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Transforming generalized Ising models into Boltzmann machines
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We find an exact mapping from the generalized Ising models with many-spin interactions to equivalent
Boltzmann machines, i.e., the models with only two-spin interactions between physical and auxiliary binary
variables accompanied by local external fields. More precisely, the appropriate combination of the algebraic
transformations, namely the star-triangle and decoration-iteration transformations, allows one to express the
model in terms of fewer-spin interactions at the expense of the degrees of freedom. Furthermore, the benefit of
the mapping in Monte Carlo simulations is discussed. In particular, we demonstrate that the application of the
method in conjunction with the Swendsen-Wang algorithm drastically reduces the critical slowing down in a
model with two- and three-spin interactions on the Kagomé lattice.
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I. INTRODUCTION

Inspired by the tremendous success in machine learning
fields such as the image or speech recognition, climate pre-
diction, and market analysis, the increasing number of studies
have shown the validity of artificial neural network in physical
problems. For instance, physicists have recognized that the
phase classification can be done in a parallel fashion to the
ordinary machine learning tasks by using the data of the
classical, quantum, or auxiliary degrees of freedom [1–12].
Another important direction focuses on the representability
itself. The applications such as the variational wave functions
describing ground states turn out to outperform the state-of-
the-art methods [13–17], and are also valid in estimating the
Boltzmann factor of a system to accelerate the classical Monte
Carlo (MC) simulations [3,18]. Furthermore, numerous stud-
ies reveal the ability to precisely express nonlinear functions
such as the wave functions of stabilizer states and chiral
topological states [19–24]. This is not only insightful from
the perspective of exploring soluble models, but also fruitful
in constructing new numerical techniques including optimiza-
tion of variational functions, MC simulations, and so on.

Since the invention of the MC method, physicists have
long made efforts to develop versatile and efficient simulation
methods to investigate statistical models. In classical lattice
systems, the single-spin flip (SSF) algorithm is undoubtedly
one of the most widely used techniques as it is model indepen-
dent. The locality of the variables involved in a single update
procedure, however, inevitably leads to a severe slowing down
near critical points or at low temperature for nonordering
systems. One of the solutions is to apply the global updates
such as the cluster algorithms [25,26], worm algorithm [27],
and loop algorithm [28], but they are mostly restricted to
two-body interacting systems. Developing a generic technique
applicable to a wide variety of systems involving many-body
interactions is highly challenging.
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In this work, we establish a mapping from the generalized
Ising model to the Boltzmann machine (BM). The former,
which includes many-spin interactions, is used to describe
magnetic and thermodynamic properties of solids, the effec-
tive model of alloys, spin glass models, and so on [29–31].
The BM, on the other hand, is an expression of probability
distribution by two-spin interactions between physical (visi-
ble) and auxiliary (hidden) binary degrees of freedom. The
mapping procedure goes as follows: one first decomposes a
p-spin Ising interaction into a sum of three- and (p − 1)-spin
interactions by adding an auxiliary spin. This is repeated for
the latter many-spin interaction until the total interaction is
expressed in terms of two- and three-spin interactions. Finally,
each three-spin interaction is transformed into two-spin inter-
actions and single-spin terms. The idea of such consecutive
decomposition can also be seen in the context of quantum
annealing [32–35].

After constructing the rigorous mapping, we take advan-
tage of it by presenting a novel global update scheme; the
application of the Swendsen-Wang (SW) algorithm to the ex-
actly surrogate BM. By comparing the autocorrelation times
of the visible spin configurations, we demonstrate in a model
with two- and three-spin interactions on the Kagomé lattice
that the sampling efficiency of the cluster algorithm on the BM
at the critical temperature is drastically improved compared
to that of SSF performed on the original Hamiltonian. While
the mapping introduced in this paper is applicable to the
generalized Ising model in any number of dimensions, our
results are presented in the above-mentioned model for clarity
and simplicity.

The remainder of this paper is organized as follows. In
Sec. II we first introduce the most primary transformation
techniques, namely the decoration-iteration and star-triangle
transformations. Embedding the hidden spins by combining
the two, an arbitrary many-spin interaction is shown to be
mappable to the BM. Furthermore, multiple interaction terms
can be taken into account by simply considering the em-
bedding procedures independently. In Sec. III, we see that
the transformation is numerically beneficial since the existing
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cluster update can be applied to the BM. Finally, the sum-
mary for the current work and discussion concerning the
future direction are given in Sec. IV. For the completeness of
the paper, in Appendix A we derive the explicit expression
of the BM mapped from the generalized Ising model. In
Appendix B, we qualitatively see that the block Gibbs sam-
pling for the RBM equivalent to the ferromagnetic Ising
model is highly inefficient. The partition function of the pure
three-spin interacting model on the Kagomé lattice, from
which the absence of the phase transition follows, is calculated
in Appendix C. Also, two schemes to perform the cluster
update under magnetic field are given in Appendix D, and the
observation of the physical quantity in the extended space is
discussed in Appendix E.

II. ALGEBRAIC TRANSFORMATION OF
BOLTZMANN FACTORS

In this section, we find the equivalence of the generalized
Ising models and the BMs with specific architectures, i.e.,
the restricted Boltzmann machine (RBM) and the deep Boltz-
mann machine (DBM). [See Fig. 1 for the graphic represen-
tation.] First, we state the definition of the RBM and DBM,
which give some probability distributions of visible spins with
auxiliary binary degrees of freedom, or the hidden spins. The
Boltzmann factor of an RBM is given as [36,37]

π (σ) =
∑

h

π̃ (σ, h), (1)

π̃ (σ, h) = exp

⎧⎨⎩∑
i, j

Wi jσih j +
∑

i

aiσi +
∑

j

b jh j

⎫⎬⎭, (2)

where π (σ) and π̃ (σ, h) are the Boltzmann factor of Nv

visible spins and the RBM with additionally Nh hidden spins,
respectively. Here, σi and h j are the ith visible and jth hidden
spins that take either +1 or −1, coupled via the interaction
Wi j . The local external field is given as ai and b j for visible
and hidden spins, respectively. We denote the visible and
hidden spin configurations by σ := (σ1, σ2, . . . , σNv

) ∈ S and

FIG. 1. Schematic picture of (a) restricted Boltzmann machine
(RBM) that is equivalent to a model with three-spin Ising-type
interaction, (b) deep Boltzmann machine (DBM) that is equiva-
lent to a model with four-spin Ising-type interaction. The white
and black objects denote visible and deep spins, respectively. Also
the blue and red objects are the hidden spins introduced by the
decoration-iteration transformation (DIT) and star-triangle transfor-
mation (STT), which are given by Eqs. (5) and (7). The presence of
the layers is denoted by the gray planes. Note that the mapping to the
RBM or DBM is applicable irrespective of the spatial dimension.

h := (h1, h2, . . . , hNh ) ∈ H, where S = {−1, 1}Nv and H =
{−1, 1}Nh are the sets of all possible binary spin configurations
for visible and hidden spins, respectively. Also, to discrimi-
nate between the spaces with and without the hidden spins,
we call S as the “original space” and S ∪ H as the “extended
space.” Note that the absence of the intralayer couplings is
reflected in the bipartite structure as is depicted in Fig. 1(a).
The BM without any restriction on the connectivity is not
considered in the following.

A crucial notion in introducing the DBM is the “layer,”
for which we provide a description based on the graphical
understanding of Fig. 1. As aforementioned and also obvious
from Fig. 1(a), no coupling is present between the visible or
hidden spins in the RBM. Such a bipartite structure is under-
stood as a BM with the “visible layer and one hidden layer.”
Namely, the visible layer contains all the visible spins, and
the hidden layer consists of hidden spins that are interacting
with one or more visible spins. We may analogously construct
another hidden layer on top as depicted in Fig. 1(b), which is
a BM with the “visible layer and two hidden layers” in turn.
In principle, one may add as many hidden layers as desired.
Such an architecture is generally referred to as the DBM. The
maximum number of layers obtained by mapping from the
generalized Ising model is two as we discuss in Sec. II B 3, and
therefore we discriminate the first and second hidden layers
as the “hidden layer” and “deep layer” in the following. The
spins included in these layers are correspondingly referred to
as the “hidden spins” and “deep spins.” To be concrete, the
Boltzmann factor of a DBM is given as

π (σ) =
∑
h,d

π̃ (σ, h, d ), (3)

π̃ (σ, h, d ) = exp

⎧⎨⎩∑
i, j

Wi jσih j +
∑

j,k

W ′
jkh jdk

+
∑

i

aiσi +
∑

j

b jh j +
∑

k

b′
kdk

⎫⎬⎭, (4)

where π̃ (σ, h, d ) is the Boltzmann factor for each spin con-
figuration, dk is the kth deep spin with the local field b′

k ,
and W ′

jk is the interaction between the jth hidden spin and
the kth deep spin. As is the case for the visible and hidden
spins, a configuration of the deep spins is denoted by d :=
(d1, d2, . . . , dNd ) ∈ D, where D = {−1, 1}Nd is the set of all
possible deep spin configurations. The union S ∪ H ∪ D is
also referred to as the extended space in the following.

The probabilistic network given by quadratic terms as
Eqs. (2) and (4) is known to be powerful to express nonlinear
functions and in fact applied widely in the field of machine
learning, condensed matter physics, quantum physics, and so
on [13–15,19–23]. In the remainder of this section, we find the
exact mapping from the generalized Ising model to the RBM
or DBM.

A. Transformation techniques

We introduce two mapping techniques to embed hidden
spins as is graphically described in Fig. 2: the decoration it-
eration transformation (DIT) and star-triangle transformation
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FIG. 2. Schematic description of the mapping techniques:
(a) Decoration-iteration transformation and (b) star-triangle trans-
formation. The white and black circles correspond the visible and
hidden spins, respectively, and the numbers denote the labels of the
visible spins. The solid lines and the filled region denote the two- and
three-spin interactions, respectively.

(STT). Note that the newly embedded spins are auxiliary
and the original interactions are realized by tracing out such
degrees of freedom.

The DIT, depicted in Fig. 2(a), is a very simple transforma-
tion which embeds a hidden spin h between two interacting
visible spins as follows [38,39]:

eJσ1σ2 = �
∑

h=±1

exp {W [σ1 + sgn(J )σ2]h}, (5)

where � is the normalization factor. The new interaction W is
given as

W = arc cosh(e2|J|)/2. (6)

Since the DIT can be carried out for any J , an arbitrary
Ising model with two-spin interactions including random spin-
glass, frustrated system, and fully connected models can be
mapped into an equivalent RBM. The application of such a
transformation technique allows one to obtain the exact so-
lution for a model on, for instance, two-spin interacting Ising
model on a bond-decorated lattice that can be transformed into
the soluble model on an undecorated lattice [38,40–44].

The other technique, known as the STT, embeds a hidden
spin h into three visible spins with both two- and three-spin
interactions as is illustrated in Fig. 2(b) [39,45–48]. Expressed
in the form of the Boltzmann weight, this can be written
as [49]

exp [Mσ1σ2σ3 + J1σ2σ3 + J2σ3σ1 + J3σ1σ2]

= �
∑

h=±1

exp

[
3∑

i=1

(Wih + ai )σi + bh

]
, (7)

where M and Ji are the amplitudes of three- and two-spin
interactions, respectively. The interaction between the visible
and the hidden spins in the extended space is denoted by Wi,
and the local fields are denoted by ai and b, respectively. It

can be shown that Eq. (7) amounts to eight nonequivalent
conditions which yields the solutions as

exp(4χiai ) = sinh[2(|Ji| + M )]

sinh[2(|Ji| − M )]
, (8)

cosh(2Wi)

= e2|Ji| cosh[2(|Jj |+|Jk|)] − e−2|Ji| cosh[2(|Jj |−|Jk|)]
[2 cosh(4|Ji|) − 2 cosh(4M )]1/2

,

(9)

sinh(2b)

= − sinh(2χiWi ) sinh(4M )

{[cosh(4Jj )− cosh(4M )][cosh(4Jk )− cosh(4M )]}1/2
,

(10)

where χi = sgn(Ji ) is the sign of the two-spin interaction. The
subscripts in Eqs. (9) and (11), i.e., i, j, and k, must be chosen
such that none of them are identical to each other. Importantly,
the STT is valid under the following conditions [50]:

|M| < |Ji|, (i = 1, 2, 3), (11)

sgn(J1J2J3) = 1. (12)

The notion of the DIT and STT can be generalized to
include many-spin interactions. A system in the original space
with both four- and two-spin interactions, for instance, can be
mapped to a model with three-spin interactions that involves a
single hidden spin. This mapping, used to obtain the solution
of the zero-field eight-vertex model, is referred to as the star-
square transformation [39,51–53]. While the transformation
from the extended space into the original space, known as “the
star-polygon transformation,” is achieved by tracing out the
hidden spins and is, in general, tractable [43,54], its inverse
mapping exists in very limited cases. We note in passing that
the DIT and STT have been extended to models with local
quantum degrees of freedom such as Heisenberg spins and
itinerant electrons [55–57].

B. Generalized Ising model as Boltzmann machine

Here we show that the generalized Ising model, which
consists of many-spin interactions, can be mapped to an
equivalent model with two-spin interactions and local fields.
First, let us consider some bare many-spin interaction within
the model. The Boltzmann factor is given as

π|C|(σC ; M ) := exp

⎛⎝M
∏
j∈C

σ j

⎞⎠, (13)

where M is the amplitude of the interaction. Here the set of
sites of the visible spins involved, dubbed as the “cell” in the
following, is denoted as C. Correspondingly, a visible spin
configuration of the cell is denoted by σC ∈ SC , where SC
is the set of all possible configurations of the visible spins
included in C. The subscript of the Boltzmann factor |C| is
the number of the visible spins included in the cell. Note that
arbitrary hidden and deep spins can be uniquely labeled due
to the construction procedure we introduce in the following.
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It is straightforward to see that the Boltzmann weight of the
original system can be written as

π (σ)=
∏
C

π|C|(σC ; MC )=
∏
C

⎛⎝∑
hC ,dC

π̃C (σC, hC, dC )

⎞⎠, (14)

where π̃C (σC, hC, dC ) is the weight of the RBM obtained
by transformation. Note that although a visible spin may be
included in multiple cells, the auxiliary spins are uniquely al-
located to their corresponding cells by construction. A single
realization of hidden and deep spins labeled by C is denoted
as hC ∈ HC and dC ∈ DC , where HC and DC are the sets of all
possible configurations of the hidden and deep spins included
in C, respectively.

As we see from Eq. (14), the Boltzmann factor of any
model can be decomposed into products over cells and the
independence of hidden spins holds. For simplicity, we focus
on bare p-spin interactions in the following.

1. Three-spin interaction as RBM

First, we discuss the three-spin interaction, which is the
simplest possible case. The STT cannot be applied straightfor-
wardly to a bare three-spin interaction due to the conditions
given in Eqs. (11) and (12). To avoid this problem, we
introduce the “virtual two-spin interactions” that cancel each
other out as follows:

π3(σ; M ) = exp(Mσ1σ2σ3)

= exp [Mσ1σ2σ3 + J1σ2σ3 + J2σ3σ1 + J3σ1σ2]

× exp [−(J1σ2σ3 + J2σ3σ1 + J3σ1σ2)]. (15)

As is depicted in Fig. 3(a), this can be mapped into the RBM
by applying Eq. (7) to the first and subsequently Eq. (5) to the
second factors. Note that the amplitudes of the virtual two-
spin interaction, Ji, can be taken arbitrarily as long as Eqs. (11)
and (12) are satisfied.

Next, let us consider two sets of interacting spins as de-
noted in Fig. 3(b). Although the naive application of Eq. (15)
yields eight hidden spins, two of them on the shared edges
can be eliminated by modifying the signs of virtual two-spin
interactions. For instance, by considering the virtual two-spin
interactions with a homogeneous amplitude, we obtain

π3(σC1 ; M )π3(σC2 ; M )

= exp(Mσ1σ2σ3) exp(Mσ2σ3σ4)

= exp [Mσ1σ2σ3 + Jσ2σ3 + Jσ3σ1 + Jσ1σ2]

× exp [Mσ2σ3σ4 + Jσ3σ4 − Jσ4σ2 − Jσ2σ3]

× exp [−(Jσ3σ1 + Jσ1σ2 + Jσ3σ4 − Jσ4σ2)], (16)

from which six hidden spins emerge.
Furthermore, a system with pure three-spin interaction on

the triangular lattice, known to be exactly soluble and dubbed
as the Baxter-Wu model [58], can also be mapped into the
RBM merely without hidden spins generated by the DIT. In
other words, we may choose the signs of the virtual two-spin
interactions on the triangles carefully so that the sum at each
edge would cancel out, resulting in a reduced number of the
hidden spins. Still, there are an exponential number of ways
to represent this model by tuning the amplitudes and the signs

FIG. 3. (a) Transforming a pure three-spin interaction into an
RBM. The red filled circles in the right-hand side are generated
by the STT and the blue ones by the DIT. The black solid and
dotted lines denote the positive and negative two-spin interactions,
respectively. The amplitudes of the virtual two-spin interactions
are taken as Ji > 0 in the figure. (b) Transforming a couple of
three-spin interactions. The signs of the virtual two-spin interactions
are modified so that the number of the hidden spins is reduced.
(c) Transforming the Baxter-Wu model into an RBM.

of the virtual two-spin interactions. Shown in Fig. 3(c) is the
mapping with 4-fold periodicity along the x axis.

2. Four-spin interaction as DBM

Next, we show that four-spin interaction can be expressed
by introducing the second hidden layer, or the “deep” layer.
The illustration of the two-step transformation is shown in
Fig. 4(a). In the first step, we interpret the product of Ising

FIG. 4. (a) Transforming four-spin interaction into a DBM. The
black filled circle is the spin in the deep layer and the other notation
follows that of Fig. 3. (b) Transforming p-spin interaction into a
DBM. The architecture of the BM is determined from the number
of the spins involved in the interaction, but is irrelevant to the actual
spatial dimension.
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variable as a single new binary variable and apply the DIT as

π4(σ; M (0) ) = exp[M (0)σ1σ2σ3σ4]

= �
∑

d=±1

exp[M (1)(σ1σ2 + σ3σ4)d]

= �
∑

d=±1

π3(σ1, σ2, d; M (1) )π3(σ3, σ4, d; M (1) ),

(17)

where π4(σ; M (0) ) is the Boltzmann factor for four-spin in-
teraction with the amplitude M (0). The interaction amplitudes
M (0) and M (1) are related by Eq. (6) as

M (1) = arc cosh(e2|M (0)|)/2. (18)

Next, we use Eq. (15), the result for the three-spin in-
teraction, under homogeneous virtual two-spin interactions
J > |M (1)| for simplicity. Here, we obtain the expression as

π4(σ; M (0) ) = �
∑

d

∑
ha,hb

∑
h1,...h6

π̃STT
2 (σ, h, d )

× π̃DIT
2 (σ, h, d )π̃1(σ, h, d ), (19)

where

π̃STT
2 (σ, h, d ) = exp[W (σ1 + σ2 + d )ha

+W (σ3 + σ4 + d )hb],

π̃DIT
2 (σ, h, d ) = exp

[
4∑

i=1

W ′(σi − d )hi + W ′(σ1 − σ2)h5

+W ′(σ3 − σ4)h6

]
,

π̃1(σ, h, d ) = exp

[
a

∑
i

σi + ad d + b(ha + hb)

]
. (20)

Here, π̃
STT(DIT)
2 (σ, h, d ) is the Boltzmann factor for the two-

spin interaction in the extended space obtained by the STT
(DIT), and π̃1(σ, h, d ) is that for the local external fields. The
interaction W (W ′) is the interlayer coupling introduced by
the STT (DIT). The magnetic field for the visible, deep, and
hidden spins are denoted by a, ad , and b, respectively. The
equivalence of amplitudes of the three-spin interactions M (1)

leads to ad = 2a. Also, the application of DIT to the virtual
two-spin interaction yields W ′ = arc cosh(e2J )/2. Note that
the other parameters are obtained by substituting M = M (1)

and homogeneous Ji = J into Eq. (7) as

exp(4a) = sinh[2(J + M (1) )]

sinh[2(J − M (1) )]
, (21)

cosh(2W ) = e2J cosh(4J ) − e−2J

[2 cosh(4J ) − 2 cosh(4M (1) )]1/2
, (22)

sinh(2b) = − sinh(2W ) sinh(4M (1) )

|[cosh(4J ) − cosh(4M (1) )]| . (23)

Another way to transform four-spin interaction is to apply
the star-square transformation. Although it also requires a
single deep spin, the architecture of the hidden spins would
be symmetric and hence different from the aforementioned

transformation. To keep the number of auxiliary spins min-
imum, we will not use the star-square transformation in the
following.

Note that Nh/Nd , or the ratio of the number of the hidden
spins to that of the visible spins, may be reduced in a larger
system as well as in Sec. II B 1; we may cancel out the virtual
two-spin interactions by modifying their signs.

3. p-spin interaction as DBM

The discussion for four-spin interaction can be extended
to p-spin interaction. Assume that Ising interactions up to
(p − 1)-spin terms can be mapped into a BM. The DIT splits
the original model into two (p/2 + 1)-spin terms for even
p and [(p + 1)/2 + 1]- and [(p − 1)/2 + 1]-spin terms for
odd p. The mapping exists for p = 3, 4 as we showed in
the previous sections, hence for arbitrary p > 4 as well. For
further discussion and explicit expression in the form of BM,
see Appendix A.

The number of the hidden and deep spins can be computed
as well. We denote the numbers of hidden spins in the first
layer generated by the STT, DIT, and that of the deep spins
in the second hidden layer as nSTT

h , nDIT
h , and nd , which

are shown in blue, red, and black filled circles in Fig. 4,
respectively. It is straightforward to show that the following
relations are satisfied:

nSTT
h = 3(p − 2), nDIT

h = p − 2, nd = p − 3. (24)

It is noteworthy from the perspective of the numerical cost that
the number of hidden and deep spins increases only linearly
with respect to p. The computational order remains to be the
same for any update scheme.

III. MONTE CARLO SAMPLING ON
BOLTZMANN MACHINE

In the following, we utilize the BM obtained by the
transformation to classical MC sampling. The block Gibbs
sampling, which is frequently used in the machine learning
community, turns out to lack efficiency in terms of autocor-
relation although the numerical cost per a single MC step
is low [18,59]. We alternatively apply the Swendsen-Wang
algorithm to the extended space and demonstrate the speed
up compared to the SSF on the original space. First, we take
the square-lattice Ising model for a simplified description
of our scheme, and then proceed to show the results in the
model with ferromagnetic two-spin interactions and alternat-
ing three-spin interactions on the Kagomé lattice, which is
one of the the most comprehensible models that includes the
many-spin interaction and also suffers from the slowing down
at the critical temperature.

A. Ising model on square lattice

We consider a Hamiltonian with two-spin interactions on a
square lattice

H = −
∑
〈i, j〉

σiσ j, (25)

which shows the ferroparamagnetic transition at Tc =
2/ ln (

√
2 + 1) as is widely known in statistical physics [60].
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The study by the SSF algorithm, i.e., the Glauber dynam-
ics in a broader sense, suffers from severe critical slow-
ing down [61,62]. The application of global updates, e.g.,
cluster updates [25,26], is one of the solutions under some
circumstances.

Note that Eq. (25) itself can be regarded as the RBM
since the square lattice is bipartite. Since the block Gibbs
sampling method, which fix the configuration in a sublattice
to enable independent sampling from another, is not beneficial
as is qualitatively discussed in Appendix B, we alternatively
apply the well-known Swendsen-Wang algorithm to take ad-
vantage of the expression. Although there is substantially no
further gain for two-spin interacting model, in the following
subsection, we demonstrate the speed up in terms of the
autocorrelation time. As is shown in Sec. II, the number of the
hidden and deep spins increases linearly with the system size,
and therefore the computational order of a single MC step
remains to be O(N ) in a model with short-range interactions,
which is also the case in the current work.

B. Generalized Ising model on Kagomé lattice

Here, we consider a model with ferromagnetic two-spin
interactions and also three-spin interactions on a Kagomé
lattice. Let E be the set of edges and �(�) be an up-
ward (downward) triangle on the lattice. The Hamiltonian is
defined as

−βH (σ ) = β
∑

〈i,i′〉∈E

σiσi′ +
∑
�

M�τ� +
∑
�

M�τ�, (26)

where τ� = ∏
i∈� σi and τ� = ∏

i∈� σi is the product of the
spin variables, M�/β (M�/β ) denotes the amplitude of the
three-spin interactions for upward (downward) triangles, and
〈i, i′〉 is the edge connecting sites i and i′. The symmetry that
combines the spin inversion and the mirror inversion is present
when M� + M� = 0, and the model exhibits second-order
transition at finite temperature for finite M� [see Appendix C
for discussion when only three-spin interactions are present].
This can be understood from the correspondence between the
present model and the antiferromagnetic Ising model with a
uniform external field on the honeycomb lattice [63].

In the following, we assume M� = −M� = M > 0. The
Boltzmann weight is transformed as

π (σ) = exp

⎡⎣β
∑

〈i,i′〉∈E

σiσi′ +
∑
�

M�τ� +
∑
�

M�τ�

⎤⎦
(27)

= �
∑

h

exp

⎡⎣∑
�

W�h�
∑
i∈�

σi +
∑
�

W�h�
∑
i∈�

σi

+ b
∑
�,�

(h� + h�)

⎤⎦
=

∑
h

π̃ (σ, h), (28)

where the parameters in the extended model are obtained by
substituting M�(�) and β into the STT, or Eq. (7). Note that

FIG. 5. Graphical understanding of the transformation for the
spin model defined by Eq. (26) into RBM and hidden-spin-only
model. The original space is defined on the Kagomé lattice, in which
the triangles are colored to denote the signs of three-spin interactions.
The white open and red filled circles correspond to the visible and
hidden spins, respectively. Also the signs of the two-spin interactions
are represented as solid and dotted lines for positive and negative,
respectively.

the external fields on the visible spins is absent due to the
cancellation caused by the alternating signs of the interactions.
As is graphically described in Fig. 5, one hidden spin is
embedded per triangle and denoted as h� or h�. The explicit
expressions for the parameters can be read off from

cosh(2W�(�) ) = e2β cosh(4β ) − e−2β

[2 cosh(4β ) − 2 cosh(4M )]1/2
, (29)

sinh(2b) = − sinh(2W ) sinh(4M )

| cosh(4β ) − cosh(4M )| , (30)

where W� = −W� = W > 0 and the signs of the parameters
satisfy sgn(W�(�) ) = sgn(M�(�) ). Owing to the cancellation
of the magnetic field on visible spins, we obtain a simple
expression by tracing out the visible spins as

˜̃π (h) =
∑

σ

π̃ (σ, h)

= �′ exp

⎛⎝−Wh

∑
〈 j, j′〉∈E

h jh j′ + b
∑
j∈V

h j

⎞⎠, (31)

where �′ is another renormalization factor, E and V are the
sets of edges and vertices in the honeycomb lattice as is shown
in the rightmost panel of Fig. 5. Note that the interaction is
antiferromagnetic, reflecting the alternating signs of the three-
spin interactions in the original space. The amplitude of the
two-spin interaction is obtained by the DIT as

Wh = arc cosh(e2W )/2. (32)

Although the model defined by Eq. (31) is not soluble at
b 	= 0, an approximate solution of the transition point can
be obtained by imposing some assumption after mapping the
original model to an eight-vertex model [63]. This turns out
to be in a fairly good precision, but not exact, and hence we
determine the transition point from the finite size scaling of
the Binder ratio [64,65].

As was introduced by Binder, the renormalization group
theory leads us to assume the scaling law for the Binder ratio

g := 1

2

(
3 − 〈m4〉

〈m2〉2

)
, (33)
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FIG. 6. Data collapse of the Binder ratio for the Ising model
with two-spin and alternating-sign three-spin interaction on the
Kagomé lattice. The critical temperature and the critical exponent
for the correlation length are obtained as Tc ∼ 2.141 and ν ∼ 0.99,
respectively. The magnitude of two-spin interactions is set to unity
while that of three-spin interactions is M/βc = 0.1. The blue circles,
green upward triangles, red squares, and purple downward triangles
denote the data for the linear system sizes L = 12, 18, 24, and 36,
respectively.

where m is the magnetization per site and 〈· · · 〉 denotes the
thermal average. The scaling of this quantity in the vicinity of
the critical temperature Tc is given as follows:

g ∼ F (L1/ν (T − Tc)), (34)

where L is the linear system size, ν is the critical exponent
for the correlation length, and F is an appropriate polynomial
function, which has been taken to be cubic in this work.
Shown in Fig. 6 are the results for ferromagnetic two-spin and
alternating-sign three-spin interacting model on the Kagomé
lattice with M/β = 0.1. From the data collapse in Fig. 6, we
see that the scaling analysis is valid. The critical exponent
ν is confirmed for numerous M/β to be in good agreement
with ν = 1, suggesting that the transition falls into the two-
dimensional Ising universality class [66]. The simultaneously
estimated quantity, i.e., the critical temperature Tc, is summa-
rized in Fig. 7(a) together with the approximate solution given
by Ref. [63].

At the critical temperature, we use the cluster algorithm
in the extended space. The detailed description is given in
Appendix D. Our main result is summarized in Fig. 7(b), in
which we compare the autocorrelation time τ of the magneti-
zation measured in units of Monte Carlo steps per site for the
whole system. [See Appendix E for the calculation of physical
quantities in the extended space.] The magnetization at the t th
Monte Carlo step is calculated from the spin configurations
σ(t ) = [σ1(t ), σ2(t ), . . . , σNv

(t )] with Nv being the number of
visible spins as

m(t ) =
Nv∑
i=1

σi(t )

Nv

. (35)

FIG. 7. (a) The autocorrelation time of the magnetization mea-
sured in units of Monte Carlo step. The black circle, purple up-
ward triangle, red rectangle, green downward triangle, and blue
diamond markers denote the magnitude of three-spin interactions
to be 0, 0.05, 0.1, 0.2, and 0.5, respectively. The filled (unfilled)
markers represent the results by the single-spin flip in the original
space (cluster update in the extended space). (b) The phase diagram
of the model defined in Eq. (26). The boundary between the ferro-
magnetic (FM) and the paramagnetic (PM) phases are given here.
The blue dashed line is calculated from the approximate solution in
Ref. [63], and the black dots are given by the finite-size scaling of the
Binder ratio. The numerically estimated inverse critical temperature
at M = 0 approaches βc = ln (3 + 2

√
3)/4 ∼ 0.4666, which can be

obtained from the exact solution [40].

The estimation of τ is done by evaluating the decay of the
equilibrium autocovariance [28]

A(t ) = 〈|m(t0 + t )m(t0)|〉 − 〈|m(t0)|〉2

〈|m(t0)|2〉 − 〈|m(t0)|〉2
= A0e−t/τ , (36)

where 〈· · · 〉 denotes the average over t0, namely the MC steps.
The critical slowing down is constantly observed in the SSF
performed on the original space, while the application of the
cluster update to the BM significantly improves the situation.
We observe that the dynamical exponent z, which is the slope
of data in Fig. 7(b), is also reduced, while the possibility
that it gradually grows in the larger system sizes cannot be
ruled out.

The increase in the autocorrelation time along the three-
spin interaction M/βc is understood in the following way.
The virtual magnetic field induced in the hidden spins by
the STT is amplified as M/βc is increased, and thus the
virtual magnetization per cluster increases, modifying the
flipping probability of each cluster to be unbalanced. While
the cluster is flipped randomly when the magnetic field is
absent, finite-valued Zeeman energy results in unbalanced
flipping probability due to the detailed balance condition. [See
Appendix D for further discussion.] Such a situation prevents
the system from exploring the spin configurations efficiently,
and thus shows a weaker speed up.

IV. CONCLUSION AND DISCUSSION

In the current work, we find an algebraic transforma-
tion of the Ising model with many-spin interactions into the
Boltzmann machine in which only two-spin interactions and
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virtual local fields are present. The decoration-iteration and
star-triangle transformations are applied to embed hidden and
deep spins, namely the auxiliary degrees of freedom to be
traced out. At the expense of the dimension of the spin
space, significant suppression of the critical slowing down is
achieved by applying the cluster algorithm to the Boltzmann
machine.

Our scheme is also capable of handling continuous classi-
cal spin systems with many-spin interactions. As in the case
with two-spin interactions [26], we may consider projecting
each variable on some axis. Namely, we rewrite a continuous
variable Si on site i by a new Ising variable σi as Si =
σi|Si · ni|ni + S⊥

i , where ni is the randomly chosen projection
axis and S⊥

i is orthogonal to ni. We can now apply our method
by regarding the model for {σi} obtained by projection as the
generalized Ising model. The randomness of the projection
axis at each Monte Carlo step would assure the ergodicity of
the scheme.

Beyond our scope in the current work is the optimal trans-
formation for simulation. The transformation is nonunique
when the virtual interaction is required, and we may even
consider infinitely strong coupling to express extreme sit-
uations such as decoupled or completely aligned pairs of
spins. Nonuniqueness arises also when four-spin interaction
is present. Although we excluded the application of the star-
square transformation for clarity, comparison of the numerical
efficiency between different transformations may be worth in-
vestigating. Switching into different Boltzmann machines for
each step may allow us to explore the free energy landscape
more efficiently.

In closing, we would like to note the applicability of
the algebraic transformation to wider fields of research. One
interesting direction is undoubtedly the pursuit of equilibrium
statistical physics, which includes extending and exploring
exactly soluble models and replacing the Swendsen-Wang
algorithm with other global updates to tackle frustrated sys-
tems. Another problem lies in the field of computer sci-
ence; the application to combinatorial optimization problems;
our decompositions applicable also in the finite-temperature
case may open a new way to introduce ancilla spins re-
quired in the experimental implementation of annealing
process.
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APPENDIX A: TRANSFORMATION OF p-SPIN
INTERACTION

In the following, we discuss the transformation of a bare
p-spin interaction into the BM. The procedure consists of
two steps; embedding the deep spins, and then the hidden
spins. A system with a bare p-spin interaction is mapped
into an equivalent system with three-spin interactions in the
first step and subsequently broken into systems with two-spin
interactions and local fields in the second step. Since the DIT
is applied repeatedly, we define

M (k+1) = arc cosh(e2|M (k)|)/2, (A1)

M (0) = M, (A2)

where M determines the amplitude of the interaction as
πp(σ; M ). The number of DITs applied, or k, is referred to
the DIT transformation order.

Let us take four-spin interaction as the starting point. As
we showed in the main text, the Boltzmann factor can be
expressed by embedding the deep spin as

π4(σ; M (0) ) = exp[M (0)σ1σ2σ3σ4]

= �
∑

d=±1

π3(σ1, σ2, d; M (1) )π3(σ3, σ4, d; M (1) ).

(A3)

By replacing one of the Ising variables with a product of two,
we obtain the expression for five-spin interaction as

π5(σ; M (0) )

= exp[M (0)σ1σ2σ3σ4σ5]

= �
∑

d1=±1

π3(σ1, σ2, d1; M (1) )π4(σ3, σ4, σ5, d1; M (1) )

= �
∑

d1,d2=±1

π3(σ1, σ2, d1; M (1) )π3(σ3, d1, d2; M (2) )

×π3(σ4, σ5, d2; M (2) ), (A4)

which is visually described in Fig. 8(a). Repeating the DIT
such that the DIT transformation order is as homogeneous as
possible, we can show a posteriori that the general expression
is given as

πp(σ; M ) = �
∑

d

2n+1−(p−2)︷ ︸︸ ︷
π3(σ1, σ2, d1; M (n) )π3(σ3, d1, d2; M (n) ) · · · π3(σp−1, σp, dp−3; M (n+1))π3(σp−2, dp−3, dp−4; M (n+1)) · · ·︸ ︷︷ ︸

2(p−2−2n )

,

(A5)

where n is an integer satisfying 2n � p − 2 < 2n+1. Note that
there are two factors consisting of two visible spins, whereas

the others contain only one. The number of factors with
M (n+1) is zero if p − 2 = 2n.
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FIG. 8. The transformation of (a) five-spin interaction and (b) p-spin interaction. First mapped into a system with only three-spin
interactions by applying DIT, the transformation technique for the three-spin interaction is used to break up into two-spin interactions with
local external fields.

To consider the hidden spins, we substitute M (n) in the
transformation introduced in Sec. II B 1 as, for instance,

π3(σ1, σ2, d1; M (n) )

= �
∑

h

exp[(W h + a)(σ1 + σ2 + d1) + bh]

× exp{W ′[(σ1 − σ2)h1 + (d1 − σ1)h2 + (σ2 − d1)h3]},
(A6)

which is described in the rightmost panels of Fig. 8.

APPENDIX B: BLOCK GIBBS SAMPLING FROM RBM
EQUIVALENT TO SQUARE ISING MODEL

In the following, we briefly introduce the block Gibbs sam-
pling and discuss its application to the RBM equivalent to the
ferromagnetic Ising model on the square lattice. Let A and B
be the sublattices of the square lattice. The spin configuration
on a sublattice is denoted as σA(B) = {{σi}|i ∈ VA(B)} where
VA(B) is the set of A(B)-sublattice sites. The posterior distri-
bution for spin configuration on the A sublattice is written as

p(σA|σB) := π (σA, σB)/
∑
σA

π (σA, σB), (B1)

π (σA, σB) = exp

⎛⎝β
∑
〈i, j〉

σiσ j

⎞⎠, (B2)

where π (σA, σB) denotes the Boltzmann factor for the total
system and 〈i, j〉 denotes the edge connecting the sites i and
j. Since spins in the A sublattice do not couple to each other,
Eq. (B1) can be factorized as

p(σA|σB) =
∏
i∈VA

p(σi|σB), (B3)

p(σi|σB) = exp
[
βσi

∑
j∈∂i σ j

]
2 cosh

[
β

∑
j∈∂i σ j

] , (B4)

where ∂i denotes the set of sites adjacent to i. This allows
us to sample each spin on A sublattice independently without
rejection. The updated method that alternately switches the
sublattice is called the block Gibbs sampling.

However, such an algorithm is not beneficial for the follow-
ing reason. Consider a domain consisting of upward spins. In
the bulk region of the domain, it is highly probable according
to the Eq. (B3) that the newly sampled spins remain upwards
as well. In other words, the limited range of the connection
results in the mutual locking structure in the bulk region,
allowing only the peripheral region to flip. Such a problematic
situation is exacerbated as the domain size grows, and turns
out that the slowing down is much worse than the single-spin
flip.

APPENDIX C: PARTITION FUNCTION OF THREE-SPIN
INTERACTING MODEL ON KAGOMÉ LATTICE

In this Appendix, we show that a model with only three-
spin interactions on the Kagomé lattice is soluble. This model
is a specific case of a broader class of models with cross-
ing symmetry studied in Ref. [67], which do not exhibit a
phase transition at finite temperature. The partition function is
written as

Z =
∑

σ

exp

⎡⎣∑
�

M�τ� +
∑
�

M�τ�

⎤⎦, (C1)

where M� denotes the three-spin interaction and τ� :=∏
j∈� σ j the product of the Ising spins in an upward triangle in

the lattice. Also M� and τ� are defined similarly for a down-
ward triangle. In order to compute Eq. (C1), we introduce the
identity for a binary variable x = ±1 as follows:

eKx = cosh(K )
∑

n=0,1

[x tanh(K )]n. (C2)
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Applying this identity to each triangle yields

Z =
∑

σ

∑
n�,n�

∏
�

∏
�

cosh(M�) cosh(M�)

× [τ� tanh(M�)]n�[τ� tanh(M�)]n� . (C3)

Next, let us consider taking the sum over σ j at some site j
in Eq. (C1). Denoting the triangles touching the site j as �( j)
and �( j), the contribution from the spin at j can be given
as

∑
σ j

σ
n�( j)+n�( j)

j , which is nonzero only when n�( j) = n�( j).
This argument holds for arbitrary j, and therefore the require-
ment n� = n� = 0, 1 for all � and � imposed for nonzero
contribution. Accordingly, we obtain the concise expression
of the partition function as

Z = C

⎛⎝1 +
∏
�,�

tanh(M�) tanh(M�)

⎞⎠, (C4)

where C = 2Nv
∏

�
∏

� cosh(M�) cosh(M�) with Nv being
the number of visible spins, i.e., the number of sites. The
above expression clearly shows that the free energy in the
thermodynamic limit is analytic, and hence the model does not
show a phase transition at finite temperature. For M� = M�,
Eq. (C4) reproduces the partition function of the uniform
model studied in Ref. [68]. We note that the present method
is not limited to two-dimensional models. In fact, a simi-
lar model with four-spin interactions on a three-dimensional
pyrochlore lattice is also soluble using the same technique
[69].

APPENDIX D: CLUSTER UPDATES UNDER
MAGNETIC FIELD

In this Appendix, we introduce two flavors of cluster up-
dates accompanied with magnetic fields. We assume a model
defined on a graph G = (V, E ) as follows:

H = −
∑

〈i, j〉∈E

Ji, jσiσ j −
∑
i∈V

hiσi, (D1)

where Ji, j is the two-spin interaction between two binary
degrees of freedom at sites i and j, or σi and σ j , and hi is
the external field on site i. One way to take the external field
into account is to modify the probability of flipping the cluster
that is formed using the information on the interactions, and
the other is to extend the space to express the field terms by
interactions with the auxiliary space.

To introduce the first approach, let us remind that the
detailed balance condition is given as

π (B)

π (A)
= P(A → B)α(A → B)

P(B → A)α(B → A)
, (D2)

where π (A) is the Boltzmann weight corresponding to a
state A, P(A → B) is the trial proposal probability from the
state A to B, and α(A → B) is the corresponding acceptance

probability. The Swendsen-Wang algorithm applied in the
main text adopts the Metropolis-Hastings rule

α(A → B) = min

(
1,

π (B)

π (A)

P(B → A)

P(A → B)

)
, (D3)

which satisfies α = 1 under hi = 0. Since the external field
modifies the Boltzmann weight as π (A) → e−β

∑
i hiσ

A
i π (A)

at the inverse temperature β, the trial proposal must absorb
such change to realize a rejection-free scheme under arbi-
trary external field. Concretely, the kth cluster Ck formed
by the ordinary bonding process is flipped with probability
pk = e−βmk /(e−βmk + e+βmk ) where mk = −∑

i∈Ck
hiσi is the

Zeeman energy by the external field. The additional computa-
tional effort per single MC step is ignorable.

In the second approach, known as the “ghost spin method,”
one introduces an auxiliary spin that interacts with any spin
exposed to the external (or virtual) field [70,71]. Defining
G̃ = (Ṽ , Ẽ ) with the ghost spin on the 0th site as

V → Ṽ = {0} ∩ V, (D4)

E → Ẽ = {〈0, i〉|i ∈ V }, (D5)

we alternatively consider a Hamiltonian as follows:

H̃ = −
∑

〈i, j〉∈Ẽ

J̃i, jσiσ j, (D6)

where

J̃i, j =

⎧⎪⎨⎪⎩
Ji, j if 〈i, j〉 ∈ E ,

hi if j = 0,

h j if i = 0.

(D7)

Now that the new Hamiltonian consists solely of two-spin
interactions, the ordinary cluster update can be applied.

APPENDIX E: OBSERVATION OF PHYSICAL
QUANTITY IN EXTENDED MODEL

The transformation considered in the main text preserves
the partition function, and moreover the Boltzmann factor
for visible spin configurations. Therefore, to compute the
expectation value of a physical observable O(σ) in the ex-
tended space, one may simply consider the identical mapping
Õ(σ, h) = O(σ ) to obtain

〈O〉 =
∑

σ,h Õ(σ, h)π̃ (σ, h)∑
σ,h π̃ (σ, h)

=
∑

σ O(σ )
[∑

h π̃ (σ, h)
]

Z

=
∑

σ O(σ )π (σ )

Z
. (E1)

In other words, one may simply ignore all the hidden spins
and compute the quantities using the operator in the original
space.
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