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The continuum percolation of randomly orientated overlapping polyhedral particles, including tetrahedron,
cube, octahedron, dodecahedron, and icosahedron, was analyzed by Monte Carlo simulations. Two numerical
strategies, (1) a Monte Carlo finite-size-scaling analysis and (2) a real-space Monte Carlo renormalization-group
method, were, respectively, presented in order to determine the percolation threshold (e.g., the critical volume
fraction φc or the critical reduced number density ηc), percolation transition width �, and correlation-length
exponent ν of the polyhedral particles. The results showed that φc (or ηc) and � increase in the following order:
tetrahedron < cube < octahedron < dodecahedron < icosahedron. In other words, both the percolation threshold
and percolation transition width increase with the number of faces of the polyhedral particles as the shape
becomes more “spherical.” We obtained the statistical values of ν for the five polyhedral shapes and analyzed
possible errors resulting in the present numerical values ν deviated from the universal value of ν = 0.88 reported
in literature. To validate the simulations, the corresponding excluded-volume bounds on the percolation threshold
were obtained and compared with the numerical results. This paper has practical applications in predicting
effective transport and mechanical properties of porous media and composites.
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I. INTRODUCTION

The continuum percolation of overlapping nonspherical
particles has broad applications in geophysics and engineer-
ing. Examples include the rheology and transport processes in
porous media, permeability and water saturation in hydrocar-
bon exploration, rock physics and fractures, and determination
of thermal and electrical conductive, diffusive, dielectric, and
elastic properties of granular materials [1–5], to name but
a few. Specifically, the physical properties (e.g., diffusivity,
permeability, conductivity, and elastic moduli) of a material
can change dramatically as the percolation threshold (i.e.,
the critical volume fraction or reduced number density at
which a system-spanning cluster or connected network of
the objects of interest first emerges) is approached [5–11].
It is thus crucial to accurately determine the percolation
threshold, as well as other important percolation properties
such as the associated percolation transition width and the
correlation-length exponent. Several studies on the continuum
percolation of three-dimensional (3D) particle systems have
been carried out, including permeable and/or impenetrable
spheres [12–14], regular polyhedral particles [15], ellipsoids
[16,17], spherocylinders [18–23], plates [24,25], superballs
[10], and superellipsoids [26].

Despite the aforementioned important works in the area,
accurate results on percolation characteristics are missing for
a special class of the particle geometry, i.e., 3D polyhedra.
Polyhedral shapes have been extensively studied in the context
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of particle packing and self-assembly [27–29]. These shapes
are also more realistic models for grains and pores in geoma-
terials [9], compared to the commonly employed models such
as perfect spherical, ellipsoidal, or spherocylindrical shapes.
How the unique geometric features of polyhedral particles
(e.g., sharp edges, corners, and flat facets) affect the percola-
tion properties (especially the percolation threshold) remains
elusive. The percolation thresholds of overlapping cubes and
octahedra have received some attention recently, including
theoretical approximations based on the excluded-volume
theory [10,15,30] and numerical simulations [9,15,31]. In
addition, the numerical values of the percolation threshold
characterized by the critical reduced number density ηc for
randomly oriented overlapping Platonic solids including tetra-
hedron, octahedron, cube, dodecahedron, and icosahedron
have been estimated in Ref. [15]. Specifically, the authors
employed a highly efficient rescaled particle method to obtain
the percolation threshold for a given shape for various system
sizes, and extrapolated the estimates to infinite-sized systems.
However, it is still challenging to quantitatively understand
the continuum percolation of polyhedral particles, especially
to accurately determine the percolation threshold, percolation
transition width, and correlation-length exponent for these
shapes.

In this paper, we present two numerical frameworks—
the Monte Carlo finite-size-scaling (MCFSS) analysis and
the real-space Monte Carlo renormalization-group (MCRG)
method—to, respectively, investigate the continuum percola-
tion of randomly oriented congruent overlapping polyhedral
particles, including tetrahedron, cube, octahedron, dodecahe-
dron, and icosahedron under periodic boundary conditions,
following Refs. [15,32]. It has been shown that the MCFSS
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FIG. 1. Visualizations of random dispersions of overlapping polyhedral particles of Req = 1.0, including (a) tetrahedron, (b) cube, (c)
octahedron, (d) dodecahedron, and (e) icosahedron. The orchid particles in each box belong to a percolating cluster under periodic boundary
conditions (see Fig. 2).

analysis and the MCRG method are effective strategies for the
accurate determination of percolation threshold in the infinite-
system limit [1–3]. The percolation probability P, percolation
transition width �, and correlation-length exponent ν, in ad-
dition to the percolation threshold represented by the critical
volume fraction φc and the critical reduced number density
ηc, are obtained. In addition, the excluded-volume bounds on
percolation threshold are computed to ascertain the accuracy
of the present numerical results.

The rest of the paper is organized as follows. In Sec. II, we
provide details of the Monte Carlo simulations for identifying
the percolating clusters and the percolation probability. In
Sec. III, we present the MCFSS scheme to derive the per-
colation transition width, the correlation-length exponent ν,
and the percolation threshold for the five polyhedral shapes.
In addition, we describe the MCRG method to obtain ν and
φc for the five polyhedral shapes. The excluded-volume per-
colation bounds are also computed. Finally, our conclusions
and remarks are presented in Sec. IV.

II. METHODS

The system of interest is a two-phase mixture consisting of
randomly oriented congruent overlapping polyhedral particles
randomly placed in a homogeneous matrix with periodic
boundary conditions (Fig. 1). We note that both the positions
and orientations of the particles are totally uncorrelated and
follow the Poisson distribution. Size polydispersity of the par-
ticles does not appear to significantly influence the percolation
threshold in an infinite system [1,3,20–22] and, thus, is not
considered here.

For convenience, we use a cubic simulation box of size L
for each realization of the system. For continuum percolation
models, the percolation probability P(φ, L) should be first
probed. Here, we define P as the ratio of the number of
percolated realizations to the total number of realizations for
a given particle volume fraction φ and a system size L. To
accurately determine P(φ, L), we generate a large number of
independent realizations, in which the number N of overlap-
ping particles in a cubic realization is calculated by

N = −L3

V
ln (1 − φ) (1)

where V is the volume of a polyhedron. We adopt the equiva-
lent radius Req to characterize the linear size of a polyhedron,
which is defined as the radius of an equivalent sphere having
the same volume as the polyhedron [33]. It is a robust size
descriptor for a complex nonspherical particle with respect to
both the side length and the number of faces of a polyhedron
reported in the literature. Accordingly, for an arbitrary poly-
hedral particle, its volume can be written as V = 4πReq

3/3.
Specifically, the side length l of a polyhedron is related to Req

by Req = l/2b, where b = (
√

2/2π )−1/3 for the tetrahedron,
b = (6/π )−1/3 for the cube, b = (2

√
2/π )−1/3 for the octahe-

dron, b = [(45 + 21
√

5)/2π ]−1/3 for the dodecahedron, and
b = [(15 + 5

√
5)/2π ]−1/3 for the icosahedron [34].

In order to check the connected pathway (i.e., the emer-
gence of the percolating cluster) in each realization, it is crit-
ical to detect the overlap between a pair of adjacent particles.
For polyhedral particles, we adopt the separation axis scheme
[27] to detect possible overlap between two polyhedra.
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FIG. 2. Visualizations of the percolating cluster in the corresponding representative realizations for each shape shown in Fig. 1.

Specifically, if there is an axis onto which the intervals of
projections of two polyhedra do not intersect, the two poly-
hedra do not overlap; otherwise, they overlap. In addition, a
geometrical algorithm for detecting the intersection between
a polyhedron and a boundary plane has been described in
the literature [34]. Then, a “tree-burning” algorithm [22] is
utilized to search the connected pathway in each realization.
Note that the “wrapping criterion” [12,35] is invoked in our
simulations for determining the connected pathway under
periodic boundary conditions. In this paper, we consider the
system is percolated if a connected path along any of the three
directions is formed. Figure 2 shows the percolating clusters
(from the top plane to the corresponding bottom plane) in
representative realizations for the five polyhedral shapes. The
percolation probability P(φ, L) can be subsequently deter-
mined for given φ and L.

Figure 3 presents the percolation probabilities P(φ, L) with
different φ and L for the five polyhedral shapes. It can be seen
from Fig. 3 that P increases with φ, and the P-φ curves shift to
lower volume fractions, with unchanged shape, for different
polyhedral particles. Nevertheless, the position of the P-φ
curve is determined primarily by the shape of polyhedra, as
shown in Fig. 4(a). On the other hand, the curves for different
shapes collapse on a single universal curve when rescaled with
[φ-φc(L)]/�(L), as shown in Fig. 4(b), where the definitions
of φc(L) and �(L) are introduced in the following section.

III. RESULTS

A. MCFSS analysis

As mentioned above, the critical volume fraction of poly-
hedral particles, at which a system-spanning cluster crossing
any of the three dimensions emerges, is used as the percolation
threshold for the system, since it can be directly applied to

predict the effective physical properties of porous and cracked
media [8–10,23]. It is worth mentioning that the critical
volume fraction has two forms—the local critical volume
fraction [the local percolation threshold, φc(L) ] and the global
critical volume fraction (the global percolation threshold,
φc), respectively, corresponding to finite-size systems and
infinite-size systems. For the local percolation threshold, it is
straightforward to measure φc(L) in a finite-size system via
the Monte Carlo simulations. However, the derivation of the
global percolation threshold for an infinite-size system is more
challenging in practice. According to the finite-size-scaling
theory in lattice percolation [3,36], φc is related to the local
critical volume fraction φc(L) via

�(L) ∝ L−1/ν, φc(L) − φc ∝ L−1/ν (2)

where �(L) characterizes the percolation transition width,
which has not been systematically investigated in the contin-
uum percolation of polyhedral particles. The quantity �(L)
indicates that for systems of finite size L the transition from
nonpercolated to percolated states (and vice versa) as mea-
sured by the percolation probability P is associated with a
width [3,12,37,38]. ν is the correlation-length exponent. As
can be seen in Eq. (2), it is a prerequisite to obtain �(L),
ν, and φc(L), in order to accurately determine the global
percolation threshold using the scaling scheme. We employ
Eq. (3) [12] to fit each curve of P-φ that follows the sigmoidal
shape. Note that Eq. (3) is an approximation rather than an
analytical formalism:

P(φ, L) = 1

2

[
1 + tanh

(
φ − φc(L)

�(L)

)]
. (3)

Consequently, the local percolation threshold φc(L) and
percolation transition width �(L) for each finite system size
L can be statistically derived. To ensure the reliability of
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FIG. 3. The P-φ curves of various system sizes L for different polyhedral shapes: (a) tetrahedron, (b) cube, (c) octahedron,
(d) dodecahedron, and (e) icosahedron. The symbols are the numerical results obtained using ensemble averaging whereas the solid lines
are fittings based on Eq. (3).

statistical results, the size and number of realizations should
be large enough. Accordingly, in our simulations, L = 30, 35,
40, 45, 50, 55, and 60, and Req = 1, though the P-φ curves
for L = 30, 40, 50, and 60 are only plotted in Fig. 3. Also, the
number of realizations is assigned to be 15 000.

Figure 5 shows that the transition width � for the five
shapes monotonically decreases with increasing L. For a con-
stant L, � increases in the following order: tetrahedron < cube
< octahedron < dodecahedron < icosahedron. In other words,
� increases with increasing number of polyhedral faces, as
shown in Fig. 5(a). According to the scaling relation in Eq. (2),
in order to further obtain the correlation-length exponent ν, we
need to transform the numerical data depicted in Fig. 5(a) to
the logarithmic values, since the linear slope of a plot of ln(�)
versus ln(L) corresponds to −1/ν, as shown in Fig. 5(b).

FIG. 4. The P-φ curves for L = 45 for the five shapes of poly-
hedral particles shown as (a) separate curves and (b) collapsed on a
universal curve when rescaled with [φ − φc(L)]/�(L).

Table I displays ν for the five polyhedral shapes using the
present MCFSS analysis.

After deriving ν and φc(L), the global percolation threshold
φc is subsequently estimated from the scaling relation in
Eq. (2). We present the numerical results of φc(L) versus L−1/ν

for the five polyhedral shapes and linearly fit these data to
determine φc that corresponds to the interception value of each
φc(L) − L−1/ν curve with the y axis, as shown in Fig. 6. To
test the accuracy of the MCFSS analysis, we utilize the same
scheme to derive φc of the simplest interpenetrating sphere
system and obtain φc = 0.2896. This result is in excellent
agreement with the numerical results reported by Rintoul
and Torquato (φc = 0.2895) [12] and Lorenz and Ziff (φc =
0.289573) [39]. Both results are acknowledged as the most
precise statistical values for φc of the interpenetrating sphere

FIG. 5. Percolation transition width � vs system size of L for
different polyhedral shapes.
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TABLE I. The correlation-length exponent ν for the five polyhedral shapes from MCFSS analysis and MCRG method.

ν Tetrahedron Cube Octahedron Dodecahedron Icosahedron

MCFSS 1.015 ± 0.020 0.936 ± 0.014 1.019 ± 0.016 0.896 ± 0.015 0.939 ± 0.015
MCRG (L0 = 8) 1.017 ± 0.018 0.937 ± 0.012 1.016 ± 0.015 0.892 ± 0.013 0.939 ± 0.015
MCRG (L0 = 9) 1.015 ± 0.017 0.942 ± 0.012

system obtained to date. In addition, our result of φc = 0.2151
for cubic particles is consistent with the numerical result of
φc = 0.2168 reported by Baker et al. [31], and with the Padé
approximation of φc = 0.2106 from Alon et al. [30]. These
comparisons strongly indicate the accuracy of the present
numerical framework for the determination of the global
percolation threshold φc of polyhedral particles. The statistical
results of φc for the five polyhedral shapes obtained via the
MCFSS analysis are given in Table II.

B. MCRG analysis

The MCRG approach has been broadly used to estimate
various critical exponents and percolation thresholds for con-
tinuum percolation of overlapping objects and hard-core–soft-
shell models [3,32]. Herein, we follow the renormalization
procedure described in Ref. [32], where Lee and Torquato
[32] restricted themselves to one-parameter cell-to-cell trans-
formation. A rescaling is implemented in which a cubic cell of
size L is mapped onto a cell of size L0. The recursion relation
of the one-parameter cell-to-cell transformation can be written

as

P0(φ0, L0) = P(φ, L) (4)

where P0 is the percolation probability under the given φ0 and
L0. P(φ, L) corresponds to the P-φ curves for various L shown
in Fig. 3.

Following Reynolds et al. [40] and Lee and Torquatao
[32], one can probe extrapolations of the correlation-length
exponent ν to the L/L0 → 0 limit where the renormalization
should be exact:

ln
(
EL,L0

) = k ln(L/L0) + c (5)

where k = 1/ν and c is a constant. EL,L0 is the eigenvalue of
the linearized transformation defined as

EL,L0 =
[

dP(φ, L)

dφ

]/[
dP(φ, L0)

dφ

]∣∣∣∣φ=φ∗
L,L0

(6)

where φ∗
L,L0 is the intersection value between P(φ, L) and

P(φ, L0) that approximates the critical value at which the
percolating cluster just emerges at a finite-size system. Ac-
cording to Eqs. (5) and (6), once P(φ, L), P(φ, L0), and φ∗

L,L0

FIG. 6. The local percolation threshold φc(L) vs L−1/ν for different polyhedral shapes: (a) tetrahedron, (b) cube, (c) octahedron,
(d) dodecahedron, and (e) icosahedron. The symbols are the numerical results and the dashed lines are linear fittings.
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TABLE II. Global percolation threshold φc for the five polyhedral shapes obtained via the MCFSS analysis and the MCRG method. The
derived numerical values are compared against the theoretical bounds. The superscript (*) stands for φc via ν from MCRG (L0 = 8) in Table I.

φc Tetrahedron Cube Octahedron Dodecahedron Icosahedron

MCFSS 0.1511 ± 0.0012 0.2151 ± 0.0012 0.2217 ± 0.0014 0.2560 ± 0.0008 0.2625 ± 0.0010
MCRG∗ 0.1525 ± 0.0012 0.2176 ± 0.0014 0.2247 ± 0.0010 0.2580 ± 0.0005 0.2650 ± 0.0008
MCRG 0.1516 ± 0.0012 0.2169 ± 0.0014 0.2231 ± 0.0010 0.2578 ± 0.0005 0.2640 ± 0.0008
(ν = 0.88)
Lower bound 0.0628 0.087 0.0898 0.1038 0.1061
Upper bound 0.1625 0.2202 0.2268 0.2590 0.2642

are determined, the correlation-length exponent ν can thus be
obtained from the reciprocal of the slope of a plot of ln(EL,L0)
versus ln(L/L0).

Additionally, as the cell size increases, P(φ, L) approaches
a step function (see Fig. 7) and a jump discontinuity occurs
at φ∗

L,L0 = fc. The scaling relation from φ∗
L,L0 to φc is

presented by

|φ∗
L,L0

− φc| ∝ (L/L0)−1/ν . (7)

Consequently, once φ∗
L,L0 and ν are obtained, the global

percolation threshold φc can be determined from a plot of
(L/L0)−1/ν versus φ∗

L,L0, of which the value corresponds to
the intercept on the abscissa of a plot of (L/L0)−1/ν versus
φ∗

L,L0.

In order to implement MCRG transformations introduced
above, we additionally generate P-φ curves for selected trans-
formation cells of L0 = 8 and 9 with the consideration of
tetrahedral and cubic particle systems and the P-φ curves
for L0 = 8 with the consideration of octahedral, dodecahe-
dral, and icosahedral particle systems, using the Monte Carlo
simulations described in Sec. II. Note that, for each polyhe-
dral shape, we generate 800 000 realizations of L0 = 8 and
500 000 realizations of L0 = 9. Combining with the systems
of L = 30, 35, 40, 45, 50, 55, and 60 for the five polyhedral
particle shapes presented in Sec. II, Fig. 7 plots the numerical
data of P(φ, L0) and P(φ, L) for the five polyhedral shapes
and fitted results using Eq. (3).

Rescaling is performed for cells of L = 30, 35, 40, 45, 50,
55, and 60 onto the cells of L0 = 8 and 9. Thus, we can obtain

FIG. 7. The P-φ curves of different system sizes L0 and L for the five polyhedral shapes. The symbols are the numerical results and the
lines are fittings.
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FIG. 8. The plots of ln(EL,L0) vs ln(L/L0) for the five polyhedral shapes. The correlation-length exponents ν are the reciprocals of slopes
of the linear fitting formulas shown in these figures.

the intersection values φ∗
L,L0 between P(φ, L) and P(φ, L0),

and even determine the eigenvalues EL,L0 according to Eq. (6).
We plot ln(EL,L0) versus ln(L/L0) for the five polyhedral
shapes to determine the correlation-length exponents ν, as
shown in Fig. 8. From Figs. 8(a) and 8(b), one can clearly
see that, for L0 = 8 and 9, the corresponding slopes and R2

of the linear fittings are well consistent. This is why we
select the single L0 = 8 as the subsequent transformation for
the octahedral, dodecahedral, and icosahedral shapes. Table I
displays ν for the five polyhedral shapes using the present
MCRG approach and gives the comparison against that from
MCFSS analysis. Moreover, we utilize the MCRG analysis
[see Eq. (7)] to estimate the global percolation thresholds φc

for the five polyhedral shapes from the plots of (L/L0)−1/ν

versus φ∗
L,L0, as shown in Fig. 9; since L/L0 tends to infinite,

the intersection values φ∗
L,L0 for L0 = 8 and 9 are expected to

approach a single value φc, as shown in Figs. 9(a) and 9(b). As
such, for the subsequent octahedral, dodecahedral, and icosa-
hedral shapes, we just utilize L0 = 8 as a rescaling to map
onto cells of various L. The global percolation thresholds for
the five polyhedral shapes are estimated from the intercepts on
the abscissa in the plots and compared against the percolation
thresholds derived from the same L0 and ν = 0.88, as shown
in Figs. 9(c)–9(g). From these figures, one can find that, for
each polyhedral shape, R2 values of the linear fittings from
both values of ν (one is our numerical value and another is
ν = 0.88) are the same. Also, the estimated global percolation

thresholds of φc from both options are very close though φc

via ν from our numerical analysis is somewhat larger than
that via ν = 0.88 The reason is that our numerical value of ν is
slightly larger than the known value of ν = 0.88, which causes
the value of (L/L0)−1/ν via ν from our numerical analysis to
be larger than that of (L/L0)−1/ν via ν = 0.88, under the same
other conditions. The detailed values of the global percolation
threshold from both options are tabulated in Table II.

C. Correlation-length exponent ν

Table I presents the correlation-length exponents ν for the
five polyhedral shapes using the MCFSS analysis [on the basis
of Fig. 5(b)] and the MCRG approach (on the basis of Fig. 8).
We clearly see that the two scaling methods can generate
similar results of ν for a single polyhedral shape. For different
polyhedral shapes, the statistical values of ν are close, which
seems to confirm the universality of the correlation-length
exponent in continuum percolation of overlapping polyhedral
particles, but appear to be slightly larger than the value of
ν = 0.88 in lattice percolation, as shown in Table I. Such
discrepancies are mainly attributed to the following three
aspects.

(1) The present controllable parameter is the volume frac-
tion φ of overlapping particles. Nevertheless, as noted by
Lee and Torquato [32], a formulation in terms of φ has a
drawback in that φ is not a controllable simulation parameter
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FIG. 9. The plots of (L/L0)−1/ν vs φ∗
L,L0 for the five polyhedral shapes.

in continuum percolation. φ for any finite-size system varies
from realization to realization for a given reduced number
density η because of different overlapping degrees among the
particles.

(2) The present input parameter is the volume fraction
φ of overlapping particles, and then φ is converted into the
number of particles using Eq. (1) in the present Monte Carlo
simulations. However, on the one hand, Eq. (1) is just an
approximation for finite-size systems that is exact for an
infinite-size system; on the other hand, the round-up values
from Eq. (1) have to be used to meet the integer of the number
of particles.

(3) The selected maximum size of present realizations
is L = 60 that may not meet the requirement of accurately
estimating the correlation-length exponent. As mentioned in
the book of Stauffer and Aharony [3], the determination of
the correlation-length exponent needs far more and larger re-
alizations than the determination of the percolation threshold.

D. Global percolation threshold φc

Table II presents the global percolation thresholds φc for
the five polyhedral shapes obtained via the MCFSS analysis

(on the basis of Fig. 6) and the MCRG approach (on the basis
of Fig. 9). In the MCRG approach, we prescribe two cases of
ν, one from our numerical simulations (see the third line in
Table I) and another that is the universal value of ν = 0.88
in lattice percolation, to estimate the percolation thresholds of
the five polyhedral shapes for purpose of comparison. In addi-
tion, our numerical results of φc are further compared against
the theoretical bounds, as shown in Table II. Similar to �

shown in Fig. 5, we can see that φc increases in the following
order: tetrahedron < cube < octahedron < dodecahedron <

icosahedron. We therefore conclude that φc and � increase
with increasing number of faces at least for the five polyhedral
shapes. This also indicates that polyhedral particles that are
closer to spheres (i.e., more “spherical”) are more difficult
to percolate than those that are far from spherical shapes.
This trend seems to be in agreement with that for systems
containing ellipsoidal and spherocylindrical particles reported
in the literature [16–22]. In addition, Table II shows that all
numerical results of φc from the MCFSS analysis and the
MCRG approach are well within the theoretical excluded-
volume bounds, although they tend to be closer to the upper
bound. It further reveals that the two numerical frameworks
can accurately estimate the global percolation threshold φc
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TABLE III. Global percolation threshold characterized by the critical reduced number density ηc for the five polyhedral shapes via the two
approaches presented in Table II.

ηc Tetrahedron Cube Octahedron Dodecahedron Icosahedron

MCFSS 0.1638 0.2422 0.2505 0.2964 0.3041
MCRG∗ 0.1655 0.2454 0.2545 0.2984 0.3079
MCRG 0.1644 0.2445 0.2524 0.2981 0.3065
(ν = 0.88)
Ref. [15] 0.1701 ± 0.0007 0.2443 ± 0.0005 0.2514 ± 0.0006 0.2949 ± 0.0005 0.3030 ± 0.0005

for polyhedral particles. The theoretical bounds are introduced
as follows. Moreover, for a single polyhedral shape, Table II
shows that φc from the MCRG∗ method is greater than φc

from the MCRG (ν = 0.88) approach, which is greater than
φc from the MCFSS analysis. Note that the error bars shown
in Tables I and II are calculated in terms of the standard
error form. We select six groups of SN = 2500, 5000, 7500,
10 000, 12 500, and 15 000, where SN is the number of sam-
ples. On the basis of the percolation probabilities P(φ, L) of
each group, we calculate the correlation-length exponent and
percolation threshold of each group in terms of the MCFSS
analysis and the MCRG method described in this paper.
Essentially, we need to repeat six times the present MCFSS
analysis and the MCRG method for each polyhedral shape.
Then, according to the six statistical values of ν and φc for
each polyhedral shape, we invoke the standard error function
in MATLAB software to compute the individual standard errors.

It is worth mentioning that the percolation threshold is
sometimes characterized by the critical reduced number den-
sity ηc. The reduced number density of overlapping particles
is related to the volume fraction: φ = 1 − e−ν . Note that, as
mentioned above, the relation is exact only for an infinite-size
system. Table III presents the numerical results of ηc for the
five polyhedral shapes via the two approaches presented in
Table II and a comparison with the corresponding numerical
values reported by Torquato and Jiao [15]. We find that the
present numerical results of ηc generally agree with the cor-
responding numerical values reported in Ref. [15]. Moreover,
the dependency of ηc on the five polyhedral shapes is fully
consistent with that of φc and �. However, we note that
the ηc values obtained in this paper are slightly different
from the corresponding ones reported in Ref. [15]. These
small discrepancies might be caused by the different methods
employed for obtaining ηc: in this paper, the MCFSS analysis
and the MCRG method are used, while in Ref. [15] the
percolation thresholds of finite systems with various sys-
tem sizes were extrapolated to estimate the infinite system
limits.

Equations (8) and (9) present the bounds for the percolation
threshold of overlapping polyhedral particles. Equation (8)

describes the excluded-volume percolation model for an ar-
bitrary convex object system [15,22], i.e.,

φc =
{

1 − e−1/Vd.ex. the lower bound

1 − e−2.7344/Vd.ex. the upper bound
(8)

where Vd.ex is the dimensionless excluded volume of the parti-
cle, namely, Vd.ex. = Vex/V , where Vex is the excluded volume
that is defined as a volume in which two particle centers must
be in order for the particles to overlap. The excluded volume
of polyhedral particles can be determined theoretically and
numerically by the second virial coefficient and Monte Carlo
simulations [34,41]. Herein, we directly present the analytical
expression of Vd.ex. for the five polyhedral shapes, as given in
Eq. (9):

Vd.ex. = 3Eb

πs
acos

(
cos (π/ f )

sin (π/n)

)
+ 2 (9)

where f and n are the number of faces connected by each
vertex and the number of sides of each face, respectively.
E is the number of sides of a polyhedron. s is sphericity
defined as the ratio between the surface area of a sphere and
that of a polyhedron with the same volume [34,41]. For a
regular tetrahedron, s = 0.671, f = n = 3, and E = 6. For
a cube, s = 0.806, f = 3, ν = 4, and E = 12. For a regular
octahedron, s = 0.846, f = 4, ν = 3, and E = 12. For a
regular dodecahedron, s = 0.91, f = 3, n = 5, and E = 30.
For a regular icosahedron, s = 0.939, f = 5, n = 3, and E =
30. We note that Eq. (9) is validated by the comparison of
numerical results from the Monte Carlo simulations reported
by Xu et al. [34], as shown in Table IV.

IV. CONCLUSIONS AND DISCUSSION

We have presented two numerical frameworks, the MCFSS
analysis and the MCRG method, to systematically study
the continuum percolation of randomly oriented overlap-
ping polyhedral particles, which have been shown to be
sound approaches for deriving the percolation properties. The
proposed numerical frameworks suggest the generic proce-
dures for the study of continuum percolation of nonspherical

TABLE IV. Dimensionless excluded volumes Vd.ex. for the five polyhedral shapes derived by Eq. (9) and the Monte Carlo simulations.

Vd.ex. Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Theory 15.41 10.99 10.63 9.12 8.91
Simulation 15.39 10.93 10.64 9.03 8.79

032107-9



XU, ZHU, JIANG, AND JIAO PHYSICAL REVIEW E 99, 032107 (2019)

particles. Additionally, the excluded-volume percolation
bounds for different polyhedral shapes are consistent with
the numerical results obtained via our frameworks. The ob-
tained results reveal that the percolation threshold charac-
terized by the critical volume fraction φc or the critical
reduced number density ηc and the percolation transition
width � are monotonic increasing functions of the number
of polyhedral faces. Our results of φc and the theoretical
bounds can guide the evaluation of the structure-property
relation of nonspherical particle systems. The ideas pre-
sented here can be extended by applying them in the eval-
uation of the effect of φc on the structural, transport, and

mechanical properties of porous materials composed of non-
spherical particles.
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