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Renyi entropy of chaotic eigenstates
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Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
which, we conjecture, applies to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The
expression is a universal function of the density of states and is valid even when the subsystem is a finite
fraction of the total system—a regime in which the reduced density matrix is not thermal. We find that in the
thermodynamic limit, only the von Neumann entropy density is independent of the subsystem to the total system
ratio VA/V , while the Renyi entropy densities depend nonlinearly on VA/V . Surprisingly, Renyi entropies Sn for
n > 1 are convex functions of the subsystem size, with a volume law coefficient that depends on VA/V , and
exceeds that of a thermal mixed state at the same energy density. We provide two different arguments to support
our results: the first one relies on a many-body version of Berry’s formula for chaotic quantum-mechanical
systems, and is closely related to the eigenstate thermalization hypothesis. The second argument relies on the
assumption that for a fixed energy in a subsystem, all states in its complement allowed by the energy conservation
are equally likely. We perform an exact diagonalization study on quantum spin-chain Hamiltonians to test our
analytical predictions.
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I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing [1–7]. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quantum
Hamiltonian [8]. Specifically, consider a system of size V
described by Hamiltonian H . The eigenstate thermalization
hypothesis (ETH) [2–4] posits that the reduced density matrix
for a finite energy density eigenstate |En〉 on subsystem A with

VA � V is thermal: tr A|En〉〈En| = tr A(e−βH )/tr (e−βH )
def=

ρA
th(β ) where β−1 is the temperature corresponding to the

eigenstate |En〉 and equals dS/dE |
En

where S(E ) is the mi-

crocanonical entropy (= logarithm of the density of states). In
this work, we will employ the term “chaotic eigenstate” for
the eigenstate |En〉 which obeys the ETH.

One basic question is whether there exist observables
O whose support VO scales with the total system size V
while their expectation value 〈En|O|En〉 continues to satisfy
some version of eigenstate thermalization. Standard analy-
ses in statistical mechanics [9] do not provide an answer
to such global aspects of thermalization. As pointed out in
Ref. [8], at any fixed, nonzero VA/V , one can always find
operators with operator norm of order unity, for whom the
difference |〈En|O|En〉 − tr (ρA

th(β )O)| does not vanish and is
of order unity. This implies that the trace norm distance
1
2 |tr A|En〉〈En| − ρA

th(β )|1 does not vanish and is of order unity
when VA/V is held fixed while taking thermodynamic limit.
Clearly, the expectation value of operators which are con-
strained by global conservation laws cannot behave thermally.

As an example, consider the operator (H2
A − 〈H2

A〉)/VA, where
HA is the Hamiltonian restricted to region A. Its expectation
value in an eigenstate tends towards zero when VA approaches
V , while it is nonzero and proportional to the specific heat in
a thermal state. This raises the question of whether conserved
quantities exhaust the set of operators that distinguish a pure
state from a corresponding thermal state at the same energy.

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA

n = 1
1−n ln(tr ρn

A). In fact tr (ρ2) is one of the simplest mea-
sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation
of the expectation value of a cyclic permutation operator
acting on the n copies of the system. Due to this, SA

n can
in principle be measured in experiments, and remarkably, an
implementation for n = 2 was recently demonstrated in cold
atomic systems [10].

The ground states of quantum many-body systems typi-
cally follow an area law for Renyi entropies (up to multi-
plicative logarithmic corrections): SA

n ∼ Ld−1
A where d is the

spatial dimension [11,12]. In strong contrast, finite energy
density eigenstates of chaotic systems, owing to eigenstate
thermalization, follow a volume law scaling: SA

n ∼ Ld
A (see,

e.g., [13]). Since we will often employ the term “volume law
coefficient,” it is important to define it precisely. We define
the volume law coefficient of an eigenstate as limV →∞ SA

n /VA

while keeping the ratio VA/V fixed and less than 1/2. Note
that in principle this coefficient can depend on the ratio VA/V
itself. For a thermal density matrix, ρ = e−βH/tr e−βH , the
volume law coefficient is given by nβ(f(nβ ) − f(β ))/(n − 1)
where f(β ) is the free energy density at temperature β−1.
Therefore, in this example, the volume law coefficient is
independent of VA/V . Owing to eigenstate thermalization, the
volume law coefficient of the Renyi entropy corresponding
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to chaotic eigenstates is also given by exactly the same
expression, at least in the limit VA/V → 0. One of the basic
questions that we will address in this paper is what is the
volume law coefficient corresponding to chaotic eigenstates
when VA/V = O(1)?

Reference [8] provided numerical evidence that the volume
law coefficient for the von Neumann entropy SA

1 correspond-
ing to chaotic eigenstates equals its thermal counterpart even
when the ratio VA/V (< 1/2) is of order unity. Furthermore,
under the assumption that for a fixed set of quantum numbers
in subsystem A, all allowed states in its complement A are
equally likely, Ref. [8] provided an analytical expression for
the nth Renyi entropy Sn for infinite temperature eigenstates of
a system with particle number conservation. This expression
curiously leads to the result that when n �= 1, the Renyi
entropies SA

n do not equal their thermal counterpart for any
fixed nonzero VA/V in the thermodynamic limit.

In a related development, Ref. [14] also studied reduced
density matrix corresponding to chaotic eigenstates of a sys-
tem with only energy conservation. They found that the eigen-
values are proportional to the number of eigenstates of the
rest of the system consistent with energy conservation. This
result is very similar to the aforementioned result in Ref. [8]
for the infinite temperature eigenstates with particle number
conservation—in that case the eigenvalues of the reduced
density matrix were proportional to the number of eigenstates
of the rest of the subsystem consistent with particle number
conservation. Given this correspondence, one might expect
that for chaotic systems with only energy conservation, only
the von Neumann entropies equal their thermal counterpart,
similar to the aforementioned example in Ref. [8]. This was
already mentioned in Ref. [14] although Renyi entropies were
not calculated.

In another development, Ref. [15] studied “canonical ther-
mal pure quantum” (CTPQ) states which were introduced
in Ref. [16]. These states reproduce several features of a
thermal ensemble while being a pure state [16]. However, in
contrast to the aforementioned result for infinite temperature
eigenstates in Ref. [8], the volume law coefficient of the
Renyi entropies for CTPQ states is independent of VA/V
and equals the thermal Renyi entropy density. Reference [15]
compared the Renyi entropy of eigenstates of nonintegrable
Hamiltonians with a fitting function based on CTPQ states.

In this paper, using a combination of arguments based
on ergodicity and eigenstate thermalization, we derive an
analytical expression for Renyi entropy of chaotic eigenstates.
We follow two different arguments to arrive at the same
result. First, we consider a translationally invariant “classical”
Hamiltonian H0 (which we define as a Hamiltonian all of
whose eigenstates are product states) perturbed by an inte-
grability breaking perturbation H1 so that energy is the only
conserved quantity for the full Hamiltonian H = H0 + εH1.
Physical arguments and numerical results strongly suggest
that if one first takes the thermodynamic limit, and only then
takes ε → 0, the eigenstates of H are fully chaotic [17–24].
Following arguments inspired by Ref. [3], where eigenstates
of a many-body chaotic system consisting of hard-sphere balls
were studied, we argue that for ETH to hold for the eigenstates
of H , they may be approximated by random superposition
of the eigenstates of H0 in an energy window of order ε �

V . This can be thought of as a many-body version of the
Berry’s conjecture for a chaotic billiard ball system where
the eigenstates are given by random superposition of plane
waves [3,25]. We will use the moniker “Berry states” for
these states. Related ideas have already been discussed in the
context of one-dimensional integrable systems perturbed by a
small integrability breaking term [20–22,26].

In the second approach, we consider states of the form
|ψ〉 = ∑

EA
i +EA

j ∈(E−(1/2)�,E+(1/2)�) Ci j |EA
i 〉 ⊗ |EA

j 〉, with Ci j a

random complex number, |EA
i 〉 an eigenstate of HA, and |EA

j 〉
that of HA. These states are exactly of the form suggested by
“canonical typicality” arguments [27,28] and in the thermody-
namic limit, reproduce the results of Ref. [14] for the matrix
elements of the reduced density matrix. Given the results in
Ref. [14], it is very natural to conjecture that eigenstates of
local Hamiltonians mimic states drawn from such an ensem-
ble. We will call this the “ergodic bipartition” conjecture. The
advantage of working with wave functions, in contrast to the
average matrix elements of the reduced density matrix, is that
it allows us to calculate the average of the Renyi entropy
itself, which is a much more physical quantity compared to
the Renyi entropy of the averaged reduced density matrix.
This distinction is particularly crucial in finite sized systems.
We will compare our analytical predictions with the exact
diagonalization, as well as directly with the CTPQ states.

Our main results are as follows:
(i) Renyi entropies are a universal function of the density

of states of the system.
(ii) Renyi entropy density SA

n /VA depends on VA/V when
n �= 1 as the thermodynamic limit is taken. For n > 1(n <

1), SA
n is always a convex (concave) function of VA/V . n =

1 corresponds to a transition point between concavity and
convexity, and correspondingly the von Neumann entropy is
linear in VA (see Fig. 1). Consequently, in the thermodynamic
limit for any nonzero VA/V , the volume law coefficient of
the Renyi entropy SA

n differs from the one derived from
the thermal density matrix ρA

th(β ) or equivalently the canoni-
cal thermal pure quantum (CTPQ) states. For n > 1, it exceeds
that of a thermal and CTPQ state, and for n < 1, it is less than
that of a thermal and CTPQ state.

(iii) The Renyi entropy for a given VA/V depends on
the density of states at an energy density that is itself a
function of VA/V . This allows one to obtain information
about the full spectrum of the Hamiltonian by keeping the
Renyi index n fixed and only varying the ratio VA/V . This
is in strong contrast to the limit VA/V → 0 where SA

n only
encodes thermodynamical information at temperature β−1

and (nβ )−1.
The paper is organized as follows: In Sec. II we state the

aforementioned Berry conjecture and the ergodic bipartition
conjecture and demonstrate their relation to eigenstate ther-
malization. Section III contains our main results—here we
provide analytical results on the Renyi entropies for the states
introduced in Sec. II, and also compare them to aforemen-
tioned CTPQ states. In particular, we discuss the curvature
dependence of the Renyi entropies, as well as provide simple
examples where one can obtain closed form expressions. In
Sec. IV, we numerically study Renyi entropies corresponding
to spin-chain Hamiltonians and compare with our analytical

032111-2



RENYI ENTROPY OF CHAOTIC EIGENSTATES PHYSICAL REVIEW E 99, 032111 (2019)

FIG. 1. The curvature dependence of the Renyi entropy Sn de-
rived in the main text (solid lines) using arguments built on ergodic-
ity: in the thermodynamic limit, Sn is a convex (concave) function of
VA/V for n > 1 (n < 1) with a cusp singularity at VA/V = 1/2. The
dashed lines correspond to the Renyi entropies of the thermal density
matrix ρA

th(β ) = exp(−βHA)/Z . Sn derived built on ergodicity equals
the thermal counterpart for VA/V < 1/2 at n = 1, while for n �= 1
it equals the thermal counterpart only as VA/V → 0. For each line
style, the lines shown in descending order from the top correspond to
n < 1, n = 1, and n > 1 respectively.

predictions. In Sec. V, we discuss the implications of our
results, and future directions.

II. NATURE OF CHAOTIC EIGENSTATES

Consider a many-body Hamiltonian H which we write as

H = HA + HA + HAA, (1)

where HA, HA denote the part of H with support only in
real-space regions A and A respectively, and HAA denotes the
interaction between A and A. “Canonical typicality” argu-
ments [27,28] imply that a typical state in the Hilbert space
with energy E with respect to H has a reduced density matrix
ρA on region A with matrix elements:

〈
EA

i

∣∣ρA

∣∣EA
i

〉 = 1

N
eSA(E−EA

i ), (2)

where |EA
i 〉 is an eigenstate of HA with energy EA

i , eSA(E−EA
i )

is the number of eigenstates of HA with energy EA such that
EA + EA ∈ (E − 1

2�, E + 1
2�) with � � E , and N is the

total number of states in the energy window:

N =
∑

i

eSA(E−EA
i ) =

∑
EA

eSA(EA )+SA(E−EA ). (3)

One can obtain this result from two conceptually different
viewpoints. On the one hand, one can consider the following
mixed state � that defines a microcanonical ensemble at
energy E :

� = 1

N

∑
EA

i +EA
j ∈(E−(1/2)�,E+(1/2)�)

∣∣EA
i

〉⊗ ∣∣EA
j

〉〈
EA

i

∣∣⊗ 〈
EA

j

∣∣,
(4)

and then trace out the Hilbert space in region A, thus obtaining
Eq. (2). Alternatively, one can consider the following pure
state introduced in Refs. [27,28]:

|E〉 =
∑

EA
i +EA

j ∈(E−(1/2)�,E+(1/2)�)

Ci j

∣∣EA
i

〉⊗ ∣∣EA
j

〉
, (5)

where Ci j is a complex random variable. After averaging, one
again obtains Eq. (2) when VA/V < 1/2. The state in Eq. (5)
is the random superposition of tensor product of eigenstates
of HA and HA with the constraint of energy conservation, and
we call it an “ergodic bipartition” (EB) state.

Recently, evidence was provided in Ref. [14] that the re-
duced density matrix corresponding to an eigenstate of trans-
lationally invariant nonintegrable Hamiltonians resembles the
reduced density matrix of a pure state based on canonical
typicality, and therefore also satisfy Eq. (2). Therefore it is
worthwhile to explore whether the state in Eq. (5), which
leads to Eq. (2), is a good representative of the eigenstate of a
chaotic Hamiltonian.

To explore this question, we first note that the state in
Eq. (5) recovers the correct energy fluctuation in an eigen-
state [8], namely, �E2

A = cT 2 VAVA
VA+VA

(see Appendix A) where
c is the specific heat. Further, one readily verifies that the
diagonal entropy for a subsystem A corresponding to this
state equals the thermodynamic entropy VAs(E/V ) where
s(x) denotes the entropy density at energy density x, as also
expected from general, thermodynamical considerations [29].

Next, let’s first see whether the ergodic bipartition states
in Eq. (5) satisfy ETH assuming that the eigenstates of
HA and HA are chaotic. Clearly if an operator is local-
ized only in A or A, then its expectation value with re-
spect to |E〉 trivially satisfies ETH by the very assump-
tion that HA and HA are chaotic. Therefore, consider in-
stead an operator O = OA OA where OA ∈ A and OA ∈ A.
Recall that the ETH implies that 〈En|O|Em〉 = O(E/V )δn,m +√

O2(E/V )e−S(E )/2zn,m where O(E/V ) is the microcanonical
expectation value of O at energy density E/V and therefore is
a smooth function of E , S(E ) is the microcanonical entropy
at energy E = (En + Em)/2, and zn,m is a complex random
number with zero mean and unit variance.

The diagonal matrix element of O with respect to the state
|E〉 in Eq. (5) is given by

〈E |O|E〉
=
∑

i j

|Ci j |2
〈
EA

i

∣∣OA

∣∣EA
i

〉〈
EA

j

∣∣OA

∣∣EA
j

〉
δ
(
EA

i + EA
j − E

)

=
∑
EA

eVAs(EA/VA )+VAs((E−EA )/VA )

eV s(E/V )
OA(EA/VA) OA((E − EA)/VA)

= OA(E/V ) OA(E/V ), (6)

where the last equation in the sequence is derived by taking
the saddle point from the one above. Clearly if OA and OA are
located close to the boundary between A and A (in units of
thermal correlation length), then there is no reason to expect
that OA(E/V ) OA(E/V ) is the correct answer for the expec-
tation of O with respect to an actual eigenstate of the system.
However, if OA and OA are located far from the boundary, then
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the cluster decomposition of correlation functions implies that
the above answer is indeed correct to a good approximation.
Note that it is a smooth function of the energy, as required
by ETH. A similar calculation shows that the off-diagonal
matrix element 〈En|O|Em〉 is proportional to e−S(E )/2z where
E = (En + Em)/2 and z is a random complex number with
zero mean and unit variance.

The above considerations indicate that the state |E〉 is a
good representative of an eigenstate of H , except for the cor-
relation functions of operators close to the boundary. There-
fore, we expect that it correctly captures the bulk quantities,
such as the volume law coefficient of Renyi entropies. As
already noted, it correctly reproduces the energy fluctuations,
as well as the diagonal entropy for an eigenstate. Conversely,
we do not expect it to necessarily reproduce the subleading
area-law corrections to the Renyi entropies, which may be
sensitive to the precise way the eigenstates of HA and HA are
“glued.”

In passing we note that Ref. [13] considered a perturbative
treatment of the Hamiltonian H = HA + HA + εHAA to the
first order in ε. The wave functions thus argued to be obtained
have some resemblance with the EB state [Eq. (5)]. However,
to really obtain an EB state via this procedure, one would
instead need to carry out the perturbation theory to an order
that scales with the system size! This is because when VA/V
is nonzero, the EB state has extensive fluctuations of energy
in subregion A, unlike the states considered in Ref. [13] which
essentially have no fluctuations since they mix eigenstates of
HA in a small energy window.

A different starting point to obtain states that mimic chaotic
eigenstates is provided by considering Hamiltonians H of the
form

H = H0 + εH1. (7)

Here H0 denotes a translationally invariant many-body local
Hamiltonian whose eigenstates can be chosen as unentangled
product states {|sα〉 = |sα

1 〉 ⊗ |sα
2 〉 ⊗ · · · ⊗ |sα

L〉}, and therefore
corresponds to an integrable system with an infinite number
of conserved quantities. The H1 term breaks the integrability.
Physical arguments as well as numerics strongly suggest
that when H1 is local, the system will show a crossover
behavior from an integrable regime to a chaotic regime for
ε ∼ 1/Lβ [17–20,23,24]. In fact, following arguments similar
to Ref. [3], where eigenstates of a hard sphere system were
written as a random superposition of many-body plane waves
so as to be consistent with ETH, in our case an eigenstate |E〉
of H in the limit ε → 0 takes the form

lim
ε→0

lim
V →∞

|E〉 =
∑

α

Cα|sα〉 (8)

with

P({Cα}) ∝ δ

(
1 −

∑
α

|Cα|2
)

δ(Eα − E ), (9)

where the first and second delta function constraints impose
the normalization and energy conservation respectively. This
form of eigenstates closely resembles the Berry’s conjecture
for the eigenstates of chaotic billiard ball systems [25], and
therefore we will call such states “Berry states.” Again, sim-

ilar to the case of ergodic bipartition conjecture discussed
above [Eq. (5)], one can readily verify that ETH holds true
for the state in Eq. (8). Specifically, the diagonal matrix
elements of an operator O match the canonical expectation
value of O with respect to H0, while the off-diagonal matrix
elements are proportional to e−S(E )/2z where z is a random
complex number with zero mean. Note that we take H0 to be
translationally invariant to avoid the possibility of many-body
localization [30].

Relation between ergodic bipartition states and berry states

The aforementioned Berry states can be thought of as a
special case of ergodic bipartition states: if in Eq. (5) one
substitutes for |EA

i 〉 and |EA
j 〉 the eigenstates of H0,A and

H0,A respectively, where H0,A and H0,A are restrictions of
the integrable Hamiltonian H0 in Eq. (7) to region A and A,
then the resulting state essentially corresponds to the Berry
state [Eq. (8)]. However, there is a subtle distinction: the
Berry state does not suffer from any boundary effects due
to the HAA term: the states |sα〉 that enter the definition of
Berry state in Eq. (8) are eigenstates of the Hamiltonian
H0 defined on the entire system. In contrast, the ergodic
bipartition states involve tensor products of the eigenstates of
HA and HA, and therefore do not reproduce the correlations
near the boundary between A and A correctly, as discussed
above.

Due to this relation between the ergodic bipartition states
and the Berry states, it turns out that from a technical stand-
point, the calculations of their Renyi entropies—the central
topic of our paper—are identical. This is the subject of our
next section.

III. RENYI ENTROPY OF CHAOTIC EIGENSTATES

In this section we calculate Renyi entropy corresponding
to the pure states in Eqs. (5) and (8). We will not write
separate equations for these two set of states, because as
already mentioned, the calculation as well as all the results
derived in this section apply to either of them. We will be
particularly interested in the functional dependence of Renyi
entropies on the ratio VA/V .

A. Universal dependence of Renyi entropy on many-body
density of states

In principle, one can define three different kinds of aver-
ages to obtain Renyi entropies: (a) SA

n (ρA) = 1
1−n ln{tr [(ρA)n]}

(b) SA
n (tr ρn

A) = 1
1−n ln(tr ρn

A) (c) SA
n,avg = 1

1−n ln[tr (ρn
A)]. The

physically most relevant measure is Sn,avg, however, it is
also the hardest one to calculate due to averaging over the
logarithm. As shown in Appendix B, the difference |Sn,avg −
SA

n (tr ρn
A)| is exponentially small in the volume of the total

system. Due to this result and the fact that SA
n (tr ρn

A) is
calculable using standard tools, in this paper we will focus
mainly on it, and with a slight abuse of notation, denote
it as Sn.

One may still wonder how good is the measure (a), i.e.,
SA

n (ρA), since it’s the simplest one to calculate. Following
Ref. [28], Levy’s lemma implies that the trace norm distance

032111-4



RENYI ENTROPY OF CHAOTIC EIGENSTATES PHYSICAL REVIEW E 99, 032111 (2019)

between the average density matrix ρA and a typical density
matrix of the ensemble vanishes exponentially in the total
volume of the system. Combining this result with Fannes’
inequality [31], |S1(ρ) − S1(σ )| < |ρ − σ |1ln(H) where H
is the size of the Hilbert space, one finds that in the ther-
modynamic limit, at least the von Neumann entropy for ρA

should match with the other two measures up to exponentially
small terms. This result doesn’t however constrain the Renyi
entropies for a general Renyi index. As we will discuss
below, it turns out that the volume law coefficient corre-
sponding to Renyi entropies is same for all three measures.
At the same time, as discussed in detail in Sec. IV, for
finite sized systems, SA

n (tr ρn
A) is always a better measure of

Sn,avg compared to SA
n (ρA) due to the aforementioned result

that their difference is exponentially small in the volume
(see Fig. 3).

To begin with, let us briefly consider SA
n (ρA) =

1
1−n ln{tr [(ρA)n]},

SA
n (ρA) = 1

1 − n
ln

[ ∑
EA

eSM
A (EA )+nSM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )]n

]
, (10)

where SM
A (EA) denotes the logarithm of the density of states of

HA at energy EA. Similarly, SM
A

(E − EA) denotes the logarithm
of the density of states of HA at energy E − EA. Below, we
will show that this expression matches that for SA

n at the
leading order in the thermodynamic limit when VA/V is held
fixed.

For brevity, from now on we will drop the superscript “A”
on the Renyi entropies SA

n for the rest of the paper. To analyze
Sn, our main focus, let us first consider the second Renyi

entropy S2. One finds (see Appendix C)

S2 = −ln

[∑
EA

eSM
A (EA )+2SM

A
(E−EA ) + e2SM

A (EA )+SM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]2

]
.

(11)

Unlike SA
n (ρA), this expression is manifestly symmetric be-

tween A and A. Most importantly, S2 is a universal function
of the microcanonical entropy (= logarithm of density of
states) for the system. Furthermore, when VA/V < 1/2 is held
fixed, in the thermodynamic limit (i.e., V → ∞), S2 can be
simplified as

S2 = −ln

[ ∑
EA

eSM
A (EA )+2SM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )]2

]
. (12)

Let’s consider the limit VA/V → 0. Taylor expanding SM
A

(E −
EA) as SM

A
(E − EA) = SM

A
(E ) − βEA, one finds

S2 = −ln

[
tr e−2βHA

(tr e−βHA )2

]
= −ln

[
ZA(2β )

Z2
A(β )

]
= 2β[FA(2β ) − FA(β )], (13)

where FA(β ) is the free energy of HA at temperature β−1. This
is exactly what one expects when the reduced density matrix is
canonically thermal i.e., ρA = e−βHA/tr e−βHA . Evidently, this
result is true only when VA/V → 0 and does not hold true for
general values of VA/V and we will explore this and related
aspects in much detail below.

Following the same procedure as above, one can also de-
rive the universal formula for the Renyi entropy at an arbitrary
Renyi index n. For example, the explicit expression for the
third Renyi entropy is (Appendix D)

S3 = −1

2
ln

[∑
EA

eSM
A (EA )+3SM

A
(E−EA ) + 3e2SM

A (EA )+2SM
A

(E−EA ) + eSM
A (EA )+SM

A
(E−EA ) + e3SM

A (EA )+SM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]3

]
. (14)

The explicit expression of nth Renyi entropy can be ex-
pressed as a logarithm of the sum of n! terms. In the thermo-
dynamic limit, however, only one of these terms is dominant,
and the expression becomes (for VA/V < 1/2)

Sn = 1

1 − n
ln

[ ∑
EA

eSM
A (EA )+nSM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )]n

]
. (15)

Note that this is identical to the Renyi entropy SA
n (ρA),

Eq. (10). See Appendix D for details of the calculation.

B. Curvature of Renyi entropies and the failure of Page curve

Let us evaluate Eq. (15), in thermodynamic limit V → ∞
with f = VA/V (< 1/2) held fixed. The thermodynamic limit
allows one to use the saddle point approximation technique.
The numerator can be written as∑

EA

eSM
A (EA )+nSM

A
(E−EA ) =

∑
uA

eVAs(uA )+nVAs(uA ) , (16)

where uA denotes the energy density in A while uA denotes the
energy density in A consistent with energy conservation, and
s(u) is the entropy density at energy density u. Thus,

uA = u

1 − f
− f

1 − f
uA. (17)

where u = E/V is the energy density corresponding to the
eigenstate under consideration. At the saddle point, the sum
over uA is dominated by the solution to the equation:

∂s(u)

∂u

∣∣∣∣
u=u∗

A

= n
∂s(u)

∂u

∣∣∣∣
u=u∗

A

(18)

and therefore the numerator equals eV [ f s(u∗
A )+n(1− f )s(u∗

A
)] in

thermodynamic limit.
On the other hand, the denominator is∑

EA

eSM
A (EA )+SM

A
(E−EA ) =

∑
uA

eVAs(uA )+VAs(uA ) = eV s(u), (19)
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where we have used the fact that the saddle point for the
denominator is u∗

A = u∗
A

= u, i.e., it is unchanged from the
energy density of the eigenstate under consideration.

Combining the above results, Sn is therefore given by

Sn = V

1 − n
[ f s(u∗

A) + n(1 − f )s(u∗
A

) − ns(u)], (20)

where u∗
A and u∗

A
are obtained by solving the saddle point

condition Eq. (18). This is the central result of our paper.
Several observations can be made immediately:

(1) When n = 1, u∗
A = u, i.e., the von Neumann entangle-

ment entropy S1 depends only on the density of states at the
energy density corresponding to the eigenstate for all values
of f = VA/V . Furthermore, the volume law coefficient of S1 is
strictly linear with VA, i.e., S1 = s(u)VA for f < 1/2. We will
call such linear dependence the “Page curve” [32,33], as is
conventional. As discussed in the Introduction, this result was
also argued for in Refs. [8,14].

(2) When n �= 1, the Renyi entropy density Sn/VA as
V → ∞ for fixed f = VA/V depends on f , and thus the Renyi
entropies have a nontrivial curvature dependence when plotted
as a function of VA/V . Perhaps most interestingly, as shown in
Appendix E, the curvature d2Sn

df 2 depends only on the sign of
n − 1:

Sn( f ) is convex for n > 1,

Sn( f ) is concave for n < 1. (21)

(3) The saddle point equation [Eq. (18)] implies that for a
fixed Renyi index n, the energy density u∗

A that determines
the volume law coefficient of Sn depends on f . Therefore,
different values of f encode thermodynamical information at
different temperatures. Recall that in contrast, as f → 0, the
nth Renyi entropy depends only on the free energy densities
at temperature β−1 and (nβ )−1.

We recall that the Renyi entanglement entropies Sn corre-
sponding to a typical state in the Hilbert space [32–36] equal
ln(HA) where HA is the size of the Hilbert space in region
A (assuming HA < HA). For a system with a local Hilbert
space dimension Hlocal, this translates as a volume law for
Renyi entropies, i.e., Sn

A = VAln(Hlocal ) as long as f < 1/2
[e.g., in a spin-1/2 system, Sn

A = VAln(2)]. This result matches
the entropy corresponding to a thermal ensemble at infinite
temperature. Based on this, one might have expected that
for an eigenstate of a physical Hamiltonian at temperature
β−1, the Renyi entropies are perhaps given by their canonical
counterparts, i.e., Sn = VAnβ[f(nβ ) − f(β )]/(n − 1) for all
f < 1/2, a finite temperature version of the Page curve [f(β )
is the free energy density]. Our result indicates that this is not
the case, and Renyi entropies for n �= 1 do not follow such a
Page curve.

An example: Renyi entropy for system with Gaussian
density of states

Let’s study an example where one can solve the saddle
point Eq. (18), and solve for the Renyi entropies explicitly.
Consider a system with volume V where the density of states
g(E ) is a Gaussian as a function of the energy E :

g(E ) = eV ln2−E2/2V . (22)

Thus, the microcanonical entropy density is given by

s(u) = ln2 − 1
2 u2, (23)

where u ≡ E/V denotes the energy density. This expression
also implies that the temperature β(u) = −u. As a practical
application, for all systems whose energy-entropy relation
s(u) is symmetric under u → −u, a Gaussian density of states
will be a good approximation to the function s(u) close to
the infinite temperature. Therefore, the results derived can be
thought of as a leading correction to the Renyi entropy in a
high temperature series expansion for such systems.

Directly evaluating the expression in Eq. (11), one finds the
following expression for S2 (see Appendix F):

S2 =−ln

[
1√

1 − f 2
e−V γ ( f ,u)+ 1√

1 − (1 − f )2
e−V γ (1− f ,u)

]
,

(24)

where

γ ( f , u) = f ln2 − f

1 + f
u2. (25)

When 0 < f < 1
2 ( 1

2 < f < 1), the first (second) term domi-
nates in the thermodynamic limit. Thus, for 0 < f < 1

2 ,

S2 = f V

(
ln2 − u2

1 + f

)
= f V

(
ln2 − β2

1 + f

)
. (26)

Similarly, one can obtain Renyi entropy for arbitrary Renyi
index n for 0 < f < 1

2 in the thermodynamic limit:

Sn = f V

[
ln2 − nβ2

2[1 + (n − 1) f ]

]
. (27)

This expression illustrates several of the general properties
discussed in the previous subsection. First we notice that Sn is
linear for arbitrary β only when n = 1, and therefore the von
Neumann entropy follows the finite temperature Page curve.
For n �= 1, Sn is linear in f only at the infinite temperature,
and the nonlinear dependence on f becomes non-negligible as
one moves away from the infinite temperature. Furthermore,
the Renyi entropies are convex functions of VA for n > 1
while they are concave for n < 1. As a demonstration, we plot
Eq. (27) for different β with n > 1 (upper panel) and n < 1
(lower panel) in Fig. 2, where we clearly observe the concave
and convex shape for Renyi entropies.

C. Comparison with “pure thermal” state

Recently, Ref. [15] also studied the entanglement entropies
of chaotic systems using an approach which is similar in spirit
to ours, but for a different class of states. They considered a
canonical thermal pure quantum (CTPQ) state:

|ψ〉 = 1

tr e−βH

∑
j

z je
−βH/2| j〉, (28)

where {| j〉} form a complete orthonormal basis in the Hilbert
space, and the coefficient z j is a random complex number
z j ≡ (x j + iy j )/

√
2 with x j and y j denoting independent and

identically distributed random variables from a Gaussian
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FIG. 2. The Renyi entropies S2 (top) and S1/2 (bottom) for a sys-
tem of volume V = 1000 with Gaussian density of states [Eq. (27)].
The various lines plotted in descending order from the top correspond
to β = 0.0, 0.2, 0.4, 0.6, 0.8 respectively.

distribution with zero mean and unit variance. They calculated
the Renyi entropy of the CTPQ states and used the functional
form thus obtained as a fitting function for Renyi entropies
of chaotic eigenstates obtained via exact diagonalization. For
reference, we write down the expression of the second Renyi
entropy obtained in their paper:

S2,CTPQ = −ln
tr A(tr Be−βH )2 + tr B(tr Ae−βH )2

(tr e−βH )2
. (29)

Note the resemblance with our result Eq. (11). Despite the
apparent similarity, the functional dependence of Renyi en-
tropy obtained from Eq. (29) is actually quite different than
our result, Eq. (20). In particular, for fixed VA/V (<1/2),
as V → ∞, one may verify that the volume law coefficient
of the Renyi entropy Sn,CTPQ corresponding to the CTPQ
state actually matches that of a thermal state: Sn,CTPQ =

n
n−1VAβ[f(nβ ) − f(β )], and therefore follows the Page curve.
This is in contrast to the Berry and EB states, which, as
discussed above, have a distinct curvature dependence. One
may also verify that the reduced density matrix in region A of

FIG. 3. Comparison of the three different ways to average over
the random ensembles discussed in the text to obtain the second
Renyi entropy. Triangles: SA

2 (ρA). Crosses: SA
2 (tr ρ2

A). Open circles:

SA
2,avg = −ln[tr (ρ2

A)]. Note that SA
2 (tr ρ2

A) and SA
2,avg are essentially

identical, as they should be (see Appendix B). The Hamiltonian is
H = −∑L

i=1 Zi + εH1 for L = 12 and ε = 0.1, where H1 is a real
Hermitian random matrix. For each marker style, the data in descend-
ing order from the top correspond to β = 0.0, 0.17, 0.35, 0.55, 0.8.

a CTPQ state,

ρA ∼ e−βH

tr e−βH
(30)

for any VA/V in thermodynamic limit which implies that the
energy variance ∼VA for all VA/V and does not respect the
fact that for an eigenstate, the energy variance should be
symmetric around VA/V = 1/2 (similar to Renyi entropies),
and should vanish when VA/V → 1.

IV. COMPARISON OF ANALYTICAL PREDICTIONS
WITH EXACT DIAGONALIZATION

In this section, we will compare our analytical predic-
tions with numerical simulations on quantum spin-chain

Hamiltonians. Recall that our analytical results are for Sn
def=

1
1−n ln(tr ρn

A), which is essentially identical to the more phys-

ical quantity, Sn,avg = 1
1−n ln[tr (ρn

A)], as discussed at the be-
ginning of Sec. III A and in Appendix B. See Fig. 3 for a
demonstration. Due to this, we will continue to use the symbol
Sn for Renyi entropies obtained from numerical simulations
even though we are really calculating Sn,avg. In contrast,
the quantity Sn(ρA) = 1

1−n ln{tr [(ρA)n]}, which incidentally
equals the asymptotic expression for Sn in the thermodynamic
limit [see Eqs. (10) and (15)], does not agree as well with
Sn,avg (Fig. 3).

We will compare the ED results with the analytical results
for Berry, EB, and CTPQ states. Our approach will be differ-
ent than the one in Ref. [15] where the analytical results for
the CTPQ state were used only as a guide to fit the results
of ED.
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FIG. 4. Probability amplitudes for Cα [Eq. (8)] corresponding to the Hamiltonian in Eq. (31) with L = 18 when H0 and H1 are given
by Eq. (32) for various values of the perturbation ε: (a) ε = 0.01, (b) ε = 0.204, (c) ε = 0.404, and (d) ε = 0.724. Blue dots: exact results
from eigenstates. Red dashed lines: Gaussian fitting. We choose eigenstates at energy E = 0 and the width of energy window is � = 1. The
Gaussian distribution is obtained by least square fitting.

A. Nonintegrable spin-1/2 chain close to integrable regime

In this subsection we numerically study Renyi entropies
for eigenstates of a nonintegrable Hamiltonian close to the
classical limit, namely the Hamiltonians of the form in Eq. (7):

H = H0 + εH1. (31)

1. Spin-1/2 chain with local perturbation

Consider

H0 =
L∑
i

−ZiZi+1 − Zi, H1 =
L∑
i

Xi. (32)

We first study the histogram of amplitudes Cα introduced
in Eq. (8) for various values of ε to check the validity of
Berry states. In Fig. 4, we observe that amplitudes approach a
Gaussian probability distribution with increasing ε. Analyt-
ical and numerical estimates suggest that one requires ε �
1/Lβ where β is some positive number to access the chaotic
regime [17–20,23,24]. For example, a study of a Hamiltonian
of a form similar to Eq. (32) in Ref. [20] found that for
small ε, signatures of integrability persist, and one obtains a
Lorentzian distribution for {Cα} while as one enters a regime
where signatures of chaos (e.g., Wigner-Dyson level statistics)
are visible, the coefficients follow a Gaussian distribution.
This is consistent with our findings (Fig. 4) where, due to
system size limitations, we require ε ≈ 0.4 to see the onset of
chaos. This implies that in the chaotic regime, the eigenstates
of H cannot be simply obtained by randomly superposing
eigenstates of H0 since when ε is not infinitesimal, there

is no direct correspondence between the eigenstates of H
and H0 (i.e., the effect of H1 is not restricted to simply
randomize eigenstates of H0). Therefore, we are unable to
verify the validity of Eq. (8) for the accessible system sizes.
Figure 5 compares the Renyi entropy of the eigenstates of H
with those predicted by Berry conjecture when ε is smaller
than ≈0.4. Curiously, although we are not able to predict
the full shape dependence of Renyi entropy using the Berry
conjecture for the reasons just outlined, it still works rather
well to predict the Renyi entropies for VA/V � 1. This is
perhaps not surprising, since physically, the crossover value of
ε required to obtain features of chaos at smaller length scales
should be smaller than the one required for chaos to set up
globally.

2. Spin-1/2 chain with random nonlocal perturbation

Next we consider the Hamiltonian H = H0 + εH1, where
H1 is a real Hermitian random matrix. The variance of the
probability distribution function of the matrix element in H1

is chosen such that the range of energy spectrum of H1 is L.
Our expectation is that the system size at which the crossover
from integrability to chaos occurs is parametrically smaller
when H1 is nonlocal as compared to when it is local. In
fact, a diagonal N × N matrix perturbed by a matrix chosen
from a random Gaussian orthogonal ensemble (GOE) shows
chaotic behavior when the strength of the perturbation [37,38]
is �1/

√
N . Translating this to the many-body Hamiltonians

with Hilbert space size H, this indicates a crossover scale of
1/

√
H = 2−Ld /2.
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FIG. 5. Comparison of the second Renyi entropy S2 for a Berry
state, with those obtained from the exact diagonalization for the
Hamiltonian H = H0 + εH1 for L = 20 and ε = 0.204 where H0

and H1 are given by Eq. (32). The solid dots correspond to S2

of eigenstates averaged over an energy window of width �E = 2,
and the vertical bars denote the standard deviation in S2 in this
energy window. Solid lines correspond to S2 for the Berry state using
Eq. (11). For each marker (line) style, the data in descending order
from the top correspond to β = 0.0, 0.13, 0.27, 0.39.

As a demonstration, consider the case when H0 =
−∑L

i=1 Zi. As shown in Fig. 6, the coefficients Cα indeed
behave as random Gaussian variables even when ε = 0.1. Fur-
thermore, we verified that their variance equals e−S , consistent
with ETH. Note that despite the nonlocality of H , the equal
time correlation functions of Berry states depend solely on
H0, which is local. Due to this, the Berry states continue to
satisfy properties expected from a local Hamiltonian, such as
the validity of cluster decomposition for correlations of local
operators.

FIG. 6. Probability distribution of the amplitudes Cα [Eq. (8)]
for a single eigenstate corresponding to inverse temperature β =
0.26 of the Hamiltonian H = −∑L

i=1 Zi + εH1, where H1 is a real
Hermitian random matrix. We choose L = 16 and ε = 0.1. The
Gaussian distribution is obtained by least square fitting.

FIG. 7. Comparison of the second Renyi entropy S2 of one-
dimensional (1D) spin model with Hamiltonian H = −∑L

i=1 Zi +
εH1 where H1 is a random matrix. We choose L = 16 and ε = 0.1.
The three plotted quantities correspond to Renyi entropy S2 of eigen-
states (solid dots), Berry states [Eq. (11)] (solid lines), and CTPQ
states [Eq. (29)] (dashed lines). For each marker (line) style, the data
in descending order from the top correspond to β = 0.26, 0.39, 0.55.

One advantage of working with the specific H0 mentioned
above is that one can calculate its density of states exactly, and
therefore obtain analytical predictions for the Renyi entropies
of the chaotic Hamiltonian H . In particular, the number of
eigenstates of H0 at energy E are

g = L!

N↑!N↓!
, (33)

where N↑ = L−E
2 and N↓ = L+E

2 . Thus the microcanonical
entropy SM = ln(g) under Sterling’s approximation is given
by

SM ≈ Lln(L) − L − E

2
ln

L − E

2
− L + E

2
ln

L + E

2
. (34)

In fact, at high temperatures, the entropy density is same as
that of the Gaussian model, Eq. (23), s = SM/L = ln2 − 1

2β2.
Figure 7 shows the comparison of the Renyi entropies of

the eigenstates of H at ε = 0.1 with the analytical predictions
for a Berry state. We see that agreement is quite good for a
wide range of temperatures.

In Fig. 7, we also compare the results with the expression
obtained from a CTPQ state, Fig. 7. We see that they match
well for small values of f = LA/L. One the other hand, for
f = O(1), the Renyi entropy of a CTPQ state is smaller than
the exact diagonalization results and the predictions from a
Berry state. This is consistent with the fact that in the ther-
modynamic limit, a CTPQ state predicts linear dependence
of the second Renyi entropy as a function of f , while for a
Berry state, the second Renyi entropy is a convex function of
f (Sec. III B).

3. Finite size scaling: Exact vs asymptotic predictions

As discussed in Sec. III, the expression for the nth Renyi
entropy contains n! terms, and only one of the them con-
tributes to the volume law coefficient in the thermodynamic
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FIG. 8. Finite size scaling of the difference between the third
Renyi entropy S3 obtained from analytical expressions and exact
diagonalization results for the eigenstates of a 1D spin model with
Hamiltonian H = −∑L

i=1 Zi + εH1 where H1 is a random matrix.
Here ε = 0.1. A data point is obtained by averaging �S3 for eigen-
states in the range 0 < β < 0.5. LA is chosen to be L/3.

limit [compare Eqs. (14) and (15)]. The asymptotic result,
Eq. (15), also matches the Renyi entropies SA

n (ρA) [Eq. (10)].
It is worthwhile to compare these two predictions, the ex-
act and the asymptotic, with exact diagonalization results.
Figure 8 compares the deviation of the exact result for S3

corresponding to a Berry state [Eq. (14)] from the exact
diagonalization, with the deviation of the asymptotic result
[Eq. (15)] from the exact diagonalization. We notice that the
exact result fares much better than the asymptotic one in a
finite sized system. We also perform the finite size scaling
of the deviation of the CTPQ state for S3 from the exact
diagonalization results. The extrapolation to thermodynamic
limit indicates that the deviation becomes negative in the
thermodynamic limit, which is again consistent with our
prediction that S3 for a chaotic system would be a convex
function of LA.

B. Nonintegrable spin-1/2 chain far from integrability

Next we study local Hamiltonians without any small pa-
rameter. As discussed in Sec. II, arguments based on er-
godicity suggest that the bulk properties of a system can
be described by EB states, Eq. (5). As a numerical test of
Eq. (5), consider a one-dimensional spin-1/2 chain with the
Hamiltonian

H =
L∑
i

−ZiZi+1 − Zi + Xi, (35)

where we impose the periodic boundary condition i ≡ i + L.
Several works have already provided evidence in support of
the validity of ETH in this model [8,14,39–42]. By diagonal-
izing H , we calculate the bipartite amplitude of eigenstates on
the bases of tensor products of all eigenstates of HA and HA
with A denoting the sites i = 1, 2, . . . , LA and A denoting the
sites i = LA + 1, LA + 2, . . . , L. Figure 9 shows the probabil-
ity distribution of the bipartite amplitude on a semilog plot.

FIG. 9. Probability distribution of the bipartite amplitudes Ci j

[Eq. (5)] when |E〉 corresponds to a single eigenstate of the Hamil-
tonian in Eq. (35) with inverse temperature β = 0.18. We choose
L = 16 and the subsystem size LA = 8. The energy window � that
appears in Eq. (5) is chosen to be 2. The Gaussian distribution is
obtained by least square fitting.

We find deviations from a Gaussian distribution and in fact the
data fit a Lorentzian distribution better. We do not understand
the origin of this deviation. They may be due to the surface
term unaccounted for in the definition of EB states (5) which
could be significant in a finite sized system. Nevertheless, as
we discuss next, we find reasonable agreement for the Renyi
entropies obtained from the EB state when compared to the
exact diagonalization data.

The analytical prediction for Renyi entropy, say, for S2

[Eq. (11)] involves the knowledge of the density of states of
HA and HA. One approximate way to proceed is SM

A (EA) =
s(EA/VA)LA where s(x) is the entropy density at energy den-
sity x obtained from the largest size accessible within ED
(here L = 20). Alternatively, one can diagonalize HA and HA
as well, and use the actual microcanonical density of states
SM

A (EA) and SM
A

(E − EA) from such simulations. Here we
chose this latter approach.

Figure 10 compares our analytical prediction of Renyi
entropy with ED. For β � 0.3, the predictions match rather
well with the ED results. The deviations from analytical
predictions increase with decreasing temperature, which we
attribute to the fact that for the system sizes accessible within
ED, the spectrum is not dense enough at the corresponding
energy densities leading to a poor estimate of the density of
states. Furthermore, the ratio of thermal correlation length to
the total system size also increases as temperature is lowered,
leading to larger finite size effects. We also show the compar-
ison with CTPQ states. We notice that even at relatively high
temperatures, β � 0.3, the predictions from CTPQ states fare
less well when compared to the EB states.

We also perform the finite size scaling for Renyi entropies,
Fig. 11, where �S2 denotes the deviation of the analytical
prediction from the exact diagonalization results. The upper
panel shows the finite size scaling for S2 while the lower
panel shows the results for S3, where we also compare our
asymptotic result [Eq. (15)] with the more accurate result
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FIG. 10. Comparison of the second Renyi entropy S2 and the
third Renyi entropy S3 obtained by different methods for the eigen-
states of 1D nonintegrable Hamiltonian in Eq. (35) for L = 20. Top:
Exact diagonalization (solid dots), ergodic bipartition states, Eq. (11)
(solid lines), and CTPQ states, Eq. (29) (dashed lines). For each
marker (line) style, the data in descending order from the top cor-
respond to β = 0.12, 0.18, 0.24, 0.3. Bottom: Exact diagonalization
(solid dots), exact expression for ergodic bipartition states, Eq. (14)
(solid lines), leading order expression for ergodic bipartition states,
Eq. (15) (dash-dot lines). For each marker (line) style, the data in
descending order from the top correspond to β = 0.06, 0.18, 0.24.

[Eq. (14)]. Similar to the case of Berry states in the previous
section, we again find that EB states fare better compared to
the CTPQ states, and for the EB states, the exact expression
fares better than the asymptotic one.

V. SUMMARY AND DISCUSSION

By employing arguments based on ergodicity, we derived
a universal expression for the Renyi entropy for an arbitrary
subsystem to system ratio which, we conjecture, applies to
the finite-energy density eigenstates of chaotic many-body
Hamiltonians. We found that the expression for the Renyi en-
tropy does not match the Renyi entropy of the corresponding
thermal ensemble unless f = VA/V , the subsystem to total
system ratio, approaches zero. For a general value of f , the
Renyi entropy density Sn/VA has a nontrivial dependence on
f , and only in the case of von Neumann entropy n → 1
is the density (i.e., the volume law coefficient) independent
of f . The curvature d2Sn

df 2 is positive (negative) for n > 1

FIG. 11. Finite size scaling for of �Sn/LA for ergodic bipartition
(EB) states and CTPQ states where �Sn is defined as the difference
between the analytical expressions for the corresponding states (EB
or CTPQ) and the exact diagonalization results. The Hamiltonian is
given by Eq. (35) and eigenstates correspond to β = 0.06. LA is cho-
sen to be L/3 for all L. Note that in the middle panel, “EB (leading
order)” refers to the expression in Eq. (15) while “EB (exact)” refers
to Eq. (14). In the top panel we use the exact expression for EB states
[Eq. (11)] while in the bottom panel, we use the leading order result
[Eq. (15)] for EB states.
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FIG. 12. Evolution of the shape of the Renyi entropy S2 as the
total system is increased for a system with Gaussian density of states
[Eq. (24)] for inverse temperature β = 0.6. The various curves in
ascending order correspond to V = 10, 20, 30, 50, 500 respectively.
Note that as V → ∞, the Renyi entropy is a convex function for all
f , and has a cusp singularity at f = 1/2.

(n < 1) and therefore the volume law coefficient for n > 1 is
greater (less) than that of a corresponding thermal ensemble.
Such dependence is quite different than the Renyi entropies
corresponding to (a) the thermal density matrix as well as the
CTPQ state [15,16], for which the Renyi entropy densities
are independent of f ; (b) free fermion systems for which the
von Neumann entropies (and hence all Renyi entropies n > 1)
are concave functions of f [43,44]; (c) a random state in the
Hilbert state [32,33], or systems without any conservation
laws [41] for which all Sn are simply given by V f ln(2) ( f <

1/2) and do not have any curvature dependence. We compared
our theoretical predictions for the Renyi entropy with exact
diagonalization results on quantum spin chains, and found
reasonable agreement for ergodic bipartition conjecture in the
case of local Hamiltonians, and for the Berry conjecture in
the case of local Hamiltonian perturbed by an infinitesimal
random Hamiltonian.

In exact diagonalization studies on finite systems, the
curvature dependence characteristic of the thermodynamic
limit can be a bit challenging to observe. In fact, most of
the curvature seen in finite size systems can be attributed
to the subleading terms in Sn [e.g., the second term in the
numerator of Eq. (11)] which do not contribute to the volume
law coefficient at any fixed VA/V in the thermodynamic limit.
The presence of these terms in finite size systems can lead to
the appearance that Sn for n > 1 is a concave function of VA/V
(see, e.g., Fig. 12). Further, the magnitude of the curvature
vanishes at infinite temperature, and is proportional to β2 at
high temperatures. In exact diagonalization studies on finite
systems, most states have |β| below O(1) (see Fig. 13), which
also makes it harder to observe the curvature.

Our results show that Renyi entropy for a given subsystem
to total system volume fraction f = VA/V depends on the
density of states at an energy density that is itself a function
of f . This allows one to obtain information about the full
spectrum of the Hamiltonian by keeping the Renyi index

FIG. 13. The density of states as a function of the temperature
of the eigenstates for an 18 site spin chain. The temperature for
individual eigenstates |En〉 is evaluated by solving the equation
tr (He−β(En )H )
tr (e−β(En )H )

= En.

n fixed and only varying f from a single eigenstate. To
demonstrate this, we expand the microcanonical entropy s(u)
at an energy density corresponding to the infinite temperature
T → ∞: s(u) = ln2 + α2u2 + α3u3 + · · · , where we choose
u = 0 corresponding to T → ∞ without loss of generality.
From Eq. (18), one can solve for the saddle point energy
density u∗

A({αi}) and u∗
A

({αi}), and plug them in Eq. (20) to
obtain an equation relating Sn, f , {αi}. Suppose that one can
measure Sn for various f given a single eigenstate; we then
have a system of equations of {αi} given from different (Sn, f ).
By solving these equations, one can construct the whole
function s(u) to have the full spectrum (density of state as a
function of energy density) just from a single eigenstate. Note
that this is in strong contrast to the limit VA/V → 0 where
Sn only encodes thermodynamical information at temperature
β−1 and (nβ )−1.

Our results also provide a particularly simple prediction
for Renyi entropies of chaotic eigenstates for systems where
the entropy density s(u) depends on the energy density u in a
power law fashion, i.e., s(u) = cuα where c is a constant. This
is because in this case one can solve the saddle point equation
[Eq. (18)] analytically. Consider, for example, a conformal
field theory (CFT) in d space dimensions, where the exponent
α = d

d+1 . A straightforward calculation yields

Sn = n

(1 − n) f
[{(1 − f ) + f n1/(α−1)}1−α − 1]S1, (36)

where the von Neumann entanglement entropy S1 = cuαV f ,
i.e., it follows the Page curve as expected ( f < 1/2 of course).
Remarkably, in a recent work [45], exactly the same expres-
sion was derived for holographic conformal field theories
using a completely different method based on holographic
duality [46,47].

The dependence of Renyi entropies on a subsystem to
total system ratio sheds light on how to distinguish a mixed,
thermal density matrix from a pure state which locally looks
thermal. Besides being a basic question in quantum statistical
mechanics, this question is also of central interest in the
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“black hole information paradox” [48,49], where Hawking’s
calculation [50] implies that the radiation emanating from
an evaporating black hole resembles a thermal system, while
at the same time, if one were to describe the evaporation
process by a unitary evolution of a pure quantum state, then
one expects that there must exist correlations that distinguish
the state of the black hole from a thermal state. Our results
indicate that the dependence of Renyi entropy Sn on VA/V may
be one way to distinguish a thermal state from a pure state of
a black hole.

In this paper, we focused primarily on the volume law
coefficient of the Renyi entropies. Reference [51] calculated
the subleading contributions to the von Neumann entropy
for the infinite temperature particle-number conserving states
discussed in Ref. [8], and put in an upper bound that scales as√

V for VA/V = 1/2. In a similar spirit, it will be interesting
to calculate the subleading contributions to the noninfinite
temperature states introduced in this paper.

Recently, we noticed that a recent work, Ref. [52], also
conjectures that states of the form Eq. (5) may represent eigen-
states of chaotic Hamiltonians. Reference [52] argues that
the average of von Neumann entropy over all eigenstates is
linear in subsystem size at the leading order up to VA/V = 1/2
with volume law coefficient ln(2) for a spin-1/2 system. This
is consistent with our results, and follows from our general
formula, Eq. (15), for individual eigenstates: the average will
be dominated by eigenstates at the infinite temperature, whose
entanglement at the leading order is indeed VAln(2) up to
VA/V = 1/2.
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APPENDIX A: SUBSYSTEM ENERGY FLUCTUATION
IN AN ERGODIC BIPARTITION (EB) STATE

Consider an ergodic bipartition (EB) state defined by
Eq. (5),

|E〉 =
∑

EA
i +EA

j ∈(E− 1
2 �,E+ 1

2 �)

Ci j

∣∣EA
i

〉⊗ ∣∣EA
j

〉
; (A1)

the probability of finding an eigenstate |EA
i 〉 on region A is the

diagonal element of reduced density matrix given by Eq. (2):

〈
EA

i

∣∣ρA

∣∣EA
i

〉 = 1

N
eSA(E−EA

i ), (A2)

from which we can derive the probability of finding a state
with energy EA by multiplying the density of state eSA(EA )

on A:

P(EA) ∼ eSA(EA )eSA(E−EA ). (A3)

This function has a peak at EA = EA determined by the
saddle point equation,

∂SA(EA)

∂EA

∣∣∣∣EA=EA
= ∂SA(EA)

∂EA

∣∣∣∣
EA=E−EA

. (A4)

By expanding P(EA) around EA, P(EA) takes the Gaussian
form:

P(EA) ∼ e−(EA−EA)2
/2�E2

, (A5)

with

�E2 = cT 2 VAVA

VA + VA

= cT 2V f (1 − f ), (A6)

where c denotes the specific heat per unit volume, T denotes
the temperature, and f ≡ VA/V .

APPENDIX B: PROOF THAT |SA
n (tr ρn

A) − SA
n,avg| IS

EXPONENTIALLY SMALL IN THE TOTAL SYSTEM SIZE

Consider an ergodic bipartition (EB) ensemble defined by
Eq. (5)

|E〉 =
∑
i, j

Ci j

∣∣EA
i

〉⊗ ∣∣EA
j

〉
, (B1)

where {Ci j} is chosen from the probability distribution func-
tion

P({Ci j}) ∝ δ

⎛
⎝1 −

∑
i j

|Ci j |2
⎞
⎠∏

i, j

δ
(
EA

i + EA
j − E

)
, (B2)

where the index i( j) in Ci j labels the state in A(A). The
reduced density matrix of A can be obtained by tracing out
the Hilbert space in A:

ρA = tr A|ψ〉〈ψ | =
∑
i,i′

∣∣EA
i

〉〈
EA

i′
∣∣∑

j

Ci jC
∗
i′ j . (B3)

In the main text we define two different averaging procedures
for the Renyi entropy,

SA
n

(
tr ρn

A

) = 1

1 − n
ln
(
tr ρn

A

)
, SA

n,avg = 1

1 − n
ln
(
tr ρn

A

)
,

(B4)

and state that the difference between these two vanishes in
the volume of the system. Here we provide the proof for this
claim.

First

tr ρn
A = tr ρn

A + (
tr ρn

A − tr ρn
A

) = tr ρn
A(1 + x), (B5)

where

x ≡ tr ρn
A

tr ρn
A

− 1. (B6)
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Plugging Eq. (B5) into Eq. (B4), we have

SA
n,avg = 1

1 − n
ln
[
tr (ρn

A)
] = SA

n

(
tr ρn

A

)+ 1

1 − n
ln(1 + x),

(B7)

where the last term, the difference between two averages,
would be our main focus. By definition x = 0, and

x2 =
(

tr ρn
A

tr ρn
A

− 1

)2

=
(
tr ρn

A

)2

tr ρn
A

2 − 1. (B8)

Via Eq. (B3),

ρn
A =

∑
i1, j1,k1

|Ei1〉〈Ej1 |Ci1k1C
∗
j1k1

∑
i2, j2,k2

|Ei2〉〈Ej2 |Ci2k2C
∗
j2k2

. . .

×
∑

in, jn,kn

|Ein〉〈Ejn |CinknC
∗
jnkn

. (B9)

By taking the trace of the above formula, we get

tr ρn
A =

∑
i1, j1,k1

∑
i2, j2,k2

. . .
∑

in, jn,kn

δ j1,i2δ j2,i3 . . .

δ jn,i1Ci1k1C
∗
j1k1

Ci2k2C
∗
j2k2

. . .CinknC
∗
jnkn

. (B10)

Now we are going to calculate the 2n point correlation func-
tion, which contains n! terms:

Ci1k1C
∗
j1k1

Ci2k2C
∗
j2k2

. . .CinknC
∗
jnkn

= Ci1k1C
∗
j1k1

. . .CinknC
∗
jnkn

+ all the other possible pairings. (B11)

Note that the above equality is only true when the dimension
of the restricted Hilbert space N → ∞ with n being finite such
that Wick’s theorem can hold. When we sum all the indices to
calculate Tr ρn

A, the term with the maximal number of sum-
mation for the state in HA (labeled by k) will exponentially
dominate all the other terms. Looking back to Eq. (B11), only
first term contains no delta function constraint for k, and thus

tr ρn
A =

∑
i1, j1,k1

∑
i2, j2,k2

. . .

×
∑

in, jn,kn

[
δ j1,i2δ j2,i3 . . . δ jn,i1

1

Nn
δi1, j1 . . . δin, jn + · · ·

]

= 1

Nn

∑
i

∑
k1,...kn

δEA
i +EA

k1
,E . . . δEA

i +EA
kn

,E + · · ·

=
∑

EA
eSM

A (EA )+nSM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]n [1 + O(e−α1V )], (B12)

which gives

tr ρn
A

2 =
[ ∑

EA
eSM

A (EA )+nSM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]n

]2

[1 + O(e−α2V )]

(B13)

where α1 and α2 are positive order 1 constants. A similar
calculation shows

(
tr ρn

A

)2 =
[ ∑

EA
eSM

A (EA )+nSM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]n

]2

[1 + O(e−α3V )].

(B14)

Plugging Eqs. (B14) and (B13) into Eq. (B8),

x2 = O(e−αV ), (B15)

where α is a positive order 1 constant. This means that in
thermodynamic limit V → ∞, there is no fluctuation of x, and
the precise statement is given by

Prob(|x| � ε) � x2

ε2
(B16)

via Chebyshev’s inequality, and thus there does not exist x
with finite distance away from zero in thermodynamics limit
(V → ∞), and an immediate consequence is that∣∣∣SA

n

(
tr ρn

A

)− SA
n,avg

∣∣∣ = 1

1 − n
ln(1 + x) = O(e−αV ) (B17)

and thus the difference between these two averages decreases
exponentially in volume.

APPENDIX C: SECOND RENYI ENTROPY OF AN
ERGODIC BIPARTITION (EB) STATE

Here we provide the calculation of the averaged second
Renyi entropy of an EB state. From a technical standpoint,
the calculations are similar to those in Ref. [15]. Consider an
EB state in an energy window I ≡ (E − 1

2�, E + 1
2�),

|E〉 =
∑
i, j

Ci j

∣∣EA
i , EA

j

〉
, (C1)

where {Ci j} is chosen from the probability distribution func-
tion,

P({Ci j}) ∝ δ

⎛
⎝1 −

∑
i j

|Ci j |2
⎞
⎠∏

i, j

δ
(
EA

i + EA
j − E

)
. (C2)

Note that the first index i in Ci j labels the state in A while the
second index j labels the states in A. Now we can calculate
the reduced density matrix of A:

ρA = tr A|E〉〈E | =
∑
i,i′

∣∣EA
i

〉〈
EA

i′
∣∣∑

j

Ci jC
∗
i′ j, (C3)

and ρ2
A is

ρ2
A =

∑
i,k′

∣∣EA
i

〉〈
EA

k′
∣∣∑

i′, j,l

Ci jC
∗
i′ jCi′lC

∗
k′l . (C4)

Then it is straightforward to calculate tr ρ2
A:

tr ρ2
A =

∑
i, j,k,l

Ci jCklC
∗
ilC

∗
k j, (C5)

In order to calculate the average of the second Renyi
entropy:

S2 = −ln
[
tr ρ2

A

]
, (C6)
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we perform the average for Ci jCklC∗
ilC

∗
k j first:

Ci jCklC∗
ilC

∗
k j = 1

N (N + 1)

[
δ jlδEA

i +EA
j ,EδEA

k +EA
j ,E + δikδEA

i +EA
j ,EδEA

i +EA
l ,E

]
, (C7)

where N is the dimension of the Hilbert space in the restricted energy window. Next we calculate tr ρ2
A:

tr ρ2
A = 1

N (N + 1)

⎡
⎣∑

i, j,k

δEA
i +EA

j ,EδEA
k +EA

j ,E +
∑
i, j,l

δEA
i +EA

j ,EδEA
i +EA

l ,E

⎤
⎦

= 1

N (N + 1)

⎡
⎣∑

EA

e2SM
A (EA )+SM

A
(E−EA ) +

∑
EA

e2SM
A

(EA )+SM
A (E−EA )

⎤
⎦

= 1

N (N + 1)

[∑
EA

e2SM
A (EA )+SM

A
(E−EA ) + eSM

A (EA )+2SM
A

(E−EA )

]
, (C8)

where we make the change of variable for the last term. Note that the above equation is manifestly symmetric between A and Ā.
Finally we can derive the second Renyi entropy of an EB state:

S2 = −ln

{
1

N2

[∑
EA

e2SM
A (EA )+SM

A
(E−EA ) + eSM

A (EA )+2SM
A

(E−EA )

]}
= −ln

[∑
EA

e2SM
A (EA )+SM

A
(E−EA ) + eSM

A (EA )+2SM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]2

]
, (C9)

where we have assumed N is large such that N + 1 ≈ N . Notice that when we take VA,V → ∞ with VA
V < 1

2 , the first term in
the numerator can be neglected, and thus

S2 = −ln

[ ∑
EA

eSM
A (EA )+2SM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )]2

]
. (C10)

APPENDIX D: RENYI ENTROPY Sn OF AN ERGODIC BIPARTITION (EB) STATE

Equation (C3) shows the reduced density matrix obtained from an EB state:

ρA =
∑
i, j,k

|Ei〉〈Ej |CikC
∗
jk, (D1)

where as usual the first index of C labels the eigenstate inHA and the second index of C labels the eigenstate inHA.
Next we can calculate ρn

A:

ρn
A =

∑
i1, j1,k1

|Ei1〉〈Ej1 |Ci1k1C
∗
j1k1

∑
i2, j2,k2

|Ei2〉〈Ej2 |Ci2k2C
∗
j2k2

. . .
∑

in, jn,kn

|Ein〉〈Ejn |CinknC
∗
jnkn

. (D2)

By taking the trace of the above formula, we get

tr ρn
A =

∑
i1, j1,k1

∑
i2, j2,k2

. . .
∑

in, jn,kn

δ j1,i2δ j2,i3 . . . δ jn,i1Ci1k1C
∗
j1k1

Ci2k2C
∗
j2k2

. . .CinknC
∗
jnkn

. (D3)

Now we are going to calculate the 2n point correlation function, which contains n! terms:

Ci1k1C
∗
j1k1

Ci2k2C
∗
j2k2

. . .CinknC
∗
jnkn

= Ci1k1C
∗
j1k1

. . .CinknC
∗
jnkn

+ all the other possible pairings. (D4)

Note that the above equality is only true when the dimension of the restricted Hilbert space N → ∞ with n being finite such
that Wick’s theorem can hold. When we sum all the indices to calculate tr ρn

A, the term with the maximal number of summation
for the state inHA (labeled by k) will exponentially dominate all the other terms. Looking back to Eq. (D4), only the first term
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contains no delta function constraint for k, and thus

tr ρn
A =

∑
i1, j1,k1

∑
i2, j2,k2

. . .
∑

in, jn,kn

δ j1,i2δ j2,i3 . . . δ jn,i1
1

Nn
δi1, j1 . . . δin, jn

= 1

Nn

∑
i

∑
k1,...kn

δEA
i +EA

k1
,E . . . δEA

i +EA
kn

,E = 1

Nn

∑
EA

eSM
A (EA )+nSM

A
(E−EA ). (D5)

Finally we can obtain the Renyi entropy of order n in thermodynamic limit:

Sn = 1

1 − n
ln

[ ∑
EA

eSM
A (EA )+nSM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )]n

]
, (D6)

which is exactly equal to the Renyi entropy obtained from the maximally mixed state. In general we can derive the closed
form of the Renyi entropy for arbitrary order without taking the thermodynamic limit by calculating Eq. (D4) explicitly, but for
simplicity, we only present the exact result for n = 3:

S3 = −1

2
ln

[∑
EA

eSM
A (EA )+3SM

A
(E−EA ) + 3e2SM

A (EA )+2SM
A

(E−EA ) + eSM
A (EA )+SM

A
(E−EA ) + e3SM

A (EA )+SM
A

(E−EA )[∑
EA

eSM
A (EA )+SM

A
(E−EA )]3

]
. (D7)

APPENDIX E: CURVATURE OF RENYI ENTROPY Sn

Here we show the Renyi entropy Sn is convex for n > 1
while it is concave for n < 1. Recall that Sn is given by
Eq. (20),

Sn = V

1 − n
[ f s(u∗

A) + n(1 − f )s(u∗
A

) − ns(u)]. (E1)

By taking the derivative of Eq. (E1), we have

1 − n

V

∂Sn

∂ f
= s(u∗

A) + f
∂s(u∗

A)

∂u∗
A

∂u∗
A

∂ f
− ns(u∗

A
)

+ n(1 − f )
∂s(u∗

A
)

∂u∗
A

∂u∗
A

∂ f
. (E2)

With the saddle point equation (18)

∂s(u∗
A)

∂u∗
A

= n
∂s(u∗

A
)

∂u∗
A

(E3)

and

∂u∗
A

∂ f
= 1

1 − f

[
u∗

A
− u∗

A − f
∂u∗

A

∂ f

]
(E4)

obtained by differentiating the energy conservation condition
f u∗

A + (1 − f )u∗
A

= u, Equation (E2) can be simplified as

(1 − n)

V

∂Sn

∂ f
= s(u∗

A) − ns(u∗
A

) + ∂s(u∗
A)

∂u∗
A

(u∗
A

− u∗
A). (E5)

Now we differentiate Eq. (E5) with respect to f again:

(1 − n)

V

∂2Sn

∂ f 2
= ∂s(u∗

A)

∂u∗
A

∂u∗
A

∂ f
− n

∂s(u∗
A

)

∂u∗
A

∂u∗
A

∂ f

+ ∂2s(u∗
A)

∂u∗
A2

∂u∗
A

∂ f
(u∗

A
− u∗

A)

+ ∂s(u∗
A)

∂u∗
A

(
∂u∗

A

∂ f
− ∂u∗

A

∂ f

)
. (E6)

With Eqs. (E3) and (E4), Eq. (E6) can be simplified:

(1 − n)

V

∂2Sn

∂ f 2
= ∂2s(u∗

A)

∂u∗
A2

∂u∗
A

∂ f
(u∗

A
− u∗

A). (E7)

Now let’s study the sign of the right-hand side. The first
quantity s′′(u∗

A) is always negative due to the concavity of
microcanonical entropy. The sign of the last quantity u∗

A
− u∗

A
can also be shown via the concavity of microcanonical entropy
and the saddle point equation (E3),

sgn(u∗
A

− u∗
A) =

{
sgn(n − 1) for β > 0

−sgn(n − 1) for β < 0
, (E8)

where β ≡ ∂s(u)
∂u . See Fig. 14 for a graphical illustration.

As for the sign of the quantity in the middle ∂u∗
A

∂ f , we
need to differentiate the saddle point equation (E3) with

β > 0 n > 1

β > 0 n < 1 β < 0 n < 1

β < 0 n > 1

u

s(u)

u∗
A

u

u∗
A

u∗
A

u

u∗
A

u∗
A

u∗
A

u

u

u∗
A

u∗
A

FIG. 14. Allowed relative positions of the energies u, u∗
A and u∗

A
that solve Eq. (18). Note that the concavity of s(u) curve, imposed
by the non-negative value of specific heat, plays a crucial role.
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respect to f :

∂2s(u∗
A)

∂u∗
A2

∂u∗
A

∂ f
= n

∂2s(u∗
A

)

∂u
A

2

∂u∗
A

∂ f
. (E9)

This implies ∂u∗
A

∂ f and
∂u∗

A
∂ f have the same sign. Combining this

fact with the energy conservation condition Eq. (E4), we have

sgn

(
∂u∗

A

∂ f

)
=
{

sgn(n − 1) for β > 0
−sgn(n − 1) for β < 0 . (E10)

Finally by combining Eqs. (E7), (E8), and (E10), and the
concavity of the microcanonical entropy, we obtain the final
result,

∂2Sn

∂ f 2
> 0 for n > 1,

∂2Sn

∂ f 2
< 0 for n < 1, (E11)

for all β and f = VA/V .

APPENDIX F: RENYI ENTROPY FOR A SYSTEM
WITH GAUSSIAN DENSITY OF STATES

1. Second Renyi entropy

Suppose that the probability density of finding a state with
energy E takes the form

P(E ) = 1√
2πV

e−E2/2V ; (F1)

we can then derive the density of state by multiplying the total
number of states in the Hilbert space:

D(E ) ∼ 2V e−E2/2V = eV [ln2−(1/2)( E
V )2], (F2)

which implies the microcanonical entropy density s is

s = ln2 − 1
2 u2 (F3)

with u denoting the energy density. Also we can define the
inverse temperature β,

β = ∂s

∂u
= −u. (F4)

Given Eqs. (F2) or (F3), we can then calculate the number
of states in A and A with energy EA and EA respectively:

eSA(EA ) = 2VA PA(EA)� = 2VA
1√

2πVA
e−E2

A/2VA�, (F5)

eSA(E−EA ) = 2VA PA(EA)� = 2VA
1√

2πVA

e−E2
A
/2VA�, (F6)

where � is the width of the energy window. First we calculate

∑
EA

eSA(EA )eSA(E−EA ) = 2VA+VA√
4π2VAVA

∑
EA

�2e−E2
A/2VA−(E−EA )2/2VA

= 2VA+VA√
π2VAVA

�e−E2/V

√
π

1
2VA

+ 1
2VA

= 2V

√
2πV

�e−E2/2V , (F7)

where we approximate
∑

EA
� by the continuous integral∫

dEA and evaluate the Gaussian integral in the expression.

The other quantity we need to evaluate is

∑
EA

eSA(EA )e2SA(E−EA ) = 2VA+2VA√
8π3VAV 2

A

∑
EA

�3e−E2
A/2VA−(E−EA )2/VA

= 2VA+2VA

2π
√

(2VA + VA)VA

�2e−E2/(2VA+VA ),

(F8)

and we also have

∑
EA

e2SA(EA )eSA(E−EA ) = 22VA+VA√
8π3V 2

A VA

∑
EA

�3e−E2
A/VA−(E−EA )2/2VA

= 22VA+VA

2π
√

(VA + 2VA)VA
�2e−E2/(VA+2VA ).

(F9)

With Eqs. (F7)–(F9), we can get the second Renyi entropy:

S2 =−ln

⎡
⎢⎣
∑

EA
eSM

A (EA )+2SM
A

(E−EA ) + e2SM
A (EA )+SM

A
(E−EA )[∑

EA
eSM

A (EA )+SM
A

(E−EA )
]2

⎤
⎥⎦

=−ln

[
1√

1 − f 2
e−V γ ( f ,u) + 1√

1 − (1 − f )2
e−V γ (1− f ,u)

]
,

(F10)

where u ≡ E
V , f ≡ VA

V , and

γ ( f , u) = f ln2 − f

1 + f
u2. (F11)

Notice that the S2 is manifestly invariant under f → 1 − f ,
and is universal in the sense that it only depends on the energy
density, and is capable of capturing the finite size correction
of entanglement Renyi entropy.

In thermodynamic limit V → ∞ with f < 1/2, we can
then get

S2 = f V

[
ln2 − u2

1 + f

]
= f V

[
ln2 − β2

1 + f

]
. (F12)

2. Renyi entropy Sn in the limit V → ∞
In thermodynamic limit V → ∞, we can solve for the

saddle point equation

∂s(u∗
A)

∂u∗
A

= n
∂s(u∗

A
)

∂u∗
A

(F13)

with u∗
A

= u∗
1− f − f

1− f u∗
A, and then plug it in to Eq. (20),

Sn = V

1 − n
[ f s(u∗

A) + n(1 − f )s(u∗
A

) − ns(u)],

to derive nth Renyi entropy.
First from the saddle point equation, we get

u∗
A = nu∗

A
= n

(
u

1 − f
− f

1 − f
u∗

A

)
, (F14)

032111-17



TSUNG-CHENG LU AND TARUN GROVER PHYSICAL REVIEW E 99, 032111 (2019)

from which we can solve for u∗
A:

u∗
A = nu

1 + (n − 1) f
. (F15)

Finally we can then calculate the Renyi entropy for arbi-
trary Renyi index n:

Sn = V

1 − n

[
f s(u∗

A) + n(1 − f )s(u∗
A

) − ns(u)
]

= V

1 − n

[
f

(
ln2 − 1

2
(u∗

A)2

)
+ n(1 − f )

×
(

ln2 − (u∗
A)2

2n2

)
− n

(
ln2 − u2

2

)]

= f V

[
ln2 − nu2

2[1 + (n − 1) f ]

]

= f V

[
ln2 − nβ2

2[1 + (n − 1) f ]

]
. (F16)

When n → 1, we have

S1

f V
= ln2 − 1

2β2, (F17)

which is exactly the microcanonical entropy density.

APPENDIX G: SOME MATHEMATICAL RESULTS ON
CORRELATION FUNCTIONS FOR RANDOM VECTORS

Suppose that we have a random vector X in RM with the
probability distribution function being

P({xi}) ∝ δ

(
1 −

M∑
i=1

xi

)2

, (G1)

where {xi} denotes all the components of X . Note the prob-
ability measure is invariant under O(M ), which immediately
indicates that

〈xix j〉 = 0 ∀i �= j. (G2)

For the case where i = j, we recall the constraint:

M∑
i=1

x2
i = 1. (G3)

When we take the average for the equation above, due to the
O(M ) symmetry, 〈x2

i 〉 = 〈x2
j 〉 ∀i, j, and thus we can get

〈
x2

i

〉 = 1

M
. (G4)

As for the four point function 〈xix jxkxl〉, by imposing the
O(M ) symmetry, we can write down the most general form:

〈xix jxkxl〉 = A[δi jδkl + δikδ jl + δilδk j]. (G5)

Now in order to determine A, we contract the indices k, l first,
meaning we set k = l and then perform summation over k:

〈xix j〉 = A
M∑

k=1

[δi j + δikδ jk + δikδk j] = Aδi j[M + 1 + 1].

(G6)

Recall that 〈xix j〉 = 1
M δi j , and thus A can be determined:

A = 1

M(M + 2)
, (G7)

meaning the four point function is

〈xix jxkxl〉 = 1

M(M + 2)
[δi jδkl + δikδ jl + δilδk j]. (G8)

Notice that Eq. (G8) looks very similar to Wick’s theorem, but
actually it is not:

〈xix jxkxl〉 = 1

M(M + 2)
[δi jδkl + δikδ jl + δilδk j]

�= 1

M2
[δi jδkl + δikδ jl + δilδk j]

= 〈xix j〉〈xkxl〉 + 〈xixk〉〈x jxl〉 + 〈xixl〉〈xkx j〉.
(G9)

However we can notice that when we take M → ∞, the
difference between these two approaches is zero! This is not
a coincidence since when we randomly pick a vector from
RM with the only constraint being the magnitude of the vector
and M is large, we can show that the probability distribution
function for {xi|i = 1, 2, . . . s} is Gaussian for s � M:

P(x1, x2, . . . xs) =
M∏

i=s+1

∫ ∞

−∞
dxiP(x1, x2, . . . xM )

=
M∏

i=s+1

∫ ∞

−∞
dxiδ

(
1 −

s∑
i=1

x2
i −

M∑
i=s+1

x2
i

)

∝
[

1 −
s∑

i=1

x2
i

](M−s−1)/2

, (G10)

where we used fact that the M − s dimensional integral is
proportional to the surface area of the M − s dimensional ball

with radius R =
√

1 −∑s
i=1 x2

i . Then

P(x1, x2, . . . xs) ∼
[

1 −
s∑

i=1

x2
i

](N−s−1)/2

∼
[

1 − 1

Nσ 2

s∑
i=1

x2
i

]N/2

∼ e−∑s
i=1 x2

i /2σ 2
,

(G11)

where the variance σ 2 = 1
N . Therefore, the probability distri-

bution function of the small number of degrees of freedom
is indeed a Gaussian! Also note that the derivation above is
just the standard derivation from microcanonical ensemble to
canonical ensemble. For example, consider M particles in a
box with total energy being E ; in a microcanonical ensemble
we can write down the probability distribution for momenta
{pi}:

P({pi}) ∝ δ

(
E −

M∑
i=1

p2
i

2m

)
, (G12)
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where we consider kinetic energy only for simplicity. Then
if we look at the probability function for a small numbers of
particles, we can derive the Boltzmann distribution for those
particles via exactly the same calculation as above, which is
indeed a Gaussian in momenta.

1. Correlation functions for a random state
without imposing any constraint

Given a Hilbert spaceH = HA ⊗HA with Dim(H) ≡ N ,
suppose we pick a state

|ψ〉 =
∑
i, j

Ci j

∣∣EA
i , EA

j

〉
, (G13)

where {Ci j} is chosen from the probability distribution func-
tion

P({Ci j}) ∝ δ

⎛
⎝1 −

∑
i j

|Ci j |2
⎞
⎠ (G14)

with i = 1, 2, . . . Dim(HA) and i = 1, 2, . . . Dim(HA) re-
spectively. Since Ci j = ui j + ivi j , a random pure state is
equivalent to a vector in RM (M = 2N ) with the length of the
vector being 1, meaning it can be regarded as a point on SM−1

with the probability measure

P({ui j}, {vi j}) ∝ δ

⎛
⎝1 −

∑
i j

u2
i j −

∑
i j

v2
i j

⎞
⎠. (G15)

We may want to calculate the two point function:

〈Ci jCkl〉 = 〈(ui j + ivi j )(ukl + ivkl )〉
= 〈ui jukl〉 − 〈vi jvkl〉 + i〈ui jvkl〉 + i〈vi jukl〉
= 〈ui jukl〉 − 〈vi jvkl〉, (G16)

where the last two terms vanish since ui j and vkl are different
components ∀i, j, k, l of a vector in RM . On the other hand,

〈ui jukl〉 = 〈ui jukl〉 = 1

M
δikδ jl , (G17)

and thus we conclude

〈Ci jCkl〉 = 0 ∀i, j, k, l. (G18)

Let’s consider another two point function 〈Ci jC∗
kl〉:

〈Ci jC
∗
kl〉 = 〈(ui j + ivi j )(ukl − ivkl )〉 = 〈ui jukl〉 + 〈vi jvkl〉

= 2

M
δikδ jl = 1

N
δikδ jl . (G19)

Note that the above result can also be recognized as

〈Ci jC
∗
kl〉 = δk jδ jl〈|Ci j |2〉 = 1

N
δikδ jl . (G20)

The lesson here is that Ci j is only correlated with its conjugate
counterpart.

We can also consider the four point function:

〈Ci jCklC
∗
mnC

∗
pq〉 = 〈(ui j + ivi j )(ukl + ivkl )

× (umn − ivmn)(upq − ivpq)〉. (G21)

There are 16 terms in the expansion, but the terms with an odd
number of u vanish. Thus,

〈Ci jCklC
∗
mnC

∗
pq〉

= 〈ui jukl umnupq〉 − 〈ui juklvmnvpq〉
+ 〈ui jumnvklvpq〉 + 〈ui jupqvklvmn〉
+ 〈ukl umnvi jvpq〉 + 〈ukl upqvi jvmn〉
− 〈umnupqvi jvkl〉 + 〈vi jvklvmnvpq〉, (G22)

where the first line and the last line correspond to the term
with four and zero numbers of u, and the C4

2 terms in between
are from choosing two u and two v. Via Eq. (G8), the first and
the last term are

〈ui jukl umnupq〉 = 〈vi jvklvmnvpq〉

= 1

M(M + 2)
[δikδ jlδmpδnq + δimδ jnδkpδlq

+ δipδ jqδkmδln], (G23)

while six terms in the middle are

−〈ui juklvmnvpq〉 + 〈ui jumnvklvpq〉 + 〈ui jupqvklvmn〉
+ 〈ukl umnvi jvpq〉 + 〈ukl upqvi jvmn〉 − 〈umnupqvi jvkl〉

= 2

M(M + 2)
[δikδ jlδmpδnq + δimδ jnδkpδlq

+ δipδ jqδkmδln]. (G24)

Combining the result of Eqs. (G23) and (G24), the four
point function can be calculated

〈Ci jCklC
∗
mnC

∗
pq〉 = 4

M(M + 2)
[δimδ jnδkpδlq + δipδ jqδkmδln]

= 1

N (N + 1)
[δimδ jnδkpδlq + δipδ jqδkmδln].

(G25)

To check this result, we can calculate tr ρ2
A without energy

constraint, and we get back to the same answer as in Ref. [33]:

tr ρ2
A = Dim(HA) + Dim(HA)

Dim(HA)Dim(HA) + 1
. (G26)

From this result we can calculate the second Renyi entropy,

S2 = −lntr ρ2
A = ln

[
Dim(HA)

]
, (G27)

when we take both Dim(HA) and Dim(HA) to infinity while
the ratio Dim(HA)/Dim(HA) < 1.

Via Jensen’s inequality, we have

S2 = ln
[
Dim(HA)

]
� S1 � ln

[
Dim(HA)

]
(G28)

and thus the entanglement entropy S1 is also maximal:

S1 = ln
[
Dim(HA)

]
, (G29)

which is the answer from Page’s calculation [32].
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2. Correlation functions for a random state at a fixed energy

Consider a pure state in a small energy window with energy
E :

|ψ〉 =
∑
i, j

Ci j

∣∣EA
i , EA

j

〉
, (G30)

where {Ci j} is chosen from the probability distribution func-
tion

P({Ci j}) ∝ δ

⎛
⎝1 −

∑
i j

|Ci j |2
⎞
⎠∏

i, j

δ
(
EA

i + EA
j − E

)
, (G31)

with i = 1, 2, . . . Dim(HA) and i = 1, 2, . . . Dim(HA) re-
spectively. Due to the energy conservation, the two point
function will be

〈Ci jC
∗
kl〉 = 1

N
δikδ jlδEA

i +EA
j ,E , (G32)

and the four point function is

〈Ci jCklC
∗
mnC

∗
pq〉 = 1

N (N + 1)

[
δimδ jnδkpδlqδEA

i +EA
j ,EδEA

k +EA
l ,E

+ δipδ jqδkmδlnδEA
i +EA

j ,EδEA
k +EA

l ,E

]
. (G33)
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