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We study absorbing phase transitions in systems of branching annihilating random walkers and pair contact
process with diffusion on a one-dimensional ring, where the walkers hop to their nearest neighbor with a
bias ε. For ε = 0, three universality classes—directed percolation (DP), parity-conserving (PC), and pair contact
process with diffusion (PCPD)—are typically observed in such systems. We find that the introduction of ε does
not change the DP universality class but alters the other two universality classes. For nonzero ε, the PCPD class
crosses over to DP, and the PC class changes to a new universality class.
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I. INTRODUCTION

Many reaction-diffusion systems show a second-order
phase transition from a fluctuating active state to a nonfluctu-
ating absorbing state as some control parameter is tuned [1–4].
A wide range of models corresponding to phenomena such
as epidemic spreading [5], catalytic chemical reactions [6],
transport in disordered media [7], forest fires [8], biological
evolution [9], surface roughening [10,11], and self-activated
biological structures [12] show absorbing phase transitions.
These transitions are classic examples of nonequilibrium
phase transitions. Studying the critical behavior and univer-
sality classes of such transitions is extremely important from
a theoretical perspective and for understanding the phase
transition in reaction diffusion systems.

A large number of absorbing phase transitions in nonequi-
librium systems have been observed to belong to the directed
percolation (DP) universality class. It has been conjectured by
Janssen and Grassberger [13] that continuous absorbing phase
transitions in a reaction-diffusion system with short-range
interactions, characterized by a non-negative scalar order
parameter and with no additional symmetries, conservation
laws, and quenched randomness, belong generically to the DP
universality class. The robustness of the DP universality class
has been a matter of great interest among researchers. The
parity-conserving (PC) universality class [14], the universality
class of pair contact process with diffusion [15], the voter
universality class [16], and the Manna universality class in
sandpile models [17] are some noteworthy universality classes
in nonequilibrium phase transitions whose critical behavior is
different from that of DP.

In this work, we have focused on branching annihilating
random walks (BARWs) and pair contact process with dif-
fusion (PCPD), where three universality classes, namely, DP,
PC, and PCPD, have been reported. In BARW a diffusing
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random walker A can branch to produce m (m > 0) new off-
springs A → (m + 1)A, or two of them annihilate (2A → Ø)
upon meeting at the same site. The parity of the system,
which is defined as the total number of walkers modulo 2,
is not conserved when m is odd. Depending upon parity, the
critical behavior in such systems is DP when m is odd and
PC when m is even [14]. The PC class is also referred to
as a directed Ising (DI) class because PC critical behavior
can also be realized in spin systems when a spin-flip Glauber
dynamics competes with spin-exchange Kawasaki dynamics
[18]. In PCPD [15], two diffusing walkers in contact only can
produce new off-springs (2A → 3A) or they can annihilate
(2A → Ø). Unlike in PC, parity does not affect the critical
behavior in PCPD [19].

The crossover behavior between these universality classes
has been extensively studied. It has been found that the PC
class crosses over to DP by introducing a dynamics which
breaks the modulo 2 conservation. This is done by producing
both an even and odd number of off-springs while branching
[20]. In addition to PCPD dynamics, if unary branching and
annihilation are introduced, then PCPD crosses over to DP
when the unary process does not conserve parity [21,22] or
to PC if it conserves parity [22]. This suggests that parity
and n-narity of the branching process plays a crucial role
in determining the universality class of the transition. It is
also found that diffusion, or its absence, affects the critical
behavior in a major way. For example, in the absence of
diffusion, parity-conserving BARW models having spatially
asymmetric branching can have additional conservation laws
depending upon the initial conditions, and consequently, the
decay exponent varies from the PC exponent [10]. The PCPD
class crosses over continuously to DP when solitary diffusing
walkers are annihilated upon contact with a certain probability
which determines the value of the critical exponents [23].
When diffusion of single walkers is completely forbidden in
PCPD, although the system has multiple absorbing states, its
critical behavior switches over to DP [24,25]. BARW has also
been studied with Ley walkers. The additional long-range
correlations that build up in the system due to long-range
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interactions via Ley flights lead to continuous variation of
critical exponents for both DP and PC universality classes
[26,27]. The above mentioned perturbations either change the
parity, bring in additional conservation laws or long-range in-
teractions, or arrest the diffusion dynamics. The effect of drive
on the critical behavior of BARW and PCPD has been studied,
where all the walkers diffuse in a preferential direction [28].
The driven PCPD shows a different critical behavior from
the ordinary PCPD, but DP and PC critical behaviors remain
unchanged under such a drift.

We ask what happens to DP, PC, and PCPD universal criti-
cal behaviors when only local perturbations are introduced to
the underlying diffusion dynamics without affecting parity of
the system, creating any long-range interactions, or bringing
in additional conservation laws. Specifically, we study BARW
and PCPD on a one-dimensional periodic chain where the
walkers hop to their nearest neighbor with a bias ε. A walker
at a given site diffuses towards its nearest neighbor with
probability 1

2 + ε(0 � ε � 1/2) and in the opposite direction
with the complimentary probability 1

2 − ε. For ε = 0, the
walker performs a simple random walk, and for ε = 1/2, the
walker moves ballistically towards its nearest neighbor. It is
to be noted that the bias on a walker at different sites is
uncorrelated as is the bias on the walker at different times,
and therefore there is no net drive on the system. The process
retains its Markovian nature, and unlike the problem with
a Ley walker, there is no additional long-range interaction
that is present in the system. However, the bias hinders the
diffusion of walkers away from their parent cluster. Thus, for
ε > 0, branching and annihilation within a cluster become the
dominant processes. The case of annihilating random walkers
(i.e., no branching) in presence of the bias ε has been studied
[29], and it was found that the decay exponent changes from
a value 1/2 without bias to 1 when bias is introduced. This
suggests that under the bias, the random walkers at large times
behave as ballistic walkers. When branching is turned on,
there is an absorbing phase transition for ε = 0 [14,15]. With
ε > 0, one would expect the transition between absorbing and
active phases to occur at higher branching rates because of the
enhanced annihilation.

An important question to ask is whether this bias will affect
the critical behavior of the transition and what are the possible
universality classes it can give rise to. We study the problem
using Monte Carlo simulations. We find that nonzero ε retains
the universality class of DP, whereas the PCPD class changes
to DP and the PC class changes to a new universality class.

II. MODELS

On a one-dimensional lattice, the BARW with nearest-
neighbor bias ε (0 � ε � 1/2) is defined in the following
way: with probability p, a random walker A diffuses, and
with the complimentary probability 1 − p it branches to
produce m(m > 0) off-springs: A → (m + 1)A at its nearest-
neighboring sites. When a walker diffuses, it does so with a
probability 1

2 + ε towards its nearest-neighboring walker and
with probability 1

2 − ε in the opposite direction. When two
walkers meet at the same site, they annihilate (2A → Ø). For
large values of p, all walkers get annihilated, and the system
goes to an absorbed state. When p is small, the branching rate

being higher, the system has a finite density of walkers even
at large times, and hence the system remains active forever.
Therefore, by varying p, one can observe absorbing phase
transitions in such systems at a particular critical value of
p = pc. When m is even, the number of walkers modulo 2
is conserved at all times. This symmetry is called the parity.
For ε = 0, the critical behavior of the transition between
active and absorbing states depends upon parity. The critical
behavior in these systems belongs to PC when m is even
and to DP when m is odd [14]. We vary ε and determine
how the critical behavior of the absorbing phase transitions
change for the m = 1 and m = 4 cases. For the case of parity-
conserving BARW, we choose m = 4 instead of m = 2, be-
cause on a one-dimensional lattice, pc is trivially equal to zero
for m = 2 [14].

We also study the effect of the nearest-neighbor bias on
a binary process like PCPD [15], where branching can occur
only when two random walkers are placed side by side. A
walker is selected at random, and its neighboring site (left
or right) is chosen with equal probability. The system then
evolves by following one of the three processes with the
respective assigned probabilities:

(1) With probability q(1 − D), the walker and its neighbor
in the chosen site are annihilated (2A → Ø).

(2) If the chosen neighboring site is occupied and the next
nearest site in the direction of the neighboring site is empty, a
new walker is created (2A → 3A) at the next nearest site with
probability (1 − q)(1 − D).

(3) A walker diffuses with probability D to one of its
neighboring site (left or right) if it is empty. In this step the
neighboring site is not chosen with equal probability. The
target site for the diffusing walker is chosen with probabil-
ity 1/2 + ε towards its nearest-neighboring walker and with
probability 1/2 − ε in the opposite direction.

For ε = 0, the critical point and the critical exponents for
absorbing phase transition in PCPD generally depends upon
both q and D [15]. In this work, we find the critical point qc for
a fixed value of D = 1/2 and study how the critical behavior
changes as ε is varied.

III. SIMULATION

To simulate BARW and PCPD, we start with a fully
occupied lattice at time t = 0 and measure the average density
of walkers ρ(t ) = 〈si(t )〉 as a function of time. Here the 〈· · · 〉
represents the average over configurations. The variable si(t )
takes the value 1 when site i is occupied by a walker and 0
when it is unoccupied. As t → ∞, ρ(t ) saturates to a positive
value ρa, if the system is in the active phase (p < pc or
q < qc) and decays to zero in the absorbing phase (p > pc or
q > qc). Thus, effectively, ρ(t ) acts as an order parameter for
the system. At the critical point where p = pc for BARW and
q = qc for PCPD, density decays with time as a power law,

ρ(t ) ∼ t−α, (1)

α being the decay exponent. The critical points pc, qc,
and the decay exponent α can be estimated by plotting
ρ(t ) versus t for different values of p and q, respec-
tively. At the critical point, a power law is obtained. For
illustration, in Figs. 1 and 2 we make an estimate of
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FIG. 1. Log-log plot of ρ(t ) vs t when ε = 0 in the PCPD model
for various values of q, where the value of q increases as one moves
from top to bottom of the panel. For q = 0.13353, the density decays
with a power law as shown by the dashed line, thus giving an estimate
of the critical point qc = 0.13353. The slope of the dashed line gives
the estimate of the decay exponent α ∼ 0.221. Here L = 25 000.

the critical point qc and the exponent α in the PCPD
model for ε = 0 and ε = 1/2, respectively. We also show
the estimated value of α in BARW (m = 4) for ε = 0,

1/2 in Fig. 3. For different values of ε, the estimate of the
critical point and α for BARW and PCPD has been compiled
in Table I.

The dynamical exponent z can be determined from the
finite-size scaling analysis. In a finite system of size L, the
decay of ρ(t ) as a function of t at the critical point has
the scaling form

ρ(t, L) ∼ t−α f (t/Lz ), (2)

where f is a scaling function. f (x) is a constant for x � 1
and decays exponentially for larger values of x. Once α has
been measured, one can then determine z using Eq. (2). At the
critical point, the curves ρ(t )tα versus t/Lz for different values
of L collapse to a single curve. In Figs. 4, 5, 6, and 7, we use
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FIG. 2. Log-log plot of ρ(t ) vs t when ε = 1/2 in PCPD model
for different values of q, where the value of q increases as one moves
from top to bottom of the panel. For q = 0.08982, the density decays
with a power law as shown by the dashed line, thus giving an estimate
of the critical point qc = 0.08982. The slope of the dashed line gives
the estimate of the decay exponent α ∼ 0.159. Here L = 25 000.
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FIG. 3. Log-log plot of ρ(t ) vs t in BARW (m = 4) model at
the estimated critical points pc = 0.7215 for ε = 0 (lower line in
the panel) and pc = 0.3369 for ε = 1/2 (upper line), respectively.
The density decays with a power law as shown by the dashed lines.
The slope of the dashed line gives the estimate of the decay exponent
α ∼ 0.284 for ε = 0, and α ∼ 0.224 for ε = 1/2.

the finite-size scaling method to measure z for BARW (m = 4)
and PCPD when ε = 0 and ε = 1/2. For BARW (m = 4), the
data for different values of L collapse when z = 1.75 for ε = 0
and z = 1.74 for ε = 1/2. For PCPD, a good data collapse is
obtained when z = 1.72 for ε = 0 and z = 1.59 for ε = 1/2.

The order parameter exponent β characterizes the algebraic
decay of the density ρa as one approaches the critical point pc

(p → p−
c for BARW) or qc (q → q−

c for PCPD) in the active
phase:

ρa ∼ (pc − p)β and ∼ ρa ∼ (qc − q)β. (3)

Figures 8 and 9 shows the logarithmic plot of ρa versus
pc − p for BARW (m = 4) and ρa versus qc − q for PCPD
and estimated values of β for ε = 0 and ε = 1/2.

TABLE I. Numerical estimate of critical points and critical ex-
ponents in BARW and PCPD for various values of ε obtained using
Monte Carlo simulations. The numbers within parentheses represent
the error in the last decimal place. The errors are determined from
an eye estimate in fitting the exponents in the power laws and the
scaling function.

Model ε pc α β z θ

BARW 0 0.1070(1) 0.161(1) 0.278(1) 1.58(1) 0.251(1)
m = 1 0.1 0.08355(3) 0.159(2) 0.276(1) 1.59(1) 0.250(1)

0.3 0.05819(4) 0.159(2) 0.275(2) 1.58(1) 0.251(2)
0.5 0.04469(2) 0.158(1) 0.276(1) 1.58(1) 0.250(2)

BARW 0 0.7215(5) 0.284(3) 0.92(4) 1.75(1) 0.491(2)
m = 4 0.1 0.5620(2) 0.232(4) 0.55(1) 1.72(1) 0.381(5)

0.3 0.4182(2) 0.229(3) 0.53(1) 1.71(2) 0.378(3)
0.5 0.3369(2) 0.224(5) 0.51(2) 1.74(2) 0.376(2)
ε qc α β z θ

PCPD 0 0.13353(6) 0.221(3) 0.43(1) 1.72(2) 0.346(1)
0.1 0.11898(4) 0.159(4) 0.28(1) 1.59(2) 0.254(2)
0.3 0.10087(3) 0.159(1) 0.275(3) 1.59(1) 0.251(2)
0.5 0.08982(4) 0.159(1) 0.275(2) 1.59(1) 0.251(1)
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FIG. 4. Numerical estimate of the dynamical exponent z in
BARW (m = 4) using finite-size scaling. The inset shows the un-
scaled data of ρ(t ) vs t for increasing values of L = 200, 400, 800,
1600, and 3200 as one moves from left to right. In the main panel,
log-log plot of ρ(t )tα vs t/Lz at pc = 0.7215 for ε = 0, and all these
L values are plotted. A good data collapse is obtained for z = 1.7.
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FIG. 5. Numerical estimate of the dynamical exponent z in
BARW (m = 4) using finite=size scaling. The inset shows the un-
scaled data of ρ(t ) vs t for increasing values of L = 200, 400, 800,
1600, and 3200 as one moves from left to right. In the main panel,
log-log plot of ρ(t )tα vs t/Lz at pc = 0.3369 for ε = 1/2, and these
L values are plotted. A good data collapse is obtained for z = 1.74.
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FIG. 6. Numerical estimate of the dynamical exponent z in
PCPD using finite-size scaling. The inset shows the unscaled data
of ρ(t ) vs t for increasing values of L = 200, 400, 800, 1600, and
3200 as one moves from left to right. In the main panel, log-log plot
of ρ(t )tα vs t/Lz at qc = 0.13353 for ε = 0, and these L values are
plotted. A good data collapse is obtained for z = 1.72.
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FIG. 7. Numerical estimate of the dynamical exponent z in
PCPD using finite-size scaling. The inset shows the unscaled data
of ρ(t ) vs t for increasing values of L = 200, 400, 800, 1600, and
3200 as one moves from left to right. In the main panel, log-log plot
of ρ(t )tα vs t/Lz at qc = 0.08982 for ε = 1/2, and these L values are
plotted. A good data collapse is obtained for z = 1.58.

We also measure the two-point spatial correlations, C(r) =
〈si(t )si+r (t )〉, where 〈· · · 〉 is the configuration average. At the
critical point, C(r) decays as a power law,

C(r) ∼ r−θ , (4)

where the exponent θ = zα. In Fig. 10 we plot C(r) versus
r in PCPD for ε = 0 and ε = 1/2, measured at t = 105. In
Table I we put the values of θ obtained from simulations for
various values of ε. The exponents θ , α, and z seem to satisfy
the scaling relation θ = zα for all ε.

IV. RESULTS AND DISCUSSION

In BARW, for m = 1 and ε = 0, our results match well
with the DP exponents obtained previously [14]. For any
ε > 0, the exponents remain the same as that for ε = 0.
Therefore, we conclude that the bias does not affect the DP
universality class. The BARW model for m = 4 belong to
the PC class [14] in the absence of any bias (ε = 0). Our
results indicate the introduction of the bias drastically changes
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FIG. 8. Log-log plot of ρa vs pc − p in BARW (m = 4) for ε = 0
and ε = 1/2. The slopes of the lines (shown by dashed lines) near
p → pc give an estimate of the exponent β. For ε = 0, β ∼ 0.92,
and for ε = 1/2, β ∼ 0.51.
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FIG. 9. Log-log plot of ρa vs qc − q in PCPD for ε = 0 and ε =
1/2. The slopes of the lines (shown by dashed lines) near q → qc

give an estimate of the exponent β. For ε = 0, β ∼ 0.430, and for
ε = 1/2, β ∼ 0.275.

the exponents of the PC universality class. This is surprising
because the bias does not the affect the parity of the system,
neither creates any long-range interaction, nor does it gives
rise to additional conservation laws. It would be interesting to
know the universality class that the bias gives rise to for the
PC class. We would like to point out that the claim for the
existence of a new universality class certainly requires deeper
numerical analysis. However, one can check the consistency
of the critical exponents via the scaling relations. In Fig. 11
we plot the scaling form:

ρ(t, L) ∼ L−θg(t/Lz ), (5)

where g is the scaling function. We plot ρ(t, L)Lθ versus t/Lz

for BARW (m = 4) when ε = 0.3 and find a good data col-
lapse, and the scaling relation θ = zα is satisfied. Similarly,
we have checked that the scaling relation holds good for other
ε values also.

Our simulations show that the PCPD class crosses over to
DP for any nonzero ε. A characteristic feature of PCPD is the
survival of solitary diffusing walkers for large times. When
diffusion of single walkers is blocked in PCPD, its critical
behavior is the same as DP [24]. The bias ε tends to suppress
the diffusion of single walkers away from its parent cluster.
For ε = 1/2, a single walker cannot leave a cluster and diffuse
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FIG. 10. Two-point correlation function C(r) measured at the
critical point qc in PCPD for ε = 0 and ε = 1/2 at t = 105 for a
system of size L = 25 × 103. The slopes shown by dashed lines give
the estimate of θ . For ε = 0 (lower line in the panel), θ ∼ 0.346 and
θ ∼ 0.251 for ε = 1/2 (upper line).
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FIG. 11. Numerical estimation of the exponent θ in BARW
(m = 4) using finite-size scaling and verification of the scaling
relation θ = zα: Log-log plot of ρ(t )Lθ vs t/Lz at pc = 0.4182 when
ε = 0.3 for L = 200, 400, 800, 1600, and 3200. A good data collapse
is obtained for θ = zα ∼ 0.39.

as a solitary walker. In Fig. 12 we show the space-time plots
for ε = 0 and 1/2 in PCPD at the respective critical points.
Clearly, the solitary diffusing walkers do not survive for large
times for ε = 1/2 as compared to when ε = 0. In fact, this ef-
fect of solitary diffusing walkers not surviving for large times
seems to happen for smaller ε values also. This is possibly the
reason that for any ε > 0, PCPD crosses over to DP.
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FIG. 12. Space-time plots in PCPD for (a) ε = 0 and (b) ε = 1/2
at the critical points qc = 0.13353 and 0.08982 respectively. Clearly,
the appearance of these plots looks different. This is because, unlike
for ε = 0, the solitary walkers do not survive for large times when
ε = 1/2.
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We conclude with the following observations. The uni-
versality class of DP is robust and remains unaffected by
perturbations, which alters the diffusion dynamics as long as
the parity symmetry is unaltered. The same cannot be said for
the PC and the PCPD universality classes. Parity alone does
not guarantee the PC critical behavior, and the PC class may
change under pertubations of the diffusion dynamics. How-
ever, as long as parity is kept unchanged, PC class does not
seem to go to DP class. The PCPD critical behavior is rather

unstable. Although it is not affected by parity, perturbations
which arrest the diffusion of single walkers makes it cross
over to DP.
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