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Dynamics of the Desai-Zwanzig model in multiwell and random energy landscapes
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We analyze a variant of the Desai-Zwanzig model [J. Stat. Phys. 19, 1 (1978)]. In particular, we study
stationary states of the mean field limit for a system of weakly interacting diffusions moving in a multiwell
potential energy landscape, coupled via a Curie-Weiss type (quadratic) interaction potential. The location and
depth of the local minima of the potential are either deterministic or random. We characterize the structure and
nature of bifurcations and phase transitions for this system, by means of extensive numerical simulations and of
analytical calculations for an explicitly solvable model. Our numerical experiments are based on Monte Carlo
simulations, the numerical solution of the time-dependent nonlinear Fokker-Planck (McKean-Vlasov) equation,
the minimization of the free-energy functional, and a continuation algorithm for the stationary solutions.
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I. INTRODUCTION

Systems of interacting particles, often subject to thermal
noise, arise in a wide spectrum of natural phenomena and ap-
plications, ranging from plasma physics and galactic dynam-
ics [1] to dynamical density-functional theory (DDFT) [2,3],
Josephson junctions (for example, the Frenkel-Kontorova
model [4]), mathematical biology [5,6], and even in mathe-
matical models in social sciences [7,8]. As examples of mod-
els of interacting “agents” in a noisy environment that appear
in the social sciences, including crowd dynamics, we mention
the modeling of cooperative behavior [9], risk management
[10], and opinion formation [7]. Other recent applications that
have motivated this work are global optimization [11], active
media [12], and machine learning [13,14]. Indeed, it has been
shown recently [15–17] that “stochastic gradient descent,”
the optimization algorithm used in the training of neural
networks, can be represented as the evolution of a particle
system with interactions governed by a potential related to the
objective function that is used to train the network. Several of
the issues that we study here, such as phase transitions and the
effect of nonconvexity, are of great interest in the context of
the training of neural networks.

For weakly interacting diffusions, one can pass rigor-
ously to the mean field limit leading to the McKean-Vlasov
equation, a nonlinear nonlocal Fokker-Planck type equa-
tion [9,18]. Unlike finite systems of interacting diffusions,
whose law (probability density function) is governed by the
linear Fokker-Planck equation, the McKean-Vlasov equa-
tion can exhibit phase transitions [9]. Indeed, whereas the
finite-dimensional system of interacting Langevin equations
moving in a confining potential always has a unique sta-
tionary state, given by the Boltzmann distribution ρβ (x) =
1
Z e−βV (x) where Z = ∫

Rd e−βV dx is the normalization con-
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stant (see [19, Theorem 4.4], [20, Sec. 11.9]), the McKean-
Vlasov equation, with a nonconvex confining potential, can
have several stationary solutions at low temperatures [9,21].
As a matter of fact, the number of stationary solutions
depends on the number of metastable states (local min-
ima) of the confining potential [22]. A complete rigorous
analysis of phase transitions, both continuous and discon-
tinuous, for the McKean-Vlasov dynamics in a box with
periodic boundary conditions and for nonconvex (i.e., non-H
stable) interaction potentials is presented in [23]. The mean
field limit for non-Markovian interacting particles, including
the effect of memory on the bifurcation diagram, is studied in
[24].

The main purpose of this study is to scrutinize the dy-
namics of a system of weakly interacting diffusions and, in
particular, characterize bifurcations and phase transitions for
this system in the presence of a multiwell confining potential
which can have random locations and depths of local minima,
interacting under a quadratic Curie-Weiss potential. An exam-
ple of a deterministic multiwell potential is given in Fig. 1. It
is a modified version of the so-called Müller-Brown potential
[25], a canonical potential surface used often as a prototype
in theoretical chemistry including reaction dynamics [26], but
also theoretical biology including protein folding [27–29].
This potential is also often adopted as a prototype to test
the performance of computational optimization algorithms
to, e.g., obtain reaction paths [30]. Multiwell potentials or
rugged energy landscapes have numerous applications, from
materials science and catalysis where (surface) diffusion in
a multiscale potential is critical to understanding how atoms
or molecules adsorb on catalytic surfaces and react to droplet
motion on chemically heterogeneous substrates [31]. In the
latter case, in particular, the multiscale potential corresponds
to the interfacial energy of a droplet on a solid surface that
has random chemical heterogeneities. For a 2D droplet, the
(x, y) coordinates are the radius (footprint) and the location
(midpoint) of the droplet [32,33].
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FIG. 1. A two-dimensional (2D) multiscale potential.

Our study builds upon earlier work [34]. There, the mean
field limit for interacting diffusions in a two-scale, locally
periodic potential was considered. This problem was then
studied using tools from multiscale analysis, and in particu-
lar periodic homogenization for parabolic partial differential
equations (PDEs) [35]. In contrast, here the focus is on
multiwell potentials (either deterministic or random) that do
not have a periodic structure, and, consequently, the theory
of periodic homogenization is not applicable. In particular,
we will offer a complete bifurcation analysis and explicit
characterization of phase transitions for the McKean-Vlasov
equation in one dimension for model multiwell potentials with
an arbitrary number of local minima, and we will also study
phase transitions when the number of local minima tends to
infinity.

A. Statement of the problem and description of main results

Our starting point is a system of interacting particles in
one dimension, moving in a confining potential V (·), e.g.,
a potential that increases as |x| → +∞ sufficiently fast so
that

∫
Rd e−βV dx < +∞ for all β > 0 (see [19], Definition

4.2), and which interact through an interaction potential W (·)
which we consider to be of a quadratic Curie-Weiss type [i.e.,
W (x) = x2

2 ]:

dX i
t =

⎡
⎣−V ′(X i

t

) − θ

N

N∑
j=1

(
X i

t − X j
t

)⎤⎦dt +
√

2β−1 dBi
t ,

(1)

for i = 1, . . . , N . Here, {X i
t }N

i=1 denotes the position of the
interacting agents, θ the strength of the interaction between
the agents, {Bi

t }N
i=1 standard independent one-dimensional

Brownian motions, and β denotes the inverse temperature.
The total energy (Hamiltonian) of the system of interacting

diffusions (1) is

WN (X) =
N∑

�=1

V (X �) + θ

4N

N∑
n=1

N∑
�=1

(X n − X �)2, (2)

where X = (X 1, . . . , X N ).
Formally, using the law of large numbers we can pass to

the mean field limit to deduce that

lim
N→+∞

1

N

N∑
j=1

X j
t = EXt ,

where the expectation is taken with respect to the one-
particle distribution function p(x, t ): this corresponds to the
mean field ansatz for the N-particle distribution function
pN (x1, . . . xN , t ) = ∏N

n=1 p(xn, t ) and taking the limit as N →
∞; see [36,37]. We thus obtain the McKean stochastic differ-
ential equation (SDE)

dXt = −V ′(Xt ) dt − θ (Xt − EXt ) dt +
√

2β−1 dBt . (3)

The Fokker-Planck equation corresponding to this SDE is the
McKean-Vlasov equation [18,38,39]

∂ p

∂t
= ∂

∂x

[
V ′(x)p + θ (W ′ � p)p + β−1 ∂ p

∂x

]
, (4)

where � denotes the convolution operator. The McKean-
Vlasov equation is a nonlinear, nonlocal equation, sometimes
referred to as the McKean-Vlasov-Fokker-Planck equation. It
can be written as a gradient flow

∂ p

∂t
= ∂

∂x

(
p

∂

∂x

δF
δx

)

for the free-energy functional

F[p] = β−1
∫

p ln p dx +
∫

V p dx

+ θ

2

∫∫
W (x − y)p(x)p(y) dx dy. (5)

It is noteworthy that the system of interacting Langevin
equations (1) as well as the potential energy (2) retain the
basic features of the models studied in DDFT for classical
fluids [2,3]. One approach used to derive DDFT is to start
with the Langevin dynamics of Brownian particles to obtain
a Fokker-Planck equation for the N-particle probability distri-
bution. A formal Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy then is used to obtain a closed equa-
tion for the density distribution. The main assumption is an
equilibrium thermodynamic sum rule, the so-called adiabatic
approximation, by which the higher-body correlations are
approximated by those of an equilibrium fluid with the same
density distribution. Including hydrodynamic interactions in
DDFT to obtain a hydrodynamic description that includes
intermolecular interactions is nontrivial [2,40].

The finite-dimensional dynamics (1) has a unique invariant
distribution, given by the Gibbs-Boltzmann measure [19,
Chap. 4]

μN = 1

ZN
e−βWN (x1,...,xN ), (6a)
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ZN =
∫
RN

e−βWN (x1,...,xN ) dx1, . . . , dxN , (6b)

where WN (·) is given by (2). Note that this distribution verifies
the detailed balance. On the other hand, the McKean dynam-
ics (3) and the corresponding McKean-Vlasov-Fokker-Planck
equation (4) can have more than one invariant distribution
for nonconvex confining potentials and at sufficiently low
temperatures [9,21]. This is not surprising since the McKean-
Vlasov equation is a nonlinear, nonlocal PDE.

The stationary states for the McKean dynamics (3) satisfy
the stationary nonlinear Fokker-Planck equation

∂

∂x

[
V ′(x)p∞ + θ (W ′ � p)p∞ + β−1 ∂ p∞

∂x

]
= 0. (7)

Based on earlier work [9,21], it is by now well understood
that the number of steady states, i.e., the number of solutions
to (7), is related to the number of metastable states (local
minima) of the confining potential (see [22] and the references
therein).

For the Curie-Weiss (i.e., quadratic) interaction potential,
we can write Eq. (4) as a Fokker-Planck equation with a
dynamic constraint

∂ p

∂t
= β−1 ∂2 p

∂x2
+ ∂

∂x
[V ′(x)p − θ (m − x)p], (8)

m = R(m) =
∫
R

xp(x, t ) dx, (9)

and, from the corresponding steady-state equation, a one-
parameter family of solutions to the stationary McKean-
Vlasov equation (7) can be obtained:

p∞(x; θ, β, m) = 1

Z (θ, β; m)
e−β[V (x)+θ ( 1

2 x2−xm)], (10a)

Z (θ, β; m) =
∫
R

e−β[V (x)+θ ( 1
2 x2−xm)] dx. (10b)

This one-parameter family of probability densities is subject,
of course, to the constraint that it provides us with the correct
formula for the first moment:

m =
∫
R

xp∞(x; θ, β, m) dx =: R(m; θ, β ). (11)

We will refer to this as the self-consistency equation and it will
be the main object of study of this paper. We remark that this
equation is similar to the self-consistency equation that arises
in the study of the 2D Ising model [41, Eq. (6.5.14)]. Once a
solution to (11) has been obtained, substitution back into (10)
yields a formula for the invariant density p∞(x; θ, β, m).

Clearly, the number of stationary states of the McKean-
Vlasov dynamics is determined by the number of solutions
to the self-consistency equation (11). It is well known and
not difficult to show that for symmetric nonconvex confining
potentials a unique invariant measure exists at sufficiently
high temperatures, whereas more than one invariant measure
exists above a critical inverse temperature βc [9, Theorem
3.3.2], [21, Theorem 4.1, Theorem 4.2] (see also [42]). In par-
ticular, for symmetric potentials, m = 0 is always a solution to
the self-consistency equation (11). Above the critical inverse

temperature βc, i.e., at sufficiently low temperatures, the zero
solution loses stability and a new branch bifurcates from the
m = 0 solution [42]. This second-order phase transition is
similar to the one familiar from the theory of magnetization
and the study of the Ising model. It will become clear later on
in this study that for multiwell potentials the value of θ also
plays a role in the type of bifurcations obtained and therefore
it is important to keep both parameters in our analysis.

The structure and number of equilibrium states for the
generalized Desai-Zwanzig model that we consider can be
studied using four different approaches:

(1) as the invariant measure(s) of the particle dynamics
(1), in the limit as the number of particles becomes infinite;

(2) as the long-time limit of solutions to the time-
dependent nonlinear Fokker-Planck equation (4);

(3) as minimizers of the free-energy functional (5);
(4) in terms of solutions to the self-consistency equation

(11).
We will use all of these in order to construct the bifurcation

diagrams for the stationary states of (4).
The rest of the paper is organized as follows. In Sec. II

we briefly summarize the models (i.e., the types of confining
potentials) we consider in our study, and present the different
methodologies we will use to construct the bifurcation dia-
grams and analyze the stability of each branch. In Sec. III
we present extensive numerical experiments we performed to
obtain the bifurcation diagram for different types of potentials,
including calculations of the free-energy surfaces associated
with each system, of the bifurcation diagrams of the first
moment m as a function of the inverse temperature β, and of
the critical inverse temperature βC as a function of θ as well
as time-dependent simulations of the particle system and the
corresponding McKean-Vlasov equation. A discussion and
conclusions are offered in Sec. IV.

II. MODELS STUDIED AND METHODOLOGY

In this section we outline the model confining potentials
that we will consider and we also provide details of the
mathematical and computational techniques that we will use.

A. Models studied in this paper

Consider the system of weakly interacting diffusions given
in (1). As already emphasized, the interaction is taken to be of
the Curie-Weiss type [W (x) = x2

2 ] and different types of con-
fining multiwell potentials will be considered. In particular,
we will study the following potentials.

(1) Polynomial potentials of the form (see, e.g., Fig. 2)

V (x) =
M∑

�=1

a�x2m. (12)

(2) Rational potentials ([43]) with an arbitrary number of
local minima and with (possibly) random location and depths
of local minima (see, e.g., Fig. 3)

V (x) = 1∑M
�=−M δ�|x − c�x�|−2

, (13)
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FIG. 2. A polynomial potential of the form (12), where M = 3.

where we consider both deterministic and random distribu-
tions of {δ�, c�} and where in the random case we take these
distributions to be uniform.

(3) Piecewise linear potentials with quadratic growth at
infinity:

V (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2−x2
M

2 , if |x| � xM

(Hi−hi )x
x

i+ 1
2
−xi

+ hixi+ 1
2
−Hixi

x
i+ 1

2
−xi

, if xi < x < xi+ 1
2

(hi−Hi )x
xi+1−x

i+ 1
2

+ Hixi+1−hixi+ 1
2

xi+1−x
i+ 1

2

, if xi+ 1
2

< x < xi+1.

(14)

The choice of quadratic growth at infinity is so that the
steady states satisfy a logarithmic Sobolev inequality, which
in turn allows one to prove global asymptotic stability (with
exponentially fast convergence) to the steady state. This prop-
erty is only verified for potentials with at least quadratic
growth at infinity [44]. We point out that other choices (such
as linear growth) would have led to other interesting findings
and simpler expressions than those obtained in the Appendix
(see [45,46]), but would not guarantee convergence to the
steady state, which is crucial for our study.

B. Methodology

Our aim is to study the bifurcation diagram of the invariant
measures of the system of SDEs (1). We will do that by
considering the mean field limit of this system, given by
Eq. (3). In this limit, the density of the particles satisfies the
nonlinear nonlocal Fokker-Planck equation (4). The invariant
measure(s) of the system (1) satisfy the stationary Fokker-
Planck equation (7). Depending on the interaction potential,
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FIG. 3. A realization of a potential of the form (13) with 10
local minima located at the integers between −5 and 5 (c� = 1) and
separated by arbitrary heights [δ� ∼ U ([0, 1])].

and the parameters θ and β, there will exist only one (for
sufficiently small β) or multiple (for large β) solutions. The
number of these solutions depends on the number of local
minima and maxima of the confining potential V .

We construct the bifurcation diagram using the first mo-
ment m = m1 = E(Xt ) as the order parameter and plot it as a
function of the inverse temperature β for a fixed value of θ .
We will use two methods to obtain the bifurcation diagram:

(1) Equilibrium states are minimizers of the free-energy
functional (5). We can then find the equilibrium points using
differential geometry techniques. This methodology has the
advantage that it immediately gives us the stability of each
branch: stable solutions are local minima of the free energy,
while its local maxima are unstable solutions.

(2) Arc length continuation to solve the self-consistency
equation (11). For the case of polynomial potentials, we
can also use this technique to solve a system of ordinary
differential equations (ODEs) for the moments (details are
given in Sec. III A). Our continuation scheme makes use of a
modification of MATLAB’s MATCONT routine (details are given
in Sec. II B 2).

Both methods have been used successfully in our previous
studies to perform detailed parametric studies and compute
adsorption isotherms, bifurcations of equilibrium states, phase
diagrams, and critical points for fluids in confinement using
DFT (e.g., [47–50]).

Our results are confirmed by performing a careful compar-
ison of the bifurcation diagrams obtained with the long-time
behavior of solutions to the Fokker-Planck equation, as well as
Monte Carlo (MC) simulations of the corresponding particle
system.

1. Free-energy formulation

We make use of the fact that the stationary solutions of the
Fokker-Planck equation (4) are equilibrium points of the free
energy given by Eq. (5). In particular, since we know the form
of the steady solutions p∞(m; θ, β ), we can evaluate the free-
energy surface as a function of the two arguments m and β, for
a fixed value of θ , F (m, β; θ ). By computing its equilibrium
points, we can then plot the desired bifurcation diagram.
This methodology also allows us to immediately evaluate
the stability of each branch since local minima correspond
to stable solutions, while local maxima are unstable ones.
The bifurcation diagrams obtained with this method suffer
from poor resolution near branching points. However, the
resolution at higher values of β allows us to easily find initial
guesses for the arc length continuation process which we
describe below, and also guarantees that we have information
about all of the existing branches.

A useful observation which we will make use of is that
the free energy of the equilibrium states can be calculated
in a quite explicit form which depends only on the partition
function and on the mean:

Proposition 1. The free energy of an equilibrium state (10)
and (11) is given by

F[p] = −β−1 ln Z + θ

2
m2.
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In particular, when m = 0 we have

F[p] = −β−1 ln Z.

Proof. The free energy of a function p is given by

F[p] = β−1
∫
R

p(x) ln (p(x)) dx +
∫
R

V (x)p(x) dx

+ θ

2

∫
R

∫
R

W (x − y)p(x)p(y) dx dy.

The stationary solution(s) to the Fokker-Planck equation
(4) are given by Eqs. (10) and (11). Plugging this into the
expression for the free energy, we obtain

F[p] = β−1
∫
R

p(x)

{
−β

[
V (x) + θ

(
x2

2
− mx

)]
− ln Z

}
dx

+
∫
R

V (x)p(x) dx+ θ

2

∫
R

∫
R

W (x−y)p(x)p(y) dx dy.

(15)

From this, we conclude

F[p] = −β−1 ln Z + θ

2
m2,

and, when m = 0 we recover

F[p] = −β−1 ln Z. �

Another important property of the solutions of the Fokker-
Planck equation (4) is the critical inverse temperature βC

at which pitchfork bifurcations from the mean-zero solution
occur. This critical inverse temperature is a function of θ , and
is given [42] by the solution to the equation

Var(m = 0, θ, β ) :=
∫

x2 p∞(x; m = 0, θ, β ) dx = β−1θ−1.

(16)

This equation will be solved numerically for the potentials we
will study in here.

2. Arc length continuation

The second method we use is arc length continuation of
solutions, for which we will use the Moore-Penrose quasi-
arc length continuation algorithm. Rigorous mathematical
construction of the full arc length continuation methodology
can be found in [51,52]. Some useful practical aspects of
implementing arc length continuation are also given in the
MATLAB manual [53]. The idea is to solve the discretized
nonlinear algebraic equations (10) and (11) for a given initial
value of the control parameter β0, and a given initial guess
m0, relaxing the dependence on β0 and adding a condition
of curve continuity in the phase space of solutions to the
discretized problem. The method then provides us with a way
of following each branch by computing tangent vectors.

We use arc length continuation to construct the bifurcation
diagram of steady solutions of (4) using the self-consistency
equation (11) and the system of equations for the moments
described in the next section. Arc length continuation is also

used to solve the equation for the critical inverse temperature
βC given by the solution of (16) as a function of θ .

3. Time-dependent simulations

To simulate the corresponding particle system, we perform
MC simulations of N = 1000 particles evolving according to
the system of SDEs (1). We use the Euler-Maruyama numer-
ical scheme with a sufficiently small time step to guarantee
stability and accuracy of the numerical solution over long-
time intervals. These MC numerical simulations are carefully
benchmarked against the numerical solution of the evolution
Fokker-Planck (see, for instance, [55] for stability and con-
vergence properties of the Euler-Maruyama scheme for SDEs
with additive noise, in particular with regards to capturing the
invariant measure). We point out that a more advanced scheme
for the MC simulations could be used if needed (see, e.g.,
[56]) but we believe that the Euler-Maruyama scheme adopted
is sufficient for our purposes.

We also solve numerically the Fokker-Planck equation
(4), subject to the boundary conditions of zero particle flux
through the boundaries of our numerical interval. We ap-
proximate the derivative with a pseudospectral Chebyshev
collocation method, and the integral term with a Clenshaw-
Curtis quadrature [47]. For marching in time, we adopt the
ODE15S function of MATLAB, which is based on an implicit
scheme combining backward differentiation and adaptive time
stepping.

III. RESULTS OF NUMERICAL SIMULATIONS

We now present numerical results for bifurcation diagrams
and certain time-dependent simulations using the methodolo-
gies described above. The results are obtained for the three
types of polynomials listed in Sec. II A.

A. Polynomial potentials

Here, we consider confining potentials of the form

V (x) =
M∑

�=1

a�x2�, (17)

where M = 2, 3, . . . . This introduces additional wells in the
confining potential, corresponding to different local minima-
maxima in the potential, which in turn translates into various
pitchfork and/or saddle-node bifurcations from the mean-zero
solution, with the corresponding changes in stability, as will
be seen below.

As mentioned earlier, if V (x) is a polynomial, we can
obtain a system of ODEs verified by the moments f (x) = xk ,
in a similar manner to what was presented in [9] for the
bistable potential V (x) = x4

4 − x2

2 and which easily extends
to arbitrary polynomial potentials. To this end, we consider
the system of SDEs (1) with W (x) = x2

2 , and by defining

mk (t ) = 1
N

∑N
�=1 (X �

t )
k
, we rewrite it as

dX i
t = −V ′(X i

t ) dt + θ [m1(t ) − X i
t ] dt +

√
2β−1dBi

t ,

(18)
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i = 1, . . . , N . Using Itô’s Lemma, we can obtain a system of
SDEs for the moments f (x) = xk:

dxk (t ) = k{−θxk (t ) + [θm1(t ) − V ′(x(t ))]xk−1(t )

+β−1(k − 1)xk−2(t )}dt +
√

2β−1kxk−1dw(t ),

(19)

where w(t ) is white noise. Replacing V by its expression,
noticing that m0(t ) = 1, and taking expectations, we obtain a
system of ODEs for mk (t ), k = 1, 2, . . . ,∞. Unfortunately,
due to the structure of the potentials and the nonlinearity
involved, this cannot be expanded for other types of potentials.

In the so-called ferromagnetic case V (x) = V4(x) = x4

4 −
x2

2 , we obtain the following system of ODEs:

ṁk (t ) = k[(1 − θ )mk (t ) + θm1(t )mk−1(t )

+β−1(k − 1)mk−2(t ) − mk+2(t )]. (20)

Other examples include higher degree polynomials:

V6(x) = h(x6 − 5x4 + 4x2) = hx2(x2 − 1)(x2 − 4), (21)

V8(x) = h(x8 − 14x6 + 49x4 − 36x2)

= hx2(x2 − 1)(x2 − 4)(x2 − 9), (22)

where we have added a prefactor h in the higher degree
polynomials. This is to make the barrier at x = 0 (and/or
others) more relevant. For the sixth degree case, we obtain
the following system of ODEs for the moments mk:

ṁk = k[−(8h + θ )mk + θm1mk−1

+β−1(k − 1)mk−2 + 20hmk+2 − 6hmk+4], (23)

and in the eighth degree case

ṁk = k[(72h − θ )mk + θm1mk−1 + β−1(k − 1)mk−2

− 196hmk+2 + 84hmk+4 − 8hmk+6]. (24)

We truncate the system at k = 21 and solve for the first
moment, performing arc length continuation.

As an illustration of our methods, we plot in Fig. 4 a
bistable potential V (x) = x4

4 − x2

2 and the corresponding bi-
furcation diagram of m as a function of β. We used both
arc length continuation for the self-consistency equation and
the method of moments, as well as the free-energy method,
obtaining similar results in all cases.

In Fig. 4, we illustrate our free-energy method to obtain
the bifurcation diagram. We fix θ = 0.5 and compute the
free-energy surface for functions p(x; m, θ, β ) given by (10)
[without assuming that m verifies (11)] and proceed to com-
pute its extrema, which are contoured below.

We present one more example of a polynomial confin-
ing potential, where V (x) = V8(x) from Eq. (22). We fix
h = 0.001 and compute the bifurcation diagram of m as a
function of β for θ = 1.5 [Fig. 5(a)] and θ = 2.5 [Fig. 5(b)].
We observe that the topology of the bifurcation diagram is
different for the two values of θ : for small θ the effects of
the interaction do not affect the convexity of the free energy
and we find three pitchfork bifurcations from the mean-zero
solution with the corresponding (expected) changes in (linear
and local) stability of all the solutions. However, for large

m
β

-1

-0.8

-0.6

F

50 05 10 -515

0 5 10 15
β

-1

0

1

m

-2 0 2
x

-1

-0.5

0

0.5

V

(c)

(a)

(b)

FIG. 4. Free-energy surface (a) and the corresponding bifurca-
tions of the steady states of the Fokker-Planck equation (b) in a
simple bistable potential V (x) = x4

4 − x2

2 (c). The control parameter
is β, and the solution norm is given by the first moment m, with
θ = 0.5. In (a) and (b), solid and dotted lines correspond to stable and
unstable steady states of the Fokker-Planck equation, respectively.

enough θ , the effects of the interaction change the convexity
of the free-energy functional, and we find only one pitchfork
bifurcation, accompanied by two saddle-node bifurcations.
We observe, however, that the number of solutions for large
β is still 7, which is the number of equilibrium points of
the confining potential V8. In fact, this is found for all the
confining potentials studied in this work.

The effect of θ in the topology of the bifurcation dia-
gram can be further analyzed by studying the critical inverse
temperature βC at which a pitchfork bifurcation from the

0 2 4
β

-2

0

2

m

(a)

0 2 4
β

-2

0

2

m

(b)

FIG. 5. Phase diagram in the β-m space, for the potential V8(x),
at θ = 1.5 (a) and θ = 2.5 (b). Solid and dotted branches are,
respectively, stable and unstable steady states of the Fokker-Planck
equation.
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FIG. 6. Critical temperature βC as a function of θ for the poten-
tials V6(x) with h = 0.1 (left panel) and V8(x) with h = 0.001 (right
panel) given by Eqs. (21) and (22), respectively.

mean-zero solution occurs, as a function of θ . This is given
by Eq. (16). We solve this equation for βC as a function of θ

again performing arc length continuation, and plot the results
in Fig. 6.

We notice the existence of two branches for the sixth
degree polynomial potential, which corresponds, as expected,
to the existence of two pitchfork bifurcations in the bifurcation
diagram of the first moment m as a function of the inverse
temperature β. Interestingly, for the eighth degree polynomial,
there are three branches of solutions for sufficiently small θ

but these branches merge for θ ≈ 2. This indicates that the
convexity of the free-energy functional changes as a function
of θ , which also means that for polynomial potentials it
is important to keep track of the bifurcation structure as a
function of both β and θ . This change of convexity leads
to the behavior observed in Fig. 5: for small enough θ

[Fig. 5(a)] there exist three pitchfork bifurcations, with the
corresponding change of stability in the mean-zero solution,
while for large values of θ [Fig. 5(b)] there is only one
pitchfork bifurcation, with the m = 0 solution remaining the
global minimum of the free energy for larger values of β.
The other stationary solutions still exist, but they appear as
discontinuous bifurcations (corresponding to first-order phase
transitions).

Finally, we study the effect of breaking the symmetry of
polynomial potentials by adding a tilt to a bistable potential.
Specifically, we consider potentials of the form

V (x) = 1

a0

(
x4

4
− x2

2

)
+ κx. (25)

Figure 7 depicts the bifurcation diagram of m as a function of
β for this potential, with θ = 2.5, a0 = 0.249998581434761,
and κ = 0, 0.01, 0.1, 1. Evidently, a break in the symmetry
of the bifurcation diagram appears, which becomes increas-
ingly clear as κ increases.

The existence of stationary solutions raises the question of
relevance of these solutions which is related to the way they
attract initial conditions. An answer to this question can be
given by means of time-dependent computations. Figures 8
and 9 depict the time evolution of the first moment as a func-
tion of time (top panel) and the histogram and corresponding
distribution (solution of the time-dependent Fokker-Planck
equation) in the bottom panel, at two selected times marked
in dashed lines in the top panel. Both figures correspond to

0 1 2 3
β

-1

-0.5

0

0.5

1

m

V2(x)
V2(x)+0.01x
V2(x)+0.1x
V2(x)+x

FIG. 7. Bifurcation diagrams of m as a function of β for tilted
bistable potentials given by Eq. (25) with a0 = 0.249998581434761,
and κ = 0, 0.01, 0.1, 1 (see legend). Here, we used θ = 2.5. The
symmetric pitchfork bifurcation is broken at any κ > 0. We note that
the locus of the critical points forms a distinct critical line.

the tilted bistable potential given by Eq. (25) with κ = 0.1,
θ = 2.5, and β = 1.5. Figure 8 shows the evolution starting
from a N (0.1, β−1), while in Fig. 9 the time evolution is
started from a N (−0.1, β−1) distribution.

An overall good agreement is observed between the so-
lution of the time-dependent Fokker-Planck equation and

FIG. 8. Evolution of the density and first moment in a tilted
bistable potential given in Eq. (25), with κ = 0.1 and an initial
condition distributed according to a N (0, β−1) distribution. (a) Mean
position against time for the evolution of the Fokker-Planck equation
(blue line) and for the interacting particles system (red line). (b)
Fokker-Planck distributions and corresponding MC histograms for
selected times, designated in (a) by vertical dashed lines of respective
colors (see also the Supplemental Material [57] movies MovM1.avi,
showing simultaneously the first moment on the bifurcation diagram
and the distribution, and MovFig8.avi, showing good agreement
between Fokker-Planck and MC simulations).
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FIG. 9. Evolution of the density and first moment in a tilted
bistable potential given in Eq. (25), with κ = 0.1 and an initial
condition distributed according to a N (−0.1, β−1) distribution. (a)
Mean position against time for the evolution of the Fokker-Planck
equation (blue line) and for the interacting particles system (red line).
(b) Fokker-Planck distributions and corresponding Monte Carlo his-
tograms for selected times, designated in (a) by vertical dashed lines
of respective colors (see also movie MovFig9.avi in Supplemental
Material [57] showing good agreement between Fokker-Planck and
MC simulations).

the corresponding MC simulations. It is worth noting that,
without the tilt, the dynamics reproduced in Fig. 8 would
have evolved to the upper branch of the bifurcation diagram
represented in Fig. 7, but instead we observe the breaking of
symmetry caused by the tilt: the particles would have to pass
through an unstable equilibrium point (represented by a black
dashed line in Fig. 7) in order to reach the upper branch.

B. Rational potentials

Here, we consider potentials of the form

V (q) = 1∑N
�=−N δ�|q − c�q�|−2

(26)

with both deterministic and random distributions of {δ�, c�}.
We show two examples in particular. The first one is a po-
tential with six minima, which are symmetrically located and
have the same depths (as well as heights of the corresponding
local maxima),

V (x) = h[(x − 1)−2 + (x + 1)−2 + (x − 2)−2

+ (x + 2)−2 + (x − 3)−2 + (x + 3)−2]−1. (27)

The free-energy surface and bifurcation diagram for this case
are presented in Fig. 10.

We now consider the potential from Eq. (26) with N =
20 minima positioned at x = −10,−9, . . . , 10, and c� = 1,
� = 1, . . . , 20. Figure 11 depicts the realization of a ran-
dom potential, where the energy barriers separating the local
minima of the potential are uniformly distributed random
variables, i.e., δ� ∼ U ([0, 1]).

β
m

F

0

0.2

0.4

1 422 0-23 -4

0 1 2 3
β

-4

-2

0

2

4

m

(a)

(b)

FIG. 10. Free-energy surface (a) and the corresponding bifurca-
tion diagram in the β-m parameter space (b) for the potential in
Eq. (27) with θ = 5 and h = 1. Stable and unstable branches are
plotted with solid and dotted lines, respectively.

Interestingly, the random depths of each local minima
(these correspond to higher or lower energy barriers) affect
the stability of each well with respect to each other. Further
insight into the effect of the random depths on the dynamics of

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

0

0.5

V

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
m

0

3

6

9

12

β

(b)

FIG. 11. (a) A potential from Eq. (26), with the minima posi-
tioned at integers between −10 and 10, separated by local maxima
of arbitrary heights. (b) Corresponding bifurcation diagram of the
steady states of the Fokker-Planck equation (4), obtained from the
computed free-energy surface. Stable and unstable states are desig-
nated by solid and dashed curves, respectively.
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FIG. 12. Numerical solution of the Fokker-Planck equation (4),
for the potential given in Fig. 11 (see also MovFig12.avi in the
Supplemental Material [57]). (a) p(x, t ) (solid curves) and V (x)
(dashed curve). The first moments for each p(x, t ) are designated
by dashed verticals, and the respective values of t are provided. (b)
States from (a) on the bifurcation diagram. We note that the basins
of attraction of the stable states are effectively demarcated by the
metastable branches of the bifurcation diagram.

the system can be obtained via the time-dependent evolution
of both the particle system and the mean field Fokker-Planck
equation. The corresponding results are plotted in Figs. 12
and 13.

Figure 12 shows the solution of the Fokker-Planck equation
as a function of time for four different times (top panel), and

FIG. 13. Same as in Fig. 12, against the corresponding MC
simulation data. (a) Mean position against time for the evolution
of the Fokker-Planck equation (full blue line) and the interacting
particles system for two realizations of the noise (full and dashed
red lines). (b) Fokker-Planck distributions and corresponding MC
histograms for selected times, designated in (a) by vertical dashed
lines of respective colors. We can see an overall good agreement
between the simulations and computations.

the corresponding location of the mean of the solution at each
of these times on the bifurcation diagram (lower panel). It
should be noted that as we approach the turning points of
the bifurcation diagram in Fig. 12(b), by, e.g., fixing β and
increasing m, the system slows down and eventually “freezes”
and gets pinned to the branch of metastable solutions, which
terminates at the turning point. Hence, in the neighborhood of
turning points, we have a “glasslike” behavior (e.g., [54]), and
the potential in Fig. 11 can be viewed as a “glassy potential.”
Movie MovM1.avi in the Supplemental Material [57] shows
such a pinning transition for a tilted bistable potential, which
clearly occurs at the boundary of the basin of attraction of the
upper U branch. For model prototype systems, such as the
Swift-Hohenberg equation, the time between two consecutive
transitions can be estimated via weakly nonlinear analysis in
the vicinity of the turning points [58]. But our equations are
too involved to be amenable to analytical treatment of this
type.

We can explore the behavior in Fig. 12 further by plotting
the first moment of the solution as a function of time; we
do so in Fig. 13. The top panel displays the first moment
as a function of time for the solution of the Fokker-Planck
equation (full blue line) compared with two independent runs
of the particle system, while the bottom panel compares the
Fokker-Planck solution with the histograms from the particle
simulations. Each particle run had N = 1000 particles and the
simulations shown use θ = 1.5 and β ≈ 2.66.

C. Piecewise linear potentials with quadratic growth at infinity

Here, we will replace the confining potential with a piece-
wise linear approximation with quadratic growth at infinity.
Our motivation for this is that we can now compute the
partition function Z (m, θ, β ), the mean R(m), and the vari-
ance analytically [in terms of the error function erf (x) =

2√
π

∫ x
0 e−x2

dx]. We consider a potential V with 2M local min-
ima, X = (x1, . . . , x2M ), with depth hi, and the local maxima,
located at xi+ 1

2
= xi+xi+1

2 (note that x−1/2 = 0), have height Hi.
In this case, V is given by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2−x2
1

2 + h1, x � x1

(Hi−hi )x
x

i+ 1
2
−xi

+ hixi+ 1
2
−Hixi

x
i+ 1

2
−xi

, xi < x < xi+ 1
2

(hi−Hi )x
xi+1−x

i+ 1
2

+ Hixi+1−hixi+ 1
2

xi+1−x
i+ 1

2

, xi+ 1
2

< x < xi+1

x2−x2
2M

2 + h2M , x � x2M

(28)

i = 1, . . . , 2M.
As mentioned before, we can compute the quantities

Z (m, θ, β ), R(m), and the second moment analytically, and
will present two illustrative cases: a symmetric potential with
2M = 6 wells and a nonsymmetric potential with random
heights and depths. Details of the analytical calculations are
given in the Appendix.

1. Symmetric potentials with six wells at same heights

Following, we present the results for V (x) given by
Eq. (28) with M = 3. We use X = (−3,−2,−1, 1, 2, 3),
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FIG. 14. Phase diagram for the case of the piecewise linear
potential (28) with six wells for θ = 5. (a) Shows the solution of
R(m) − m = 0 for β = 1 (black) and β = 10 (gray). A horizontal
dotted line is drawn at R(m) − m = 0. (b) Shows the bifurcation
diagram in the β-m space. (c) Shows the critical inverse temperature
βC at which a pitchfork bifurcation occurs from the mean-zero
solution as a function of θ .

xi+ 1
2

= xi+xi+1

2 , hi = 0, and Hi = 1. We compute Z (m, θ, β )
and R(m) using Eqs. (A2) and (A3), respectively, and solve for
R(m) = m using arc length continuation. We plot our results
in Fig. 14. Here, we choose θ = 5. Figure 14(a) shows the
solution of the self-consistency equation R(m) = m [or, rather
R(m) − m = 0] for β = 1 and 10. Figure 14(b) shows the
bifurcation diagram of m as a function of β and Fig. 14(c)
shows the critical inverse temperature βC as a function of θ ,
which was obtained using Eq. (A4) for m = 0.

The results are what we would expect: There are 11 equi-
librium points which correspond to each local minimum and
maximum. We point out the similarity between the bifurcation
diagram in Fig. 14(b) to the one presented in Fig. 10, which
shows that a piecewise linear potential is a good first approxi-
mation.

2. Potentials with four wells at different
(randomly distributed) heights

Our final test is the case where V (x) is given by Eq. (28)
with M = 2, but with the minima and maxima heights and
depths randomly distributed. We use X = (−2,−1, 1, 2),
xi+ 1

2
= xi+xi+1

2 , and generated hi and Hj , i = 1, . . . , 4, j =
1, . . . 3 randomly, following a uniform distribution.

As before, we compute the relevant functions of m, θ , and
β using Eqs. (A2)–(A4) and depict in Fig. 15 the solution
of R(m) − m = 0 for β = 1, 10 and θ = 5 [Fig. 15(a)], the
bifurcation diagram of m as a function of β for θ = 5 and the
critical inverse temperature βC as a function of θ .

A behavior similar to that of the random potential in the
previous section is observed but with a smaller number of
equilibrium points.

-2.4 0 2.4
m

-0.5

-0.2

0.1

0.4

R
(m

)
−

m

(a)

0 1 2 3
β

-3

-1

1

3

m

(b)

0 10 20 30
θ

0

0.3

0.6

0.9

1.2

β
C

(c)

FIG. 15. Phase diagram for the case of the piecewise linear
potential (28) with four wells at random heights and depths for
θ = 5. (a) Shows the solution of R(m) − m = 0 for β = 1 (black)
and β = 10 (gray). A horizontal dotted line is drawn at R(m) − m =
0. (b) Shows the bifurcation diagram in the β-m space. (c) Shows
the critical inverse temperature βC at which a pitchfork bifurcation
occurs from the mean-zero solution as a function of θ .

IV. CONCLUSIONS

We presented a detailed and systematic investigation of the
dynamics of a system of interacting particles in one dimen-
sion, moving in a confining multiwell potential and interacting
through a quadratic Currie-Weiss potential. Passing formally
to the mean field limit yields the McKean SDE. The Fokker-
Planck equation corresponding to this SDE is the McKean-
Vlasov equation, which is nonlocal and nonlinear, and is the
basic equation for our study. It is a gradient flow for a certain
free-energy functional, establishing also a connection with
thermodynamics.

A wide spectrum of prototypical model potentials was
considered: polynomial (including tilted bistable ones), ra-
tional (both deterministic and random), and piecewise linear
potentials with quadratic growth at infinity that allow for ana-
lytical estimates of the partition function, mean, and variance.
For all these model potentials, we scrutinized steady states
of the McKean-Vlason equation, constructed bifurcation di-
agrams and studied their behavior in the parameter space,
and determined the stability of the solution branches. We also
determined the critical points and characterized the structure
and nature of phase transitions. We showed, by means of ex-
tensive computations, including free-energy minimization, arc
length continuation, simulations of the full McKean-Vlasov
equation, and MC simulations of the corresponding particle
system, and of analytical calculations for explicitly solvable
models, that the number of steady states, their stability and
the structure of bifurcation diagrams depends crucially on the
form of the multiwell potential and its characteristics, mainly
the number and depth of the local minima of the confining
potential. Increasing the complexity of the potential increases
also the complexity of the steady-state bifurcation structure
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and dynamics. Even the local minima of the potential may
significantly affect the relaxation dynamics of the system, via
the basin of attraction of the metastable states. Thus, each
local minimum of the potential gives rise to a pair of branches
(stable and unstable) of the steady state bifurcation diagram.
These branches merge at the critical point, associated with
the respective potential minimum. It is also encouraging that
the mean field Fokker-Planck equation is in remarkable agree-
ment with the MC simulations of the system dynamics.

There are also several new avenues of research. Indeed,
we believe that the theoretical-computational framework and
associated methodologies presented here can be useful for
the study of bifurcations and phase transitions for more
complicated physical systems, or for systems where the po-
tential is known from experiments only, either physical or
in silico ones, and then our framework can be adopted in
a “data-driven” approach. Of particular interest would also
be extension to multidimensional problems. Two-dimensional
problems in particular would be of direct relevance to surface
diffusion and therefore to technological processes in materials
science and catalysis.

Other interesting extensions include additional effects and
complexities such as non-Markovian interaction particles, col-
ored and multiplicative noise, and nonreversible perturbations
[59–61], where other interesting behavior, such as hysteresis,
can be expected. Recall also from the Introduction that our
starting point, a system of interacting particles in a confining
potential, retains the main features of DDFT models. Another

interesting study would then be applications of our framework
to such models. Finally, the study of phase transitions for
the stochastic gradient descent dynamics algorithms and of
their mean field limit that are used in the training of neural
networks is an intriguing problem, with important potential
applications. We shall examine these and related questions in
future studies.
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APPENDIX: FORMULAS FOR Z(m), R(m), AND V (m),
FOR PIECEWISE LINEAR POTENTIALS WITH

QUADRATIC GROWTH

Here, we list the values of Z (m), R(m), and V (m) for a
potential of the form in Sec. III C. We consider a general
potential with 2M minima which have heights h1, . . . , h2M

and are located at x1, . . . , x2M . There are, therefore, 2M − 1
maxima and barriers Hi, i = 1, . . . , 2M − 1, located at yi.
Throughout our study we take yi = xi+xi+1

2 , but the formulas
are valid in the general case. We define

α =
√

β

2θ
, γ =

√
β

2(θ + 1)
, si = Hi − hi

xi − xi+1
, Si = Hi − hi+1

xi − xi+1
, and f (ς, x, s) = erf (ς [θ (m − x) + s]). (A1)

Using these, we obtain

Z (m) = −
√

π

β

{
αe(αmθ )2

[
2M−1∑

i=1

[ f (α, yi, 2si ) − f (α, xi, 2si )]e
4α2( [hi (yi−m)+Hi (m−xi )]θ

xi−xi+1
+s2

i )

−
2M−1∑

i=1

[ f (α, yi,−2Si ) − f (α, xi+1,−2Si )]e
4α2(

[hi+1(m−yi )+Hi (xi+1−m)]θ
xi−xi+1

+S2
i )
]

+ γ e(γ mθ )2
(

[ f (γ , x1,−x1) − 1]eγ 2(x1
2−2h1 )(θ+1) − eγ 2(x2

2M−2h2M )(θ+1)[ f (γ , x2M,−x2M ) + 1]
)}

, (A2)

R(m) = (eβ[x1(m− x1
2 )θ−h1] − eβ[x2M (m− x2M

2 )θ−h2M ] )

θ (θ + 1)βZ (m)
+

√
π

βZ (m)

[
α

θ

{
2M−1∑

i=1

(θm − 2Si )[ f (α, yi,−2Si ) − f (α, xi+1,−2Si )]

× e
−4α2(

[hi+1 (yi−m)+Hi (m−xi+1 )]θ
xi−xi+1

−S2
i ) −

2M−1∑
i=1

(θm + 2si)[ f (α, yi, 2si ) − f (α, xi, 2si )

]
e

4α2( [hi (yi−m)+H1(m−xi )]θ
xi−xi+1

+s2
i )

}
e(αmθ )2

+ γ mθe(γ mθ )2

(θ + 1)

{
[ f (γ , x1,−x1) − 1]eγ 2(x2

1−2h1 )(θ+1) − [ f (γ , x2M ,−x2M ) + 1]eγ 2(x2
2M−2h2M )(θ+1)

}]
, (A3)
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V (m) = −eβ [x1(m− x1
2 )θ−h1] (m + x1)θ + x1

(θ + 1)2βZ (m)
+ eβ[x2M (m− x2M

2 )θ−h2M ] (m + x2M )θ + x2M

β(θ + 1)2Z (m)

−
√

πγ (βθ2m2 + θ + 1)e(γ mθ )2

(θ + 1)2β2Z (m)

[
[ f (γ , x1,−x1) − 1]eγ 2[(x2

1−2h1 )(θ+1)] − [ f (γ , x2M ,−x2M ) + 1]eγ 2[(x2
2M−2h2M )(θ+1)]

]

+
2M−1∑

i=1

[(m + xi )θ + 2si]eβ[xi (m− xi
2 )θ−hi] − [(m + xi+1)θ − 2Si]eβ[xi+1(m− xi+1

2 )θ−hi+1] − 2(si + Si )eβ[yi (m− yi
2 )θ−Hi]

θ2βZ (m)

−
√

παe(αmθ )2

θ2β2Z (m)

(
2M−1∑

i=1

[ f (α, yi, 2si ) − f (α.xi, 2si )][βθ2m2 + θ + 4βsi(mθ + si )]e
4α2( [hi (yi−m)+Hi (m−xi )]θ

xi−xi+1
+s2

i )

−
2M−1∑

i=1

[ f (α, yi,−2Si ) − f (α, xi+1,−2Si )][βθ2m2 + θ − 4βSi(θm − Si )]e
−4α2(

[Hi (m−xi+1 )+hi+1 (yi−m)]θ
xi−xi+1

−S2
i )

)
. (A4)
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