of order parameters without
antiferromagnetic XX interaction γ = 0 in Figs. 1 and 2.
The original model has a first-order phase transition. We
set three different conditions: � = 0.5 in the ferromagnetic
phase, � = 2.5 in the paramagnetic phase, and � = 1.3 in
the paramagnetic phase between the critical point �c and the
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(a) (b) (c)

FIG. 1. Dynamics of order parameters without antiferromagnetic XX interaction γ = 0, given initial magnetization m0 =
0.2, 0.4, 0.6, 0.8, 1.0 and initial transverse magnetization mx = √

1 − m2
0. The horizontal axis denotes the time t of the deterministic flow

equation, and the vertical axis denotes the longitudinal magnetization. The experimental settings are (a) � = 0.5, (b) � = 1.3, and (c) � = 2.5.

spinodal point �sp. These figures indicate that the dynamics
converge exponentially to each steady state depending on the
initial condition.

We also consider the pseudo free energy to evaluate the
equilibrium solutions. By using mean-field theory, the pseudo
free energy is written as

F (m, m̃, mx, m̃x, β, �, γ )

= −mp + mm̃ − �m̃x + γ

2
m2

x + mxm̃x

− 1

β
ln 2 cosh(β

√
(m̃)2 + (m̃x )2). (30)

Standardly, with mean-field theory, we utilize the saddle-
point conditions ∂F/∂m = 0 and ∂F/∂mx = 0 for m̃ and m̃x,
respectively. Strictly speaking, however, these conditions need
not be used to estimate the pseudo free energy precisely (30).
Therefore, we utilize the saddle-point conditions ∂F/∂m̃ = 0
and ∂F/∂m̃x = 0. These conditions lead to

m = m̃√
m̃2 + m̃2

x

tanh
(
β

√
m̃2 + m̃2

x

)
, (31)

mx = m̃x√
m̃2 + m̃2

x

tanh
(
β

√
m̃2 + m̃2

x

)
. (32)

Even if we utilize these saddle-point conditions, we can
ultimately obtain the saddle-point equations as

m = (pmp−1)
tanh(β

√
(pmp−1)2 + (� − γ mx )2)√

(pmp−1)2 + (� − γ mx )2
, (33)

mx = (� − γ mx )
tanh(β

√
(pmp−1)2 + (� − γ mx )2)√

(pmp−1)2 + (� − γ mx )2
. (34)

These saddle-point equations, obtained in the standard manner
for mean-field theory [27], are consistent with dm/dt = 0 and
dmx/dt = 0.

To show the validity of the solution obtained from the
master equation, we plot the pseudo free energy (30) with
respect to the function of longitudinal magnetization m in
Fig. 3. Here, we can utilize the equation m2 + m2

x = 1 in the
thermodynamic limit N → ∞. According to the initial values,
each equilibrium solution from the master equation converges
to the minimum values. From Fig. 3(a), the pseudo free
energy has two different stable values m � 1 and m � 0. The
solution m � 0 is the metastable state in the ferromagnetic
phase. Therefore, we can see that the equilibrium solutions in
Fig. 1(a) converge to two different values, m � 1 and m � 0,
according to the different initial values. In the paramagnetic
phase between the critical point and the spinodal point, a
similar phenomenon occurs.

We plot the equilibrium solutions from the master equa-
tion and the exact solutions from the saddle-point equa-
tions in Fig. 4. We find that these order parameters

(a) (b) (c)

FIG. 2. Dynamics of order parameters without antiferromagnetic XX interaction, given initial magnetization m0 = 0.2, 0.4, 0.6, 0.8, 1.0
and initial transverse magnetization mx = √

1 − m2
0. The horizontal axis denotes the time t of the deterministic flow equation, and the vertical

axis is the transverse magnetization. The experimental settings are the same as those in Fig. 1.
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(a) (b) (c)

FIG. 3. Landscape of the pseudo free energy (30) without antiferromagnetic XX interaction. The horizontal axis is the longitudinal
magnetization, and the vertical axis denotes the pseudo free energy. The experimental settings are the same as those for Figs. 1 and 2.

change discontinuously. The longitudinal magnetization is
the multivalued function with respect to the strength of the
transverse magnetic field. After the spinodal point, the fer-
romagnetic stable state m > 0 appears. The dashed line in
Fig. 4 denotes the critical point where the pseudo free en-
ergy takes the same value. From the viewpoint of dynam-
ics, we can confirm that this model has a first-order phase
transition.

The dynamics of these order parameters with antiferromag-
netic XX interaction γ = 18 are shown Figs. 5 and 6. We set
three different conditions: � = 5 in the ferromagnetic phase,
� = 15 near the critical point, and � = 25 in the paramagnetic
phase. These figures indicate that the dynamics converge
exponentially to the only steady state.

We plot the pseudo free energy in Fig. 7. The equilib-
rium solutions obtained by the master equation are consis-
tent with the solutions that minimize the pseudo free en-
ergy. The metastable state m � 0 in γ = 0 vanishes in the
equilibrium state. A nonzero solution m > 0 appears near
the critical point. Finally, we can avoid the first-order phase
transition.

To confirm the solution from the master equation, we plot
the equilibrium solutions from the master equation with finite
inverse temperature β = 100 and the exact solutions from

the saddle-point equations in Fig. 8. From this figure, we can
see that the equilibrium solutions from the master equation are
consistent with the saddle-point solutions.

Finally, we investigate the stability of the solutions ob-
tained by the deterministic flow equations. We numerically
compute the trace of the Jacobian matrix, the determinant,
and the condition with real roots of eigenvalues by utilizing
the equilibrium solutions (m∗, m∗

x ) of Eqs. (22) and (23). We
plot the behavior of the trace of the Jacobian matrix, the
determinant, and the condition with real roots of eigenvalues
with and without antiferromagnetic XX interaction in Fig. 9.
Figure 9(a) shows that the equilibrium solutions are stable
nodes when the equilibrium solutions are minimum values of
the free energy because (trJ )2 > 4 detJ , detJ > 0, and trJ <

0 hold. We can see the differences between Figs. 9(a) and 9(b).
If the solutions are not necessarily minimum values of the
free energy, the solutions are saddled and unstable near the
spinodal point. Then, (trJ )2 > 4 detJ , detJ < 0, and trJ < 0
are established. In the case of a nonstoquastic Hamiltonian
γ = 18 shown in Fig. 9(c), the equilibrium solutions are
stable nodes in the ferromagnetic phase and the paramagnetic
phase. Near the point � = γ mx, the solutions are saddled
and unstable. Subsequently, the equilibrium solutions become
stable again. As the strength of the transverse magnetic field

(a) Longitudinal magnetization (b) Transverse magnetization

FIG. 4. Order parameters without antiferromagnetic XX interaction from the master equation and from the saddle-point equations. The
figure on the left shows the longitudinal magnetization, and that on the right shows the transverse magnetization. The vertical axis denotes
these order parameters. The horizontal axis denotes the strength of the transverse magnetic field. The circle denotes the solution obtained by the
master equation, whereas the solid line denotes the solution obtained by the saddle-point equations. The blue dashed line denotes the critical
point where the pseudo free energy takes the same value. The green dotted line denotes the spinodal point. (a) Longitudinal magnetization,
(b) transverse magnetization.
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(a) (b) (c)

FIG. 5. Dynamics of order parameters with antiferromagnetic XX interaction γ = 18, given initial magnetization m0 =
0.2, 0.4, 0.6, 0.8, 1.0 and initial transverse magnetization mx = √

1 − m2
0. The horizontal axis denotes the time t of the deterministic flow

equation, and the vertical axis denotes the longitudinal magnetization. The experimental settings are (a) � = 5, (b) � = 15, and (c) � = 25.

decreases, the equilibrium solutions become a stable spiral
and are asymptotically stable because (trJ )2 < 4 detJ , detJ >

0, and trJ < 0 hold. In this region, there is an oscillation
because the eigenvalues of the Jacobian matrix have complex
values. Thus, strong quantum fluctuations like the antiferro-
magnetic XX interaction affect the stability of the equilibrium
solutions.

VI. CONCLUSION

We derived macroscopically deterministic flow equations
of order parameters from the Glauber-type master equa-
tion under the Suzuki-Trotter decomposition. In AQMC, the
adaptive transverse magnetic field is governed by transverse
magnetization. By changing the adaptive transverse magnetic
field in accordance with the saddle-point solution, we can
obtain the dynamics of order parameters of the p-spin model
with and without antiferromagnetic XX interaction. We found
that the equilibrium solutions obtained by the deterministic
flow equations are identical to the saddle-point solutions
obtained by mean-field theory. We can obtain the behavior
of order parameters until the system is equilibrated. With-
out antiferromagnetic XX interaction, the metastable state
appeared near the spinodal point because the original model
has a first-order phase transition. After the spinodal point, the
equilibrium solutions converged to different values depending
on the initial conditions, due to the existence of the metastable
solution. By adding the antiferromagnetic XX interaction,

the metastable solution vanished. Therefore, the equilibrium
solutions converged to the saddle-point solution in all phases.
We confirmed that the equilibrium solutions minimize the free
energy. Finally, we investigated the stability of the equilibrium
solutions under a zero-temperature limit. If the equilibrium
solutions include metastable solutions in the case without
antiferromagnetic XX interaction, the solutions are unstable.
For the model with antiferromagnetic XX interaction, the
stability of the equilibrium solutions changed significantly
compared to the original model. We found that these strong
quantum fluctuations have an impact on the stability of the
equilibrium solutions.

This approach to use the master equation is useful for
understanding the dynamics of QA, which is inhomogeneous
in the Markovian stochastic process where the strength of
the transverse magnetic field is time-dependent. This helps
us to investigate not only conventional QA but also QA with
a nonstoquastic Hamiltonian, inhomogeneous driving of the
transverse field, and reverse annealing [51–54]. In our future
work, we will analyze the dynamics of these new types of QA.
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(a) (b) (c)

FIG. 6. Dynamics of order parameters with antiferromagnetic XX interaction, given initial magnetization m0 = 0.2, 0.4, 0.6, 0.8, 1.0 and
initial transverse magnetization mx = √

1 − m2
0. The horizontal axis denotes the time t of the deterministic flow equation, and the vertical axis

is the transverse magnetization. The experimental settings are the same as those in Fig. 5.
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(a) (b) (c)

FIG. 7. Landscape of the pseudo free energy (30) with antiferromagnetic XX interaction. The horizontal axis is the longitudinal
magnetization. The vertical axis is the pseudo free energy. The experimental settings are the same as those in Figs. 5 and 6.

APPENDIX: DERIVATION OF DIFFERENTIAL
EQUATIONS OF ORDER PARAMETERS

We derive here the differential equations (20) and (21). To
derive the deterministic flow equations of order parameters,
we utilize the following assumptions:

lim
N→∞

1

N

N∑
i=1

tanh (βi(σk : σik±1)) = 〈tanh (β(k))〉\σk ,

(A1)

lim
N→∞

K

N

N∑
i=1

σik+1 tanh (βi(σk ) : σik±1)

= 〈Kσk+1 tanh (β(k))〉\σk , (A2)

where we define the effective single local field β(k) ≡
(βp/M )mp−1

k + B/2(σk−1 + σk+1) on the kth Trotter slice and
the average

〈· · · 〉\σk ≡ lim
M→∞

∑
σ\σk

(· · · ) exp
(
β
∑M

l =k (l )σl
)

∑
σ\σk

exp
(
β
∑M

l =k (l )σl
) . (A3)

Here, we write the summation with respect to all sites except
for the Trotter slice k as∑

σ\σk

≡
∑
σ1

· · ·
∑
σk−1

∑
σk+1

· · ·
∑
σM

. (A4)

We can rewrite tanh (β(k)) and σk+1 tanh (β(k)) as

tanh (β(k)) =
∑

σk=±1 σk exp (β(k)σk )∑
σk=±1 exp (β(k)σk )

, (A5)

σk+1 tanh (β(k)) =
∑

σk=±1 σkσk+1 exp (β(k)σk )∑
σk=±1 exp (β(k)σk )

. (A6)

In a manner similar to a previous study [45], we can obtain the
expectation of tanh (β(k)) and that of Kσk+1 tanh (β(k))
as

〈tanh (β(k))〉\σk

= lim
M→∞

∑
σ σk exp

(
β
∑M

l=1 (l )σl
)

∑
σ exp

(
β
∑M

l=1 (l )σl
)

≡ 〈σk〉path, (A7)

〈Kσk+1 tanh (β(k))〉\σk

= lim
M→∞

∑
σ Kσkσk+1 exp

(
β
∑M

l=1 (l )σl
)

∑
σ exp

(
β
∑M

l=1 (l )σl
)

≡ 〈Kσkσk+1〉path. (A8)

(a) Longitudinal magnetization (b) Transverse magnetization

FIG. 8. Order parameters with antiferromagnetic XX interaction from the master equation and from the saddle-point equations. The figure
on the left shows the longitudinal magnetization, and that on the right shows the transverse magnetization. The vertical axis denotes these
order parameters. The horizontal axis denotes the strength of the transverse magnetic field. The circle and the solid line denote what they do in
Fig. 4. (a) Longitudinal magnetization, (b) transverse magnetization.
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(a) With no metastable solutions in Γ = 0 (b) With metastable solutions in Γ = 0 (c) Γ = 18

FIG. 9. Trace of Jacobian matrix, determinant, and condition with real roots of eigenvalues utilizing the solutions (m∗, m∗
x ) of Eqs. (22) and

(23). The horizontal axis denotes the strength of the transverse magnetic field. In (a) and (b) without antiferromagnetic XX interaction γ = 0,
the solutions do and do not include the metastable solutions, respectively. In (c), we consider the case with antiferromagnetic XX interaction
γ = 18. (a) With no metastable solutions in γ = 0; (b) with metastable solutions in γ = 0 and (c) γ = 18.

We substitute Eqs. (A7) and (A8) for Eq. (19). The differential equations are written as

dPt ({mk}, {mxk})

dt
=

∑
k

∂

∂mk
mkPt ({mk}, {mxk}) −

∑
k

∂

∂mk
{Pt ({mk}, {mxk})〈σk〉path} +

∑
k

∂

∂mxk
mxkPt ({mk}, {mxk})

−
∑

k

∂

∂mxk
{Pt ({mk}, {mxk})〈Kσkσk+1〉path}. (A9)

To derive a compact representation of the differential equations, we substitute Pt ({mk}, {mxk}) = ∏M
k=1 δ(mk − mk (t ))δ(mxk −

mxk (t )) into Eq. (A9) and carry out the integral with respect to
∏

k mk and
∏

k mxk after multiplying itself by mk . Finally, we can
obtain the differential equations for each Trotter slices k as

dmk

dt
= −mk + 〈σk〉path. (A10)

To derive a compact representation of the differential equation, we utilize the static approximation mk = m, mxk = mx. Under
this approximation, we inverse the procedure of the Suzuki-Trotter decomposition:

Z (m̃x ) = lim
M→∞

∑
σ

exp

(
βpmp−1

M

∑
k

σk + B
∑

k

σkσk+1

)

∝ Tr{exp(βpmp−1σ z + βm̃xσ
x )}

= 2 cosh(β
√

(pmp−1)2 + (m̃x )2). (A11)

We can regard 〈σk〉path = limM→∞〈M−1 ∑
k σk〉path as

〈σk〉path = lim
M→∞

∑
σ M−1 ∑

k σk exp
(

βpmp−1

M

∑
k σk + B

∑
k σkσk+1

)
∑

σ exp
(

βpmp−1

M

∑
k σk + B

∑
k σkσk+1

)
= lim

M→∞
∂ ln Z (m̃x )

∂ (βpmp−1)

∝ pmp−1√
(pmp−1)2 + m̃2

x

tanh
(
β

√
(pmp−1)2 + m̃2

x

)
. (A12)

We substitute Eq. (A12) for Eq. (A10) and obtain the deterministic equation (20).
For mxk , we similarly consider the flow equation as

dmxk

dt
= −mxk + 〈Kσkσk+1〉path. (A13)
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Under the static approximation, we have 〈Kσkσk+1〉path = limM→∞〈M−1 ∑
k Kσkσk+1〉path as〈

K

M

M∑
k=1

σkσk+1

〉
path

= lim
M→∞

TrM−1K
∑

k σkσk+1 exp
(

βpmp−1

M

∑
k σk + B

∑
k σkσk+1

)
Tr exp

(
βpmp−1

M

∑
k σk + B

∑
k σkσk+1

)
= lim

M→∞
∂ ln Z (m̃x )

∂ (βm̃x )

∝ m̃x√
(pmp−1)2 + m̃2

x

tanh
(
β

√
(pmp−1)2 + m̃2

x

)
. (A14)

After assigning Eq. (A14) to Eq. (A13), we can obtain Eq. (21).

[1] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
[2] A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).
[3] M. W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. J.

Berkley, E. M. Chapple, R. Harris, J. Johansson, T. Lanting, I.
Perminov, E. Ladizinsky, T. Oh, and G. Rose, Supercond. Sci.
Technol. 23, 065004 (2010).

[4] A. J. Berkley, M. W. Johnson, P. Bunyk, R. Harris, J. Johansson,
T. Lanting, E. Ladizinsky, E. Tolkacheva, M. H. S. Amin, and
G. Rose, Supercond. Sci. Technol. 23, 105014 (2010).

[5] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley,
J. Johansson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N.
Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud,
C. Rich, S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B.
Wilson, M. H. S. Amin, N. Dickson, K. Karimi, B. Macready,
C. J. S. Truncik, and G. Rose, Phys. Rev. B 82, 024511 (2010).

[6] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F.
Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P.
Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E.
Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C.
Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B.
Wilson, and G. Rose, Nature (London) 473, 194 EP (2011).

[7] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E.
Tolkacheva, F. Altomare, A. J. Berkley, R. Harris,
J. P. Hilton, T. Lanting, A. J. Przybysz, and J.
Whittaker, IEEE Trans. Appl. Supercond. 24, 1
(2014).

[8] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker,
D. A. Lidar, J. M. Martinis, and M. Troyer, Nat. Phys. 10, 218
EP (2014).

[9] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V.
Smelyanskiy, J. Martinis, and H. Neven, Phys. Rev. X 6, 031015
(2016).

[10] M. H. Amin, Phys. Rev. A 92, 052323 (2015).
[11] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu,

and M. L. de Prado, IEEE J. Sel. Top. Sign. Proc. 10, 1053
(2016).

[12] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and
A. Aspuru-Guzik, Sci. Rep. 2, 571 EP (2012).

[13] M. Hernandez and M. Aramon, Quant. Info. Proc. 16, 133
(2017).

[14] R. Y. Li, R. Di Felice, R. Rohs, and D. A. Lidar, npj Quantum
Inf. 4, 14 (2018).

[15] D. Venturelli, D. J. J. Marchand, and G. Rojo,
arXiv:1506.08479.

[16] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S.
Yarkoni, and B. Parney, Front. ICT 4, 29 (2017).

[17] M. Henderson, J. Novak, and T. Cook, arXiv:1802.00069.
[18] A. Levit, D. Crawford, N. Ghadermarzy, J. S. Oberoi, and P.

Ronagh, arXiv:1706.00074.
[19] F. Neukart, D. Von Dollen, C. Seidel, and G. Compostella,

Front. Phys. 5, 71 (2018).
[20] A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, and M. H.

Amin, Quantum Sci. Technol. 4, 014001 (2018).
[21] M. Ohzeki, A. Miki, M. J. Miyama, and M. Terabe,

arXiv:1812.01532.
[22] S. Arai, M. Ohzeki, and K. Tanaka, J. Phys. Soc. Jpn. 87,

033001 (2018).
[23] C. Takahashi, M. Ohzeki, S. Okada, M. Terabe, S. Taguchi, and

K. Tanaka, J. Phys. Soc. Jpn. 87, 074001 (2018).
[24] M. Ohzeki, C. Takahashi, S. Okada, M. Terabe, S. Taguchi,

and K. Tanaka, Nonlin. Theor. Appl., IEICE 9, 392
(2018).

[25] S. Okada, M. Ohzeki, M. Terabe, and S. Taguchi,
arXiv:1901.00924.

[26] S. Suzuki and M. Okada, J. Phys. Soc. Jpn. 74, 1649 (2005).
[27] Y. Seki and H. Nishimori, Phys. Rev. E 85, 051112 (2012).
[28] Y. Seki and H. Nishimori, J. Phys. A 48, 335301 (2015).
[29] S. Matsuura, H. Nishimori, T. Albash, and D. A. Lidar, Phys.

Rev. Lett. 116, 220501 (2016).
[30] S. Okada, M. Ohzeki, and K. Tanaka, J. Phys. Soc. Jpn. 88,

024802 (2019).
[31] M. Suzuki, Commun. Math. Phys. 51, 183 (1976).
[32] S. Bravyi, D. P. Divincenzo, R. Oliveira, and B. M. Terhal,

Quantum Inf. Comput. 8, 0361 (2008).
[33] L. Hormozi, E. W. Brown, G. Carleo, and M. Troyer, Phys. Rev.

B 95, 184416 (2017).
[34] H. Nishimori and K. Takada, Front. ICT 4, 2 (2017).
[35] M. Ohzeki, Sci. Rep. 7, 41186 (2017).
[36] A. Evgeny and M. H. Amin, arXiv:1703.09277.
[37] S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang, S. Boixo,

H. Neven, and M. Troyer, Phys. Rev. Lett. 117, 180402 (2016).
[38] Z. Jiang, V. N. Smelyanskiy, S. V. Isakov, S. Boixo, G. Mazzola,

M. Troyer, and H. Neven, Phys. Rev. A 95, 012322 (2017).
[39] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388

(1987).
[40] M. R. Swift, H. Bokil, R. D. M. Travasso, and A. J. Bray,

Phys. Rev. B 62, 11494 (2000).
[41] B. Seoane and H. Nishimori, J. Phys. A 45, 435301 (2012).

032120-10

https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/10/105014
https://doi.org/10.1088/0953-2048/23/10/105014
https://doi.org/10.1088/0953-2048/23/10/105014
https://doi.org/10.1088/0953-2048/23/10/105014
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1038/srep00571
https://doi.org/10.1007/s11128-017-1586-y
https://doi.org/10.1007/s11128-017-1586-y
https://doi.org/10.1007/s11128-017-1586-y
https://doi.org/10.1007/s11128-017-1586-y
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
https://doi.org/10.1038/s41534-018-0060-8
http://arxiv.org/abs/arXiv:1506.08479
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fict.2017.00029
http://arxiv.org/abs/arXiv:1802.00069
http://arxiv.org/abs/arXiv:1706.00074
https://doi.org/10.3389/fphy.2017.00071
https://doi.org/10.3389/fphy.2017.00071
https://doi.org/10.3389/fphy.2017.00071
https://doi.org/10.3389/fphy.2017.00071
https://doi.org/10.1088/2058-9565/aada1f
https://doi.org/10.1088/2058-9565/aada1f
https://doi.org/10.1088/2058-9565/aada1f
https://doi.org/10.1088/2058-9565/aada1f
http://arxiv.org/abs/arXiv:1812.01532
https://doi.org/10.7566/JPSJ.87.033001
https://doi.org/10.7566/JPSJ.87.033001
https://doi.org/10.7566/JPSJ.87.033001
https://doi.org/10.7566/JPSJ.87.033001
https://doi.org/10.7566/JPSJ.87.074001
https://doi.org/10.7566/JPSJ.87.074001
https://doi.org/10.7566/JPSJ.87.074001
https://doi.org/10.7566/JPSJ.87.074001
https://doi.org/10.1587/nolta.9.392
https://doi.org/10.1587/nolta.9.392
https://doi.org/10.1587/nolta.9.392
https://doi.org/10.1587/nolta.9.392
http://arxiv.org/abs/arXiv:1901.00924
https://doi.org/10.1143/JPSJ.74.1649
https://doi.org/10.1143/JPSJ.74.1649
https://doi.org/10.1143/JPSJ.74.1649
https://doi.org/10.1143/JPSJ.74.1649
https://doi.org/10.1103/PhysRevE.85.051112
https://doi.org/10.1103/PhysRevE.85.051112
https://doi.org/10.1103/PhysRevE.85.051112
https://doi.org/10.1103/PhysRevE.85.051112
https://doi.org/10.1088/1751-8113/48/33/335301
https://doi.org/10.1088/1751-8113/48/33/335301
https://doi.org/10.1088/1751-8113/48/33/335301
https://doi.org/10.1088/1751-8113/48/33/335301
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.7566/JPSJ.88.024802
https://doi.org/10.7566/JPSJ.88.024802
https://doi.org/10.7566/JPSJ.88.024802
https://doi.org/10.7566/JPSJ.88.024802
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevB.95.184416
https://doi.org/10.1103/PhysRevB.95.184416
https://doi.org/10.1103/PhysRevB.95.184416
https://doi.org/10.1103/PhysRevB.95.184416
https://doi.org/10.3389/fict.2017.00002
https://doi.org/10.3389/fict.2017.00002
https://doi.org/10.3389/fict.2017.00002
https://doi.org/10.3389/fict.2017.00002
https://doi.org/10.1038/srep41186
https://doi.org/10.1038/srep41186
https://doi.org/10.1038/srep41186
https://doi.org/10.1038/srep41186
http://arxiv.org/abs/arXiv:1703.09277
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevA.95.012322
https://doi.org/10.1103/PhysRevA.95.012322
https://doi.org/10.1103/PhysRevA.95.012322
https://doi.org/10.1103/PhysRevA.95.012322
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.62.11494
https://doi.org/10.1103/PhysRevB.62.11494
https://doi.org/10.1103/PhysRevB.62.11494
https://doi.org/10.1103/PhysRevB.62.11494
https://doi.org/10.1088/1751-8113/45/43/435301
https://doi.org/10.1088/1751-8113/45/43/435301
https://doi.org/10.1088/1751-8113/45/43/435301
https://doi.org/10.1088/1751-8113/45/43/435301


DYNAMICS OF ORDER PARAMETERS OF NONSTOQUASTIC … PHYSICAL REVIEW E 99, 032120 (2019)

[42] S. Matsuura, H. Nishimori, W. Vinci, T. Albash, and D. A.
Lidar, Phys. Rev. A 95, 022308 (2017).

[43] Z. Bertalan, T. Kuma, Y. Matsuda, and H. Nishimori, J. Stat.
Mech.: Theor. Exp. (2011) P01016.

[44] J. I. Inoue and K. Tanaka, Phys. Rev. E 65, 016125 (2001).
[45] J. Inoue, J. Phys. Conf. Ser. 233, 012010 (2010).
[46] J. Inoue, J. Phys. Conf. Ser. 297, 012012 (2011).
[47] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-

tions to Physics, Biology, Chemistry and Engineering (Westview
Press, Perseus Books Group, Cambridge, 2001).

[48] P. Liu and S. N. Elaydi, J. Comput. Anal. Appl. 3, 53 (2001).

[49] N. Supajaidee and S. Moonchai, Adv. Diff. Eq. 2017, 372
(2017).

[50] T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, and J. Pujos,
Europhys. Lett. 89, 40004 (2010).

[51] N. Chancellor, New J. Phys. 19, 023024 (2017).
[52] Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishimori,

J. Phys. Soc. Jpn. 87, 023002 (2018).
[53] M. Ohkuwa, H. Nishimori, and D. A. Lidar, Phys. Rev. A 98,

022314 (2018).
[54] Y. Susa, Y. Yamashiro, M. Yamamoto, I. Hen, D. A. Lidar, and

H. Nishimori, Phys. Rev. A 98, 042326 (2018).

032120-11

https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1088/1742-5468/2011/01/P01016
https://doi.org/10.1088/1742-5468/2011/01/P01016
https://doi.org/10.1088/1742-5468/2011/01/P01016
https://doi.org/10.1103/PhysRevE.65.016125
https://doi.org/10.1103/PhysRevE.65.016125
https://doi.org/10.1103/PhysRevE.65.016125
https://doi.org/10.1103/PhysRevE.65.016125
https://doi.org/10.1088/1742-6596/233/1/012010
https://doi.org/10.1088/1742-6596/233/1/012010
https://doi.org/10.1088/1742-6596/233/1/012010
https://doi.org/10.1088/1742-6596/233/1/012010
https://doi.org/10.1088/1742-6596/297/1/012012
https://doi.org/10.1088/1742-6596/297/1/012012
https://doi.org/10.1088/1742-6596/297/1/012012
https://doi.org/10.1088/1742-6596/297/1/012012
https://doi.org/10.1023/A:1011539901001
https://doi.org/10.1023/A:1011539901001
https://doi.org/10.1023/A:1011539901001
https://doi.org/10.1023/A:1011539901001
https://doi.org/10.1186/s13662-017-1430-9
https://doi.org/10.1186/s13662-017-1430-9
https://doi.org/10.1186/s13662-017-1430-9
https://doi.org/10.1186/s13662-017-1430-9
https://doi.org/10.1209/0295-5075/89/40004
https://doi.org/10.1209/0295-5075/89/40004
https://doi.org/10.1209/0295-5075/89/40004
https://doi.org/10.1209/0295-5075/89/40004
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.7566/JPSJ.87.023002
https://doi.org/10.7566/JPSJ.87.023002
https://doi.org/10.7566/JPSJ.87.023002
https://doi.org/10.7566/JPSJ.87.023002
https://doi.org/10.1103/PhysRevA.98.022314
https://doi.org/10.1103/PhysRevA.98.022314
https://doi.org/10.1103/PhysRevA.98.022314
https://doi.org/10.1103/PhysRevA.98.022314
https://doi.org/10.1103/PhysRevA.98.042326
https://doi.org/10.1103/PhysRevA.98.042326
https://doi.org/10.1103/PhysRevA.98.042326
https://doi.org/10.1103/PhysRevA.98.042326



