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Dirac wave transmission in Lévy-disordered systems
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We investigate the propagation of electronic waves described by the Dirac equation subject to a Lévy-type
disorder distribution. Our numerical calculations, based on the transfer matrix method, in a system with a
distribution of potential barriers show that it presents a phase transition from anomalous to standard to anomalous
localization as the incidence energy increases. In contrast, electronic waves described by the Schrödinger
equation do not present such transitions. Moreover, we obtain the phase diagram delimiting anomalous and
standard localization regimes, in the form of an incidence angle versus incidence energy diagram, and argue
that transitions can also be characterized by the behavior of the dispersion of the transmission. We attribute this
transition to an abrupt reduction in the transmittance of the system when the incidence angle is higher than a
critical value which induces a decrease in the transmission fluctuations.

DOI: 10.1103/PhysRevE.99.032118

I. INTRODUCTION

Anderson localization (also known as strong localization)
is a remarkable physical phenomenon characterized by a
complete suppression of wave diffusion in a disordered media
due to destructive quantum interference [1]. At first, the phe-
nomenon was successfully proposed for electronic transport
problems, introducing the quantum-mechanical interpretation
of electronic motion in a disordered device [2]. A similar
phenomenon was later observed for light waves, which be-
came known as the Anderson localization of light [3]. An
anomalous localization behavior, different from the standard
Anderson localization, has been obtained when the probability
density of the disorder distribution has a long tail, as in the
case of Lévy distributions [4–9]. Since the mid-1980s several
stochastic phenomena have been described by the statistics
of Lévy distributions, such as human mobility [10], fluid
dynamics [11–13], photons [14–20], random lasers [21,22],
free-standing graphene membranes [23], and, more recently,
electronic transport [4–9,24–27]. These phenomena provide a
venue to a deeper understanding of electronic localization.

A Lévy distribution is characterized by a probability den-
sity ρ(w) of a random variable w, which has a power-law
tail [14,16,26]. The probability density is given by ρ(w) ∝
1/w1+α , where 0 < α < 2. If 0 < α < 1, then the first and
second moments of ρ(w) diverge because of heavy tails,
while for 1 � α < 2 only the second moment diverges. In
particular, for α = 0.5, the so-called Lévy distribution is
analytical and given by ρ(w) = (2π )−1/2w−3/2 exp (−1/2w),
while for other values of α the distribution can be obtained
numerically [28].

The localization of classical waves in weakly scattering
one-dimensional Lévy lattices was studied recently [15,16].
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It was proven that the localization length (ξ ) of long wave-
lengths is proportional to the power of the wavelength, ξ ∝
λα , for 1 < α < 2 and that it has a transcendental behavior,
ξ ∝ λ2/ ln (λ), for α = 2. However, for α > 2, the localiza-
tion length goes to typical Anderson localization, which is
given by ξ ∝ λ2.

From the electronic transport point of view, a Schrödinger
electronic wave submitted to typical one-dimensional disorder
(Anderson model) shows standard localization, which means
that the average transmission decays exponentially with the
system length L [29–31],

〈T 〉 ∝ exp

(
− L

2�

)
, (1)

where � is the mean free path. Meanwhile, the average of
minus the logarithm of the transmission increases linearly
with L,

〈− ln T 〉 = L

�
. (2)

Equation (2) is used to obtain the mean free path from
experiments in disordered one-dimensional devices [30,32].
However, if the Schrödinger electronic wave is submitted to
a one-dimensional Lévy-type disorder, then standard local-
ization is no longer observed. In this case, Eqs. (1) and (2)
become, respectively [4,17,33],

〈T 〉 ∝ L−α, (3)

〈− ln T 〉 ∝ Lα, (4)

where α is the exponent of the power-law tail in the Lévy
distribution. The effects of the Lévy-type disorder are stronger
in the range 0 < α < 1. The behavior described by Eqs. (3)
and (4) is known as anomalous localization.

Recent investigations of electronic transport in Dirac sys-
tems identified characteristics that could give rise to anoma-
lous localization. For instance, in Ref. [8] the authors show
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that typical disorder in graphene nanoribbons could originate
either standard or anomalous localization depending on the
type of ribbon edge. Furthermore, in Ref. [9] the transport
properties of graphene with anisotropically distributed on-site
impurities were investigated, showing that the system reveals
Lévy-flight transport in the stripe direction, which leads to a
conductivity that increases with the square root of the system
length. However, as far as we know [34–48], there are no
studies about the effects of a specific Lévy-type disorder
over a Dirac electronic wave. Hence, an issue remains open:
What type of localization will manifest in the case of Dirac
electronic waves subject to a Lévy-type disorder?

Here we address this question by investigating the trans-
mission of Dirac electronic waves subject to a Lévy-type
disorder, as schematically shown in Fig. 1. We show that
the system presents a phase transition from anomalous to
standard to anomalous localization as incidence energy in-
creases, in contrast to Schrödinger electronic waves which
do not present such transitions [4,17,33]. Moreover, we ob-
tain the phase diagram delimiting anomalous and standard
localization regimes, in the form of an incidence angle versus
incidence energy diagram. Our numerical results have been
obtained by the transfer matrix method and compared with
Eqs. (1)–(4). We believe that our results could in principle
be achieved following recent experiments in graphene devices
and superlattices [49–56].

II. MODEL AND METHODOLOGY

With the aim of connecting our results with experiments,
we analyze the electronic transport properties of graphene
in the presence of a Lévy-type disorder. The effective
Dirac equation for fermions moving in the presence of one-
dimensional potential barriers in graphene is given by

−ih̄vF (σx∂x + σy∂y)ψ = [E − V (x)]ψ, (5)

where σi are the Pauli matrices, vF is the Fermi velocity,
and the spinor ψ = (ψA, ψB)T , with A and B representing
the two polarizations of the pseudospin which correspond
to two graphene sublattices. The electrostatic potential V (x)
is piecewise constant, which alternates between two values,
V (x) = V and 0, as depicted in Fig. 1. The width of the
regions w j , with and without potential barriers, follows a
Lévy-type distribution. A similar experimental setup can, at
least in principle, be achieved following recent experiments in
graphene superlattices [49–54].

We employ the transfer matrix method to calculate the
transmittance directly. Since V (x) is constant inside the jth
region, we can write ψ (x, y) = e−ikyyψ (x), where ψ (x) =

FIG. 1. The propagation of Dirac electronic wave along the se-
quence of barriers and wells with thicknesses w j and w j+1 following
a Lévy-type distribution.

(ψA(x), ψB(x))T , and obtain

d2ψA,B

dx2
+ (

k2
j − k2

y

)
ψA,B = 0, (6)

where k j = (E − Vj )/(h̄vF ) is the wave vector inside of the
Vj barrier. The subscript j denotes the regions of the system,
j = 0, 1, 2, . . . , N, e, where j = 0 is the incident region while
j = e the exit region. Note that N is not a fixed number. It
depends on the Lévy distribution.

Following Ref. [57], we obtain the transfer matrix connect-
ing the wave function ψ (x) at x and x + �x in the jth barrier,
which is given by

Mj (�x, E , ky ) =
⎡
⎣

cos(q j�x−θ j )
cos θ j

i sin(q j�x)
cos θ j

i sin(q j�x)
cos θ j

cos(q j�x+θ j )
cos θ j

⎤
⎦, (7)

where q j is the x component of the wave vector given by q j =√
k2

j − k2
y for k2

j > k2
y ; otherwise, q j = i

√
k2

y − k2
j . The term

θ j is the angle between the x component of the wave vector q j

and the wave vector k j , θ j = arcsin(ky/k j ). Hence, the transfer
matrix connecting incident and exit wave functions is given by
X = ∏N

j=1 Mj (w j, E , ky ), while the transmission coefficient
is given by

t (E , ky) = 2 cos θ0

(x22e−iθ0 + x11e−iθe ) − x12ei(θe−θ0 ) − x21
, (8)

where xmn are the matrix elements of X and θ0(θe) is the
incidence (exiting) angle.

III. RESULTS AND DISCUSSION

In Fig. 2, we present the average transmission probability
〈T 〉 = 〈tt†〉 as a function of system length L for a disor-
dered graphene superlattice with Lévy-type potential barrier
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FIG. 2. Average transmission probability 〈T 〉 as a function of
system length L for Dirac heterostructures with Lévy-type distribu-
tion of potential barriers with V = 50 meV. Incidence angle increases
from top θ = 0 to bottom π/2, and incidence energies are (a)
E = 20 meV and (b) E = 30 meV.
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FIG. 3. Panels (a)–(d), show 〈− ln T 〉 as a function of length
for Dirac heterostructures with Lévy-type distribution of potential
barriers with V = 50 meV. Incidence angle increases from bottom
θ = 0 to top π/2, and incidence energies are E = 20, 25, 26, and
30 meV. Panel (e) shows the phase diagram in terms of incidence
angle θ and incidence energy E , dividing anomalous (AL) and
“standard” localization (SL) regimes.

distribution characterized by α = 0.5. The energy of the
barriers is V = 50 meV. The average was calculated from
104 realizations for two different values of incidence energy,
E = 20 and 30 meV, and varying the incidence angle θ from
zero to π/2 by 0.05 radians at each step. In the case of normal
incidence the charge carriers do not feel the electrostatic
potential barriers due to Klein tunneling [58], and we obtain
〈T 〉 = 1 for θ = 0 in both cases, as expected. However, when
θ increases the potential barrier distribution becomes relevant
to the transport properties, and 〈T 〉 tends to decrease as a
power law, Eq. (3), instead of the exponential decay in Eq. (1).
This behavior indicates the onset of anomalous localization
in Dirac materials introduced by a Lévy-type disorder dis-
tribution, represented here by the distribution of potential
barriers.

The top panels of Fig. 3 show 〈− ln T 〉 as a function of L
for various incidence energies, E = 20, 25, 26, and 30 meV,
and varying the incidence angle θ from zero to π/2 in incre-
ments of 0.05 radians. When E is equal to or smaller than half
of the potential barrier energy (E � V/2 = 25 meV), 〈− ln T 〉
increases as a power law in accordance with Eq. (4), which
characterizes an anomalous localization behavior. However,
when E is greater than half of the potential barrier energy
(E > V/2 = 25 meV), 〈− ln T 〉 shows a transition in local-
ization behavior as the incidence angle increases.
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FIG. 4. Average transmission [(a) and (c)] and 〈− ln T 〉 [(b) and
(d)] as a function of system length for Dirac heterostructures with
Lévy-type barrier distribution for α = 0.5. In (a) and (b) we have
E = 25 meV (E < V ). The dashed lines are fitted using Eqs. (3)
and (4). In (c) and (d) we have E = 60 meV (E > V ) and θ = π/5.
The dashed lines are fitted using Eqs. (3) and (2), whereas the straight
line is fitted with Eq. (1).

The bottom panel of Fig. 3 presents the phase diagram
in terms of incidence angle θ and incidence energy E . The
continuous line is the critical incidence angle given by θc =
arcsin |1 − V/E |, while the data points were obtained from
our numerical calculations. The critical incidence angle θc

defines a transition in localization behavior and shows a
minimum value when the incidence energy equals the en-
ergy of the potential barriers E = V = 50 meV. The phase
diagram shows two different localization regimes: anomalous
localization (AL) and “standard” localization (SL). In the AL
regime, 〈− ln T 〉 increases as a power law as described by
Eq. (4), while in the SL regime it increases linearly with L,
as described by Eq. (2). Notice that for E � V/2 = 25 meV,
the system is always in the AL regime for any incidence angle
in the interval 0 � θ � π/2.

To better understand the transition in localization behavior,
we analyze the AL and SL regions in detail. The former is
shown on the left-hand side of Fig. 4 while the latter is shown
on its right-hand side. Figure 4(a) shows 〈T 〉 as a function of
L for three incidence angles θ = π/5, π/3, and 2π/5 and
incidence energy fixed at E = 25 meV. All curves can be
fitted by a power-law decay, Eq. (3), with α = 0.5 (dashed
lines). In addition, Fig. 4(b) shows 〈− ln T 〉 as a function of
length L with the same parameters. Again, the numerical data
are better fitted by a power law as in Eq. (4) with α = 0.5
(dashed lines). This behavior indicates that Dirac carriers in
the AL region feel the tunneling potential barriers with Lévy-
type distribution the same way that Schrödinger particles do.
Furthermore, this behavior is valid for all values in the range
0 < α < 1.

In Fig. 4(c) we present 〈T 〉 as a function of length L for
θ = π/5 and E = 60 meV. In this case, we attempted to fit
the numerical data with an exponentially decaying function as
in Eq. (1) and a power-law decay as in Eq. (3). According to
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FIG. 5. Average transmission [(a) and (c)] and 〈− ln T 〉 [(b) and
(d)] as a function of L for Dirac heterostructures with Lévy-type
barrier distribution. In (a) and (b) θ = 2π/5, while in (c) and (d) α =
0.5. The dashed lines are fitted using Eqs. (3) and (2) for top and
bottom panels, respectively. Incidence energy is fixed E = 60 meV.

Fig. 4(c), only the power-law decay is capable of describing
the dependence of 〈T 〉 with L. Therefore, the power-law decay
of 〈T 〉 for E > V agrees with AL behavior observed for E <

V . Nonetheless, Fig. 4(d) shows the dependence of 〈− ln T 〉
on L with the same parameters, where we observe a linear
dependence as predicted by Eq. (2) (dashed lines). Therefore,
the linear increase of 〈− ln T 〉 indicates a SL behavior instead
of AL.

In order to verify if this localization behavior is a general
result for the SL region, we now analyze the data in Fig. 5.
In Figs. 5(a) and 5(b), we fix the incidence angle θ = 2π/5
and consider α = 0.4, 0.5, and 0.6. Meanwhile, in Fig. 5(c)
and 5(d), we fix α = 0.5 and change the incidence angle
θ = π/5, π/3, and 2π/5. In all cases, the incidence energy
is fixed at E = 60 meV. Figure 5 shows that 〈T 〉 presents
a power-law decay, while 〈− ln T 〉 increases linearly with
L. This means that the SL region of the phase diagram is
not a proper standard localization, in the sense of Anderson
localization, because 〈T 〉 is not described by an exponential
decay. However, 〈− ln T 〉 is indeed described by a linear
increase as it would be in the case of Anderson localization.

We remark that a system with carriers described by the
Schrödinger equation also presents an anomalous to standard
localization transition as a function of α, when α � 1 [17].
This is reasonable since increasing α is equivalent of increas-
ing the density of disorder in the system. When α � 2 the
Schrödinger system presents typical Anderson localization. A
similar behavior occurs in classical waves: For 1 < α � 2 the
localization is anomalous while for α > 2 it is standard [16].
In contrast, our results show that a system with Dirac carriers
presents a transition in localization behavior as a function of
energy, with no change for 0 < α < 1, in other words, without
change in the disorder density.

Finally, in Fig. 6 we analyze 〈T 〉 [Figs. 6(a) and 6(c)]
and its standard deviation, σ =

√
〈T 2〉 − 〈T 〉2 [Figs. 6(b) and

6(d)], as a function of incidence energy. We take L = 5 μm,
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FIG. 6. Average transmission and its standard deviation as a
function of incidence energy for a system length L = 5 μm. In
(a) and (b) we have α = 0.25, while in (c) and (d) α = 0.50. The
incidence angle takes values θ = π/5, π/3, and 2π/5.

and α = 0.25 in Figs. 6(a) and 6(b), while α = 0.5 in
Figs. 6(c) and 6(d). Incidence angles are θ = π/5, π/3, and
2π/5. In accordance with the phase diagram of Fig. 3, when
θ = π/5, 〈T 〉 shows two transitions in localization behavior.
First, from AL to SL at E ≈ 32 meV, and a second one from
SL to AL at E ≈ 122 meV. In the case of θ = π/3 and 2π/5,
we only observe one transition from AL to SL at E ≈ 25 meV.
In fact, the transition from SL to AL will also occur in these
cases, but at very high incidence energies.

In all cases we notice that 〈T 〉 is reduced to a small constant
value when the system is in the SL regime. This is due to
quasiparticles with incidence angle equal to θc being transmit-
ted at π/2 in the potential barrier region [59]. For incidence
angles higher then θc, the incident plane wave becomes an
evanescent one, reducing abruptly the transmittance. In our
system, this reduction in 〈T 〉 also causes a reduction in its
fluctuations, as shown in the bottom panels of Fig. 6. The
transition in localization behavior then becomes clearer, since
the AL is a consequence of the large transmission fluctuations
which appear in systems with a Lévy-type disorder. When
these fluctuations are suppressed, which in our case happens
for incidence angles higher then θc, the system stays in the SL
regime.

IV. CONCLUSION

In summary, we investigated the propagation of elec-
tronic waves described by the Dirac equation in a quasi-
one-dimensional system subject to a disorder distribution. We
performed numerical calculations based on the transfer matrix
method in a system with a Lévy-type distribution of potential
barriers. We have shown that the system presents a transition
from anomalous to standard to anomalous localization as the
incidence energy increases. In contrast to electronic waves
described by the Schrödinger equation, which do not present
such transitions. The phase diagram delimiting the anomalous
and standard localization regimes, as a function of incidence
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angle and incidence energy, was obtained. We have shown
that the transitions can also be characterized by the behavior
of the dispersion of the transmission. Finally, we attribute
the transitions in localization regime to an abrupt decay in
the transmittance of the system which occurs when the inci-
dence angle is higher then θc and induces a decrease in the
transmission fluctuations. We believe that our results could, at
least in principle, be achieved following recent experiments
in graphene superlattices [49–54]. For instance, recent ex-
periments produced and characterized graphene devices with

length in the 3- to 5-μm range [55,56], which could enable a
possible experimental verification of our results.

ACKNOWLEDGMENTS

This work was partially supported by Brazilian agencies
Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq), Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior (CAPES), and Fundação de Amparo à
Ciência e Tecnologia de Pernambuco (FACEPE).

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys. Today

62, 24 (2009).
[3] M. Segev, Y. Silberberg, and D. N. Christodoulides, Nat.

Photon. 7, 197 (2013).
[4] F. Falceto and V. A. Gopar, Europhys. Lett. 92, 57014 (2010).
[5] C. M. Soukoulis and E. N. Economou, Phys. Rev. B 24, 5698

(1981).
[6] S. N. Evangelou and D. E. Katsanos, J. Phys. A: Math. Gen. 36,

3237 (2003).
[7] I. Amanatidis, I. Kleftogiannis, F. Falceto, and V. A. Gopar,

Phys. Rev. B 85, 235450 (2012).
[8] I. Kleftogiannis, I. Amanatidis, and V. A. Gopar, Phys. Rev. B

88, 205414 (2013).
[9] S. Gattenlöhner, I. V. Gornyi, P. M. Ostrovsky, B. Trauzettel,

A. D. Mirlin, and M. Titov, Phys. Rev. Lett. 117, 046603
(2016).

[10] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, Science 327,
1018 (2010).

[11] S. C. Venkataramani, T. M. Antonsen, Jr., and E. Ott, Phys. Rev.
Lett. 78, 3864 (1997).

[12] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev.
Lett. 71, 3975 (1993).

[13] A. M. S. Macêdo, Ivan R. Roa González, D. S. P. Salazar, and
G. L. Vasconcelos, Phys. Rev. E 95, 032315 (2017).

[14] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, Nature 453, 495
(2008).

[15] S. S. Zakeri, S. Lepri, and D. S. Wiersma, Phys. Rev. E 91,
032112 (2015).

[16] A. A. Asatryan and A. Novikov, Phys. Rev. B 98, 235144
(2018).

[17] A. A. Fernández-Marín, J. A. Méndez-Bermúdez, and V. A.
Gopar, Phys. Rev. A 85, 035803 (2012).

[18] P. van Loevezijn, R. Schlatmann, J. Verhoeven, B. A. van
Tiggelen, and E. M. Gullikson, Appl. Opt. 35, 3614 (1996).

[19] A. G. Ardakani and M. G. Nezhadhaghighi, J. Opt. 17, 105601
(2015).

[20] A. G. Ardakani and F. Safarzadeh, J. Mod. Opt. 64, 1669
(2017), .

[21] E. P. Raposo and A. S. L. Gomes, Phys. Rev. A 91, 043827
(2015).

[22] I. R. R. González, B. C. Lima, P. I. R. Pincheira, A. A. Brum,
A. M. S. Macêdo, G. L. Vasconcelos, L. de S. Menezes, E. P.
Raposo, A. S. L. Gomes, and R. Kashyap, Nat. Commun. 8,
15731 (2017).

[23] M. L. Ackerman, P. Kumar, M. Neek-Amal, P. M. Thibado,
F. M. Peeters, and S. Singh, Phys. Rev. Lett. 117, 126801
(2016).

[24] C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, and G.
Filatrella, Nanotechnology 28, 134001 (2017).

[25] S. Irmer, D. Kochan, J. Lee, and J. Fabian, Phys. Rev. B 97,
075417 (2018).

[26] I. Amanatidis, I. Kleftogiannis, F. Falceto, and V. A. Gopar,
Phys. Rev. E 96, 062141 (2017).

[27] J. A. Méndez-Bermúdez, A. J. Martínez-Mendoza, V. A. Gopar,
and I. Varga, Phys. Rev. E 93, 012135 (2016).

[28] Y. Liang and W. Chen, Signal Process. 93, 242 (2013).
[29] P. A. Mello and N. Kumar, Quantum Transport in Meso-

scopic Systems: Complexity and Statistical Fluctuations (Oxford
University Press, Oxford, 2004).

[30] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[31] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,

Phys. Rev. B 22, 3519 (1980).
[32] T. Verçosa, Y.-J. Doh, J. G. G. S. Ramos, and A. L. R. Barbosa,

Phys. Rev. B 98, 155407 (2018).
[33] A. A. Fernández-Marín, J. A. Méndez-Bermúdez, J. Carbonell,

F. Cervera, J. Sánchez-Dehesa, and V. A. Gopar, Phys. Rev.
Lett. 113, 233901 (2014).

[34] A. De Martino, L. Dell’Anna, and R. Egger, Phys. Rev. Lett.
98, 066802 (2007).

[35] M. Barbier, F. M. Peeters, P. Vasilopoulos, and J. M. Pereira,
Phys. Rev. B 77, 115446 (2008).

[36] M. Ramezani Masir, P. Vasilopoulos, A. Matulis, and F. M.
Peeters, Phys. Rev. B 77, 235443 (2008).

[37] L. Dell’Anna and A. De Martino, Phys. Rev. B 79, 045420
(2009).

[38] M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81,
075438 (2010).

[39] P.-L. Zhao and X. Chen, Appl. Phys. Lett. 99, 182108
(2011).

[40] D. Moldovan, M. Ramezani Masir, L. Covaci, and F. M. Peeters,
Phys. Rev. B 86, 115431 (2012).

[41] G. M. Maksimova, E. S. Azarova, A. V. Telezhnikov, and V. A.
Burdov, Phys. Rev. B 86, 205422 (2012).

[42] J. R. F. Lima, A. L. R. Barbosa, C. G. Bezerra, and L. F. C.
Pereira, Physica E 97, 105 (2018).

[43] R. Seshadri and D. Sen, J. Phys.: Condens. Matter 29, 155303
(2017).

[44] H. Li, J. M. Shao, H. B. Zhang, and G. W. Yang, Nanoscale 6,
3127 (2014).

032118-5

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1209/0295-5075/92/57014
https://doi.org/10.1103/PhysRevB.24.5698
https://doi.org/10.1103/PhysRevB.24.5698
https://doi.org/10.1103/PhysRevB.24.5698
https://doi.org/10.1103/PhysRevB.24.5698
https://doi.org/10.1088/0305-4470/36/12/322
https://doi.org/10.1088/0305-4470/36/12/322
https://doi.org/10.1088/0305-4470/36/12/322
https://doi.org/10.1088/0305-4470/36/12/322
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevB.85.235450
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1103/PhysRevB.88.205414
https://doi.org/10.1103/PhysRevLett.117.046603
https://doi.org/10.1103/PhysRevLett.117.046603
https://doi.org/10.1103/PhysRevLett.117.046603
https://doi.org/10.1103/PhysRevLett.117.046603
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1103/PhysRevLett.78.3864
https://doi.org/10.1103/PhysRevLett.78.3864
https://doi.org/10.1103/PhysRevLett.78.3864
https://doi.org/10.1103/PhysRevLett.78.3864
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevE.95.032315
https://doi.org/10.1103/PhysRevE.95.032315
https://doi.org/10.1103/PhysRevE.95.032315
https://doi.org/10.1103/PhysRevE.95.032315
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1103/PhysRevE.91.032112
https://doi.org/10.1103/PhysRevE.91.032112
https://doi.org/10.1103/PhysRevE.91.032112
https://doi.org/10.1103/PhysRevE.91.032112
https://doi.org/10.1103/PhysRevB.98.235144
https://doi.org/10.1103/PhysRevB.98.235144
https://doi.org/10.1103/PhysRevB.98.235144
https://doi.org/10.1103/PhysRevB.98.235144
https://doi.org/10.1103/PhysRevA.85.035803
https://doi.org/10.1103/PhysRevA.85.035803
https://doi.org/10.1103/PhysRevA.85.035803
https://doi.org/10.1103/PhysRevA.85.035803
https://doi.org/10.1364/AO.35.003614
https://doi.org/10.1364/AO.35.003614
https://doi.org/10.1364/AO.35.003614
https://doi.org/10.1364/AO.35.003614
https://doi.org/10.1088/2040-8978/17/10/105601
https://doi.org/10.1088/2040-8978/17/10/105601
https://doi.org/10.1088/2040-8978/17/10/105601
https://doi.org/10.1088/2040-8978/17/10/105601
https://doi.org/10.1080/09500340.2017.1310317
https://doi.org/10.1080/09500340.2017.1310317
https://doi.org/10.1080/09500340.2017.1310317
https://doi.org/10.1080/09500340.2017.1310317
https://doi.org/10.1103/PhysRevA.91.043827
https://doi.org/10.1103/PhysRevA.91.043827
https://doi.org/10.1103/PhysRevA.91.043827
https://doi.org/10.1103/PhysRevA.91.043827
https://doi.org/10.1038/ncomms15731
https://doi.org/10.1038/ncomms15731
https://doi.org/10.1038/ncomms15731
https://doi.org/10.1038/ncomms15731
https://doi.org/10.1103/PhysRevLett.117.126801
https://doi.org/10.1103/PhysRevLett.117.126801
https://doi.org/10.1103/PhysRevLett.117.126801
https://doi.org/10.1103/PhysRevLett.117.126801
https://doi.org/10.1088/1361-6528/aa5e75
https://doi.org/10.1088/1361-6528/aa5e75
https://doi.org/10.1088/1361-6528/aa5e75
https://doi.org/10.1088/1361-6528/aa5e75
https://doi.org/10.1103/PhysRevB.97.075417
https://doi.org/10.1103/PhysRevB.97.075417
https://doi.org/10.1103/PhysRevB.97.075417
https://doi.org/10.1103/PhysRevB.97.075417
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevE.96.062141
https://doi.org/10.1103/PhysRevE.93.012135
https://doi.org/10.1103/PhysRevE.93.012135
https://doi.org/10.1103/PhysRevE.93.012135
https://doi.org/10.1103/PhysRevE.93.012135
https://doi.org/10.1016/j.sigpro.2012.07.035
https://doi.org/10.1016/j.sigpro.2012.07.035
https://doi.org/10.1016/j.sigpro.2012.07.035
https://doi.org/10.1016/j.sigpro.2012.07.035
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.98.155407
https://doi.org/10.1103/PhysRevB.98.155407
https://doi.org/10.1103/PhysRevB.98.155407
https://doi.org/10.1103/PhysRevB.98.155407
https://doi.org/10.1103/PhysRevLett.113.233901
https://doi.org/10.1103/PhysRevLett.113.233901
https://doi.org/10.1103/PhysRevLett.113.233901
https://doi.org/10.1103/PhysRevLett.113.233901
https://doi.org/10.1103/PhysRevLett.98.066802
https://doi.org/10.1103/PhysRevLett.98.066802
https://doi.org/10.1103/PhysRevLett.98.066802
https://doi.org/10.1103/PhysRevLett.98.066802
https://doi.org/10.1103/PhysRevB.77.115446
https://doi.org/10.1103/PhysRevB.77.115446
https://doi.org/10.1103/PhysRevB.77.115446
https://doi.org/10.1103/PhysRevB.77.115446
https://doi.org/10.1103/PhysRevB.77.235443
https://doi.org/10.1103/PhysRevB.77.235443
https://doi.org/10.1103/PhysRevB.77.235443
https://doi.org/10.1103/PhysRevB.77.235443
https://doi.org/10.1103/PhysRevB.79.045420
https://doi.org/10.1103/PhysRevB.79.045420
https://doi.org/10.1103/PhysRevB.79.045420
https://doi.org/10.1103/PhysRevB.79.045420
https://doi.org/10.1103/PhysRevB.81.075438
https://doi.org/10.1103/PhysRevB.81.075438
https://doi.org/10.1103/PhysRevB.81.075438
https://doi.org/10.1103/PhysRevB.81.075438
https://doi.org/10.1063/1.3658394
https://doi.org/10.1063/1.3658394
https://doi.org/10.1063/1.3658394
https://doi.org/10.1063/1.3658394
https://doi.org/10.1103/PhysRevB.86.115431
https://doi.org/10.1103/PhysRevB.86.115431
https://doi.org/10.1103/PhysRevB.86.115431
https://doi.org/10.1103/PhysRevB.86.115431
https://doi.org/10.1103/PhysRevB.86.205422
https://doi.org/10.1103/PhysRevB.86.205422
https://doi.org/10.1103/PhysRevB.86.205422
https://doi.org/10.1103/PhysRevB.86.205422
https://doi.org/10.1016/j.physe.2017.10.019
https://doi.org/10.1016/j.physe.2017.10.019
https://doi.org/10.1016/j.physe.2017.10.019
https://doi.org/10.1016/j.physe.2017.10.019
https://doi.org/10.1088/1361-648X/aa605b
https://doi.org/10.1088/1361-648X/aa605b
https://doi.org/10.1088/1361-648X/aa605b
https://doi.org/10.1088/1361-648X/aa605b
https://doi.org/10.1039/c3nr05828j
https://doi.org/10.1039/c3nr05828j
https://doi.org/10.1039/c3nr05828j
https://doi.org/10.1039/c3nr05828j


LIMA, PEREIRA, AND BARBOSA PHYSICAL REVIEW E 99, 032118 (2019)

[45] J. R. F. Lima, J. Appl. Phys. 117, 084303 (2015).
[46] N. Missault, P. Vasilopoulos, F. M. Peeters, and B. Van Duppen,

Phys. Rev. B 93, 125425 (2016).
[47] C. Bai, Y. Yang, and K. Chang, Sci. Rep. 6, 21283

(2016).
[48] J. R. F. Lima, L. F. C. Pereira, and C. G. Bezerra, J. Appl. Phys.

119, 244301 (2016).
[49] M. Drienovsky, F.-X. Schrettenbrunner, A. Sandner, D. Weiss,

J. Eroms, M.-H. Liu, F. Tkatschenko, and K. Richter, Phys. Rev.
B 89, 115421 (2014).

[50] A. Celis, M. N. Nair, M. Sicot, F. Nicolas, S. Kubsky, D.
Malterre, A. Taleb-Ibrahimi, and A. Tejeda, Phys. Rev. B 97,
195410 (2018).

[51] A. L. Grushina, D.-K. Ki, and A. F. Morpurgo, Appl. Phys. Lett.
102, 223102 (2013).

[52] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K.
Richter, and C. Schönenberger, Nat. Commun. 4, 2342
(2013).

[53] R. Krishna Kumar, X. Chen, G. H. Auton, A. Mishchenko,
D. A. Bandurin, S. V. Morozov, Y. Cao, E. Khestanova, M.
Ben Shalom, A. V. Kretinin, K. S. Novoselov, L. Eaves, I. V.
Grigorieva, L. A. Ponomarenko, V. I. Fal’ko, and A. K. Geim,
Science 357, 181 (2017).

[54] M. A. Mueed, Md. Shafayat Hossain, I. Jo, L. N. Pfeiffer, K. W.
West, K. W. Baldwin, and M. Shayegan, Phys. Rev. Lett. 121,
036802 (2018).

[55] Z. Wang, D.-K. Ki, J. Y. Khoo, D. Mauro, H. Berger, L. S.
Levitov, and A. F. Morpurgo, Phys. Rev. X 6, 041020 (2016).

[56] S. Zihlmann, A. W. Cummings, J. H. Garcia, M. Kedves, K.
Watanabe, T. Taniguchi, C. Schönenberger, and P. Makk, Phys.
Rev. B 97, 075434 (2018).

[57] L.-G. Wang and S.-Y. Zhu, Phys. Rev. B 81, 205444 (2010).
[58] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys.

2, 620 (2006).
[59] J. D. Lejarreta, C. H. Fuentevilla, E. Diez, and J. M. Cerveró,

J. Phys. A: Math. Theor. 46, 155304 (2013).

032118-6

https://doi.org/10.1063/1.4909504
https://doi.org/10.1063/1.4909504
https://doi.org/10.1063/1.4909504
https://doi.org/10.1063/1.4909504
https://doi.org/10.1103/PhysRevB.93.125425
https://doi.org/10.1103/PhysRevB.93.125425
https://doi.org/10.1103/PhysRevB.93.125425
https://doi.org/10.1103/PhysRevB.93.125425
https://doi.org/10.1038/srep21283
https://doi.org/10.1038/srep21283
https://doi.org/10.1038/srep21283
https://doi.org/10.1038/srep21283
https://doi.org/10.1063/1.4953865
https://doi.org/10.1063/1.4953865
https://doi.org/10.1063/1.4953865
https://doi.org/10.1063/1.4953865
https://doi.org/10.1103/PhysRevB.89.115421
https://doi.org/10.1103/PhysRevB.89.115421
https://doi.org/10.1103/PhysRevB.89.115421
https://doi.org/10.1103/PhysRevB.89.115421
https://doi.org/10.1103/PhysRevB.97.195410
https://doi.org/10.1103/PhysRevB.97.195410
https://doi.org/10.1103/PhysRevB.97.195410
https://doi.org/10.1103/PhysRevB.97.195410
https://doi.org/10.1063/1.4807888
https://doi.org/10.1063/1.4807888
https://doi.org/10.1063/1.4807888
https://doi.org/10.1063/1.4807888
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1126/science.aal3357
https://doi.org/10.1126/science.aal3357
https://doi.org/10.1126/science.aal3357
https://doi.org/10.1126/science.aal3357
https://doi.org/10.1103/PhysRevLett.121.036802
https://doi.org/10.1103/PhysRevLett.121.036802
https://doi.org/10.1103/PhysRevLett.121.036802
https://doi.org/10.1103/PhysRevLett.121.036802
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevB.97.075434
https://doi.org/10.1103/PhysRevB.97.075434
https://doi.org/10.1103/PhysRevB.97.075434
https://doi.org/10.1103/PhysRevB.97.075434
https://doi.org/10.1103/PhysRevB.81.205444
https://doi.org/10.1103/PhysRevB.81.205444
https://doi.org/10.1103/PhysRevB.81.205444
https://doi.org/10.1103/PhysRevB.81.205444
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1088/1751-8113/46/15/155304
https://doi.org/10.1088/1751-8113/46/15/155304
https://doi.org/10.1088/1751-8113/46/15/155304
https://doi.org/10.1088/1751-8113/46/15/155304



