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Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel
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We study diffusive transport of a particle in a channel with periodically varying cross-section, occurring when
the size of the particle periodically switches between two values. In such a situation, the entropy potential,
which accounts for the area accessible for diffusion particle, varies both spatially (along the channel axis) and
temporally. This underlies the complex interplay between different timescales of the system and leads to novel
dynamic regimes. The most notable observations are: emergence of directed motion (in case of asymmetric
channel) and resonant diffusion, both controlled by the switching frequency. Resonantlike behaviors of the
drift velocity and the effective diffusion coefficient are shown and discussed. Based on heuristic arguments, an
approximate analytical treatment of the transport process is proposed. As a comparison with the results obtained
from Brownian dynamics simulations indicates, this approach provides a satisfactory way to handle the problem
analytically.
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I. INTRODUCTION

Diffusive transport in corrugated channels is ubiquitous in
nature and technology. Among obvious examples are such
diverse phenomena as solute transport in porous solids and
various complex media [1], transportation of ions through
channels in membranes [2], sorting particles by size [3],
controlled drug delivery [4], translocation of polynucleotides
in living tissues [5], and entropic rectification [6,7], just to
mention a few of them. Research into various aspects of
the subject has thrived over the past decades, motivated to
a large extent by several applications in molecular biology
and nanoscale engineering. Numerous theoretical predictions
surveyed in exhaustive review articles [5,8–10] are supported
by experimental evidence [11–13].

A sequence of cross-sectional irregularities such as channel
expansions and constrictions may dramatically affect both
equilibrium and kinetic properties of the particle transport.
Although the channel geometry and transported species vary
from system to system, the basic physics involved is universal.
It stems from a variation of the space accessible to particles
along the propagation direction. The inhomogeneity in the
confining space suggests use of a position-dependent entropy
potential in reduced dimensions [14,15], so the transport in
corrugated channels evolves through entropy barriers and
entropy wells. Most of the studies invariably assumes an
overdamped particle dynamics. For specific situations, the
impact of inertia on biased diffusion regulated by entropic
barriers can become, however, of salient importance [16].

Entropic effects lead to novel dynamical regimes which
have a global occurrence in soft matter and biological systems.
The best-studied example is forced and force-free entropic
transport in quasi-one-dimensional (1D) structures, which
exhibits striking, sometimes counterintuitive, features in
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certain geometry designs [9,17–20]. Another point of current
research is focused on the question of how hydrodynamics af-
fects diffusion through entropic barriers [12,21]. An asymmet-
ric channel corrugation offers a means to rectify fluctuations
brought about by a source of unbalance [6,7,11,21–29]. Both
rocking [11,22,23] and flashing [24–27] scenarios have been
proposed to rectify the particle motion in the main transport
direction via the entropy potential. The phenomenon of en-
tropic rectification has attracted enormous interest because it
not only provides a direct way to produce a controlled directed
motion at submicron scale [8], but also can be useful for
modeling the delivery of molecular products to their correct
location within a cell [4,5], as well as for developing efficient
methods of nanoparticle separation [3,21]. Entropic rectifi-
cation of active particles may be used to sort the particles
according to their self-propelled speeds [28]. Cooperative
ratcheting via both a potential-energy and an entropy potential
can significantly enhance the system response and, moreover,
yield directed motion in situations where neither energetic nor
entropic mechanisms operate on their own [29]. A non-trivial
involvement of the size of a diffusing particle into dynamics
of geometry influenced transport has been revealed [30–32].

The present paper addresses the question of how a time
variation of the particle size affects its transport in a chan-
nel of varying cross-section. It should be remarked that
a reversible, relatively large change in the size of nano-
objects (macromolecules and molecular aggregates) triggered
by an external stimulus (electric field, light, temperature, or
PH) is well established and has various manifestations [33].
An excellent example is furnished by nanoparticles wholly
composed of photochromic groups, the diameter of which
decreases to almost one-half and recovers through the UV-
induced cross-linking and cleavage of the cinnamate groups
in the polymer backbone [34]. Another example is photo-
responsive microgel particles, the reversible changes of which
can be achieved by alternative UV–Vis light irradiations [35].
As a third example, it might be mentioned photo-driven
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pulsating vesicles from self-assembled lipidlike azopolymers
[36]. Thus, systems, where geometrically restricted particle
diffusion is coupled with a time variation of the particle size,
can potentially be realized experimentally.

To achieve the goal in question, we consider a particle
diffusing in a 2D periodic channel. The particle size pe-
riodically switches between two values, in response to an
external stimulus. This implies that the particle is subject to
an oscillating entropy potential and, via the Stokes-Einstein
relation, its diffusion coefficient oscillates in time. The in-
terplay of the different timescales in the particle dynamics
(such as the period of the size oscillation, the characteristic
time of the system response, and the diffusion time) causes
nontrivial transport behavior. This study exhibits the two main
features of particle transport in a channel induced by its
size oscillation: emergence of directed motion (in case of
asymmetric channel) without any macroscopic force or gra-
dient and resonant diffusion, both controlled by the switching
frequency.

Directed transport of Brownian particles due to a time
variation, deterministic or stochastic, of an asymmetric peri-
odic potential (flashing ratchet mechanism [37]) is by now a
well-established phenomenon observed in various nonlinear
systems [5,6,8,24–27]. So the rectification scenario observed
here is a specific realization of the flashing ratchet mechanism.
The idea that particle size oscillations and asymmetry of
environment conspire to produce directed motion has been
recently proposed and discussed for periodic [26] and stochas-
tic [27] variations of the particle size. The current study
extends our previous work [26] to include the influence of
the particle size oscillation on its diffusion behavior. Note that
diffusion in a periodic potential is a fundamental problem of
long-standing and continuous interest. At equilibrium, the free
diffusion is hindered by energy or entropy barriers [38]. Out of
equilibrium, diffusion may exhibit counterintuitive behavior:
When a periodic potential is perturbed by a static bias force
[39], the diffusion rate shows a giant enhancement (over the
rate of free diffusion) [9,40], or even diverge [6,19]; time-
dependent driving leads to the resonant diffusion acceleration,
as predicted theoretically [41] and observed experimentally
[42]. This work provides an example of resonant diffusion
induced by space- and time-varying geometry.

The organization of the paper is as follows: In Sec. II,
we introduce the model and the basic quantities of interest,
namely, the drift velocity and the effective diffusion coeffi-
cient, as well as outline our approach to modeling the particle
transport. Section III reports and discusses our main findings:
the results obtained from extensive Brownian dynamics sim-
ulations for the quantities of interest (Secs. III A and III B),
the approximate analytical treatment of the problem based on
a few heuristic arguments capturing the basic physics of the
model (Sec. III C), and a comparison between the analytical
predictions and the numerical results (Sec. III D). Finally, the
major contributions of the present work are summarized in
Sec. IV.

II. THE MODEL

Consider a spherical particle diffusing in a 2D fluid-
filled L-periodic channel, schematically shown in Fig. 1. The

FIG. 1. Schematic illustration of a 2D L-periodic channel, with
bottleneck width 2a. The channel walls confining the motion of a
spherical Brownian particle are determined by Eq. (1). The particle
radius alternates between two values, b+ and b−, every time interval
τ . The dashed and dotted lines indicate the limiting positions of the
particle center within the channel in the + and − states, respectively.
The half-width of the effective region accessible for diffusion, w±(x),
is defined by Eq. (3).

channel with bottleneck width 2a is symmetric about the x
axis. The upper and low confining zigzag walls, yu and yl , are
described by the periodic piecewise-linear function

yu(x) = −yl (x) = a +
{

k1x, x < C

k2(L − x), x � C
, (1)

where k1 and k2 are the slopes of the walls, C =k2L/(k1+k2)
refers to the maximum channel width position, and x is
defined via the module function x = x mod L. The left-right
asymmetry of the model is brought about by the difference
between k1 and k2.

The suspended particle possesses two states, + and −,
which differ by the particle radius, b+ < a and b− < a (for
definiteness, let b+ > b−). When driven by an external peri-
odic signal (with period 2τ ), the states alternate every half
period τ . According to the Stokes-Einstein relation, the parti-
cle’s diffusion coefficient also alternates between two values,
D+ and D− = (b+/b−)D+, and hence it is time periodic,

D(t ) = {(D+ + D−) + (D+ − D−) sgn [sin(πt/τ ]}/2, (2)

where sgn(t ) denotes the sign function. We neglect rare spon-
taneous (thermal) interstate transitions, occurring without any
external stimulus, which satisfy detailed balance and hence,
by itself, cannot produce directed motion. Besides, the model
leaves out additional complexities such as interactions among
particles, particle wall interactions (apart from hard core
repulsion), and back-reaction of the medium to the particle
size changes (which implies not too large amplitude of the
oscillation) to exhibit the effects under study in a most clear
manner.

The region available for diffusion of a finite-size particle
is smaller than the total area of the channel. An effective
boundary restricting the particle motion is distant from the
channel wall by the radius b+ or b−. The local half-width of
the structures reduced in a such way reads

w±(x)=a+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
√

b2± − x2, 0 � x < ε±

k1x − b±
√

1 + k2
1 , ε± � x < c±

k2(L − x) − b±
√

1 + k2
2 , c± � x < L − δ±

−
√

b2± − (L − x)2, L − δ± � x < L

,

(3)
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where ε± = (k1/
√

1 + k2
1 )b±, δ± = (k2/

√
1 + k2

2 )b±, and c± =
C + b±(

√
1 + k2

1 −
√

1 + k2
2 )/(k1 + k2) refers to the maxi-

mum width position of the region accessible for the center
of the particle of radius b±. It is convenient to recast the
original formulation of the model [a particle of periodically
varying radius moving in a channel defined by Eq. (1)]
into an equivalent one of a pointlike particle moving in a
channel of periodically varying shape defined by Eq. (3). It
might seem that in such formulation the model proposed here
closely resembles those developed to analyze entropic effects
in diffusive transport introduced by time-changing boundaries
of a channel [24,25]. However, a wave of contraction and
expansion moving on the fluid-filled channel wall gives rise to
peristaltic pumping [43] which influence on the particle trans-
port seems to dominate that of entropic effects. Additionally,
here the particle’s diffusion coefficient also oscillates in time,
in contrast to Refs. [24,25].

The overdamped dynamics of the pointlike Brownian par-
ticle is governed by the equation

d−→r
dt

=
√

2D(t )
−→
ξ (t ), (4)

supplemented by the condition of vanishing outflow at the
walls of the effective channel, the half-width of which al-
ternates between w+(x) and w−(x). Here −→r is the particle’s
position in the 2D channel, D(t ) is the time periodic function

defined in Eq. (2), and
−→
ξ (t ) denotes a 2D Gaussian white

noise, with zero mean and correlation 〈ξi(t )ξ j (s)〉 = δi jδ(t −
s) for i, j = x, y. The focus is on the steady state reached
at long times, when the particle’s displacement, �x(t |τ ) =
x(t |τ ) − x(0), significantly exceeds the channel period L and
the number of transitions between states is large enough.
In this regime the particle’s transport along the channel is
conveniently characterized by the drift velocity v(τ ) and the
effective diffusion coefficient D(τ ), defined via the first two
moments of �x(t |τ ):

v(τ ) = lim
t→∞

〈�x(t |τ )〉
t

, (5)

D(τ ) = lim
t→∞

〈[�x(t |τ )]2〉 − 〈�x(t |τ )〉2

2t
. (6)

The most common way to describing diffusive transport
in a periodic channel of varying cross-section consists in
reducing the dimensionality of the system, keeping only the
main transport direction along the channel axis. With this ap-
proximation, the irregularity of the channel boundary wσ (x),
σ = +,− is accounted for by means of a periodic entropy
potential Uσ (x) and a properly chosen periodic x-dependent
diffusion coefficient Dσ (x). The effective half-width w±(x)
can be interpreted as a Boltzmann weight of an entropy
potential U±(x) felt by a walking particle due to collisions
with the channel walls:

w±(x) = ae−βU±(x), (7)

where β = (kBT )−1, kB is the Boltzmann constant, and T is
the temperature. The resulting kinetic equation for the effec-
tive 1D probability distribution, known as the Fick-Jacobs
(FJ) equation [14,15,17], is the Smoluchowski equation, in
which the potential of energetic origin is replaced by the

entropy potential and the diffusion coefficient is position-
dependent. One of the well-known results obtained from the
Smoluchowski equation is the exact formula for the effective
diffusion coefficient of a Brownian particle in a stationary
periodic potential [38]. Analogously, it follows from the FJ
equation that the effective diffusion coefficient of a point
Brownian particle in a channel of the position-dependent
width 2w±(x) can be written as

DFJ, ± =
[∫ L

0
e−βU±(x) dx/L

∫ L

0
eβU±(x)/D±(x) dx/L

]−1

=
{∫ L

0
w±(x) dx/L

∫ L

0
1/[w±(x)D±(x)] dx/L

}−1

.

(8)

The second of Eq. (8) follows from the first in view of
Eq. (7). The position-dependent diffusion coefficient D(x) is
introduced as a standard way to improve the accuracy of the
FJ approximation. The problem of the correct x dependence
of D(x) is still matter of debate (see, for example, [44]). Here
we use a well tested expression suggested by Reguera and
Rubí [15]:

D±(x) = D±{1 + [dw±(x)/dx]2}−1/3 . (9)

The FJ approach, in general, and Eq. (8), in particular, pro-
vides a quite good approximation under the condition of fast
equilibration in the transversal directions. This approximation
is, however, invalid in systems with sharp geometries [18,19]
or in the presence of external drive [6], where transverse
relaxation can hardly be instantaneous. Moreover, in these
cases the FJ approach does not guarantee even qualitative
description of boundary effects in the diffusive transport.
Thus, the model considered here can be formulated in terms
of energetic flashing ratchet model (and hence admits an
analytical treatment) only in some limiting cases (see below).
Because of this, we choose Brownian dynamics simulations
as the main research tool.

In this way, particle trajectories were generated by numeri-
cal integration of the dimensionless [45] stochastic equation
of motion, equivalent to Eq. (4), using the forward Euler
algorithm. The efficiency and quality of random number
generator are critical in simulations. In this work, we used the
ziggurat method [46], which is a reliable and fast method to
produce random numbers with a very high period. The reflect-
ing boundary condition at the wall of the effective channel
was accomplished by mirroring back a trajectory inside the
channel once it moves out of this region. The simulations were
run at a/L = 0.3, b+/L = 0.25, three values of b+/b− (8.33,
4.0, 1.67), and switching time varying over several order of
magnitude. The particle’s motion was investigated both in the
symmetric, k1 = k2 = 0.504, and asymmetric, k1 = 0.3 and
k2 = 1, channels. The k values were chosen in such a way
that the calculated [analytically from Eq. (8) and numerically
from simulations] effective diffusion coefficients of a point
Brownian particle are the same in the symmetric and asym-
metric channels. The drift velocity and the effective diffusion
coefficient were calculated as the average over 105 trajec-
tories, following their definitions given in Eqs. (5) and (6),
respectively. To get stable and accurate results, the time step
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was taken to be 1.25×10−7, which is much smaller than all
other characteristic times in the problem. The number of steps
varied from 1.2×108 (at τ � 0.05) to 6×108 (at τ > 0.05),
so that the dimensionless observation time changed from 15
to 75 and each trajectory involved from hundreds to millions
interstate transition events.

Along with numerical modeling, we present approximate
analytical expressions for the drift velocity and effective diffu-
sion coefficient. Their derivation is based on intuitive appeal-
ing arguments capturing the essential physics of the model.
The analytical description not only clarifies the physical origin
of the results obtained from the simulations but also yields
reasonable quantitative predictions for the quantities of inter-
est.

III. RESULTS AND DISCUSSION

A. Directed motion in an asymmetric channel

One of the main conclusions to emerge from the simu-
lations is that variations of the particle size may produce
directed motion, provided the shape of the channel is asym-
metric. The greater the amplitude of the oscillation, A =
b+ − b−, the stronger the effect. Just as in the case of 1D
potential energy ratchets [37], the drift is directed toward the
steeper slope, leading to a positive bias in the channel shown
in Fig. 1, where k2 > k1. Note that a rocking driving pushes
a Brownian motor (both energetic [37] and entropic [22,23])
in the opposite direction. The simulation data confirm the
obvious fact that the drift is stronger for larger asymmetry and
vanishes in the symmetric channel.

The important characteristic of any ratchet device is its
response to a change in a frequency of an input signal. This
is why the emphasis is made on the dependence of the drift
velocity on the switching time, which serves as a control
parameter. The results obtained from the simulations illustrate
the dependence v(τ ) in Fig. 2 for different values of b+/b−
(b+/L = 0.25 is fixed). One can see that the drift velocity
exhibits a resonancelike behavior versus the switching time.
Such a behavior of v(τ ) is inherent in Brownian motors driven
by variations of the potential [37], and is qualitatively different
from that observed for motors driven by variations of a force,
where the velocity increases monotonically with τ [22,23,37].

The drift vanishes in the limiting regimes τ → ∞ and
τ → 0. Its velocity exhibits a resonance regime close to its
maximum at the intermediate values of the switching time. In
the low-frequency regime the particle has enough time to equi-
librate in each state, whereas in the opposite limit equilibrium
is achieved in the averaged entropy potential, which rules out
directed motion in both cases. As Fig. 2 indicates, the height
and position of v(τ ) depend on the oscillation amplitude
A = b+ − b−. The stronger A, the greater the magnitude of the
maximum. The position of the peak shifts to longer switching
times as the amplitude decreases.

The particle size oscillation implies a time variation of
the entropy potential. This underlies the motion inducing
mechanism of purely entropic nature, by which the model
operates as a Brownian motor [24,25]. The size oscillation
is also accompanied by the variation of the particle diffusion
coefficient, which by itself does not cause directed motion.

FIG. 2. Drift velocity in units D+/L vs. scaled switching time
for different values of b+/b− indicated by figures. Points, marked
by symbols, are obtained from 2D Brownian dynamics simulations
(the error of the data near the maximums is smaller than the size
of the symbols used). The lines are calculated from Eq. (19). The
inset compares numerical and analytical results for b+/b− = 1.67.
The value of b+/L = 0.25 is fixed; the dimensionless diffusion
coefficients are D+ = 1 and D− = b+/b−.

However, as demonstrated in our earlier work [26], the varia-
tion of the diffusion coefficient, combined with the variation
of the asymmetric entropy potential, leads to a significant
increase of the drift velocity.

Noteworthy is the estimate of the drift velocity in the
dimensional units. Assuming that the particle is moving in
the channel with period L = 1 μm filled with water at room
temperature, with the dynamic viscosity of 10−3 kg/(m s),
one finds from the simulations data that under optimal con-
ditions the velocity can reach several tenths of a micron per
second. In order of magnitude this compares reasonably well
with the results obtained experimentally for molecular and
artificial motors, as well as with those predicted in various
theoretical studies of fluctuation-induced transport on the
nanoscale [5,8,33].

B. Resonant diffusion

In the present model, the nonequilibrium steady-state
regime is characterized by a linear dependence of the variance
of the particle’s displacement, with the effective diffusion
coefficient D. An interplay of Brownian motion, space- and
time-dependent geometric constraints gives rise to a non-
monotonic behavior of D versus the switching time τ . The
simulation results presented in Fig. 3 illustrate the dependence
D(τ ) over several orders of magnitude in τ , for a few choices
of b+/b− (b+/L = 0.25 is fixed).
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As evidenced from Fig. 3, the dependence D(τ ) bridges
the two limits D(0) and D(∞) by going through a broad
resonance maximum. The limiting values can be evaluated
using Eq. (8). Indeed, in the low-frequency regime, τ → ∞,
the particle in each state is passing through many channel

periods and thus has enough time to adjust to a new channel
profile after each state flip. This suggests to write D(∞)
simply as the average between the values of effective dif-
fusion coefficient calculated from Eq. (8) in the + and −
states:

D(∞) = (DFJ, + + DFJ, −)/2 =
{

2
∫ L

0
w+(x) dx/L

∫ L

0
1/[w+(x)D+(x)] dx/L

}−1

+
{

2
∫ L

0
w−(x) dx/L

∫ L

0
1/[w−(x)D−(x)] dx/L

}−1

, (10)

with D±(x) defined in Eq. (9). Equation (10) is illustrated in
Fig. 3 by the dashed lines for three values of b+/b−.

In the high-frequency regime, where τ is the shortest
characteristic time scale, the particle jumps from one state to
the other many times before being moved on an appreciable
distance. So its position distributions in states + and −
approach each other and a local equilibrium in a channel of
the average width w0(x) is established. By analogy with the

FIG. 3. Effective diffusion coefficient in units of D+ vs. scaled
switching time for different values of b+/b− indicated by figures. The
results obtained from 2D Brownian dynamics simulations for asym-
metrical, k1 �= k2, and symmetrical, k1 = k2, channel are marked by
filled and empty symbols, respectively (the statistical error of the data
is of the order of the symbol size). The solid and dotted lines are
calculated from Eq. (21) for asymmetrical and symmetrical channel,
respectively. The dashed and dashed-dotted lines show the limiting
large-τ and small-τ values of the dimensionless effective diffusion
coefficient calculated from Eqs. (10) and (12), respectively. The
difference between these values in the symmetric and asymmetric
channels is negligible. The inset compares numerical and analytical
results for b+/b− = 1.67. The value of b+/L = 0.25 is fixed; the
dimensionless diffusion coefficients are D+ = 1 and D− = b+/b−.

case of two-state fast fluctuating potential, the average static
entropy potential (which the particle feels in this regime) can
be written as U0(x) = [U+(x) + U−(x)]/2, so that in view of
Eq. (7) one gets

w0(x) =
√

w+(x)w−(x) . (11)

Then assuming the particle diffusion coefficient in this regime
to be D(0) = (D+ + D−)/2, Eq. (8) takes the form

D(0) =
{∫ L

0
e−β[U+(x)+U−(x)]/2 dx/L

×
∫ L

0
eβ[U+(x)+U−(x)]/2/D0(x) dx/L

}−1

=
{∫ L

0
w0(x) dx/L

∫ L

0
1/[w0(x)D0(x)] dx/L

}−1

,

(12)

with the position-dependent diffusion coefficient D0(x) =
{1 + [dw0(x)/dx]2}−1/3. Equation (12) is illustrated in Fig. 3
by the dash-dotted lines. Note that the following inequality
holds Deff (∞) > Deff (0) for all values of b+/b−.

As Fig. 3 clearly indicates, the stronger the oscillation
amplitude, the more pronounced nonmonotonic behavior of
D(τ ). The amplitude A = b+ − b− affects not only the mag-
nitude but also the position of the maximum. With its increase,
the maximum is shifted toward shorter switching times, from
D+τ/L2 = 0.016 at b+/b− = 1.67 to D+τ/L2 = 0.006 at
b+/b− = 8.33. Comparison of Figs. 2 and 3 shows that the
values of τ corresponding to the maximum positions of D(τ )
are few times larger than those of v(τ ).

According to Fig. 3, the maximum value of the effective
diffusion coefficient at b+/b− = 8.33 is D ≈ 4.55, which is
almost identical with the diffusion coefficient of a particle
moving freely one half of the observation time in state +, and
the other half in state −, D0 = (D+ + D−)/2 ≈ 4.66. There
can be, however, little doubt that for other geometric param-
eters than that used here one could achieve diffusion rates
significantly larger than those for free diffusion. The basic
physical mechanism for this selective diffusion enhancement
is the optimal cooperation of spatially periodic gradients, time
periodic modulation, and thermal noise, somewhat similar to
the theoretical ideas expressed in articles [41].

Note that the difference between the data obtained in the
symmetric and asymmetric channels is very small. Neither
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the position, nor the magnitude of the D(τ ) peak are signif-
icantly influenced by the asymmetry. Thus, while the channel
asymmetry plays a crucial role in the directed motion induc-
ing mechanism (as demonstrated in the previous section), it
affects only slightly the effect of the particle size oscillations
on the rate of diffusion.

Transport coherence

As demonstrated above, the model at hand (in the asym-
metric case) operates as a Brownian motor driven by the
particle size oscillation. The directed motion of the motor is
accompanied by diffusive spreading that may strongly obscure
the rectification effect in systems with finite spatial exten-
sions. The relative importance of drift to diffusion is quan-
tified by the dimensionless Péclet number, Pe = |v|L/D [47],
where v is the drift velocity, D—the effective diffusion coef-
ficient, and L is a typical length scale (in our case the channel
period). This number measures the transport coherence: the
larger Pe, the more precision of the transport mechanism.
Large values of the Péclet number, between 2 and 6, were
reported in experiments on motor proteins, which indicates
highly reliable operation of these molecular machines [48].
The transport coherence of simple flashing ratchet models
relying only on a single particle dynamics was found quite
low, with Péclet numbers always below 0.2 [47,49].

Based on the simulation data presented in Figs. 2 and 3, let
us discuss the precision of the transport induced by the particle
size oscillation. Both the velocity and the effective diffusivity
are functions of the switching time and so does the Péclet
number. The dependence of Pe on τ is very similar to that
reported for the velocity: It exhibits a resonance-like behavior
versus the switching time, vanishing in the small and large
τ limits, and having a maximum in between. The position
of its peak is determined by the amplitude of oscillation
A = b+ − b− and almost coincides with that of v(τ ). The
maximum values of the Péclet number are also determined by
the amplitude A. More precisely, the larger A (the smaller b−),
the greater the maximum values of Péclet number, Pem. In par-
ticular, Pem ≈ 0.03, 0.08, and 0.12 for b+/b− = 1.67, 4.0, and
8.33, respectively. Certainly, greater (than these) values of Pem

may be achieved by increasing A and, especially, asymmetry
of the channel. But, in any case, the transport in the considered
model exhibits a low level of coherence, in agreement with
the conclusion of previous work concerning reliability of
operating mechanisms of simple flashing ratchets.

C. Approximate analytical treatment

A promising way to elucidate the physical mechanisms
underlying the particle transport is to treat the problem an-
alytically. The conventional approach provides appropriate
estimates of the effective diffusion coefficient only in the
limits where the interstate transitions occurs either very slow
or extremely fast, Eqs. (10) and (12), and the drift veloc-
ity vanishes. To clarify the nonmonotonic behavior of v(τ )
and D(τ ) between these limits, we suggest an approximate
analytical description. It extends our previous analysis [26]
to incorporate resonant diffusion due to a time variation of
particle size. The derivation of the main equations relies
on several heuristic assumptions. The validity, accuracy, and

range of applicability of this description are verified by the
simulation results.

1. Basic assumptions

(i) The conditions of the particle motion are essentially
different in the alternate states provided the interstate switch-
ing proceeds not too fast. This suggests to treat the particle
dynamics in the + and − states in a different manner.

(ii) The + state is characterized by relatively narrow chan-
nel width, relatively small effective bottlenecks, and relatively
slow diffusion. It is supposed that in this state the particle
executes an unbiased diffusive motion in the entropy potential
U+(x) with the effective diffusion coefficient DFJ, + given by
Eq. (8). The + state makes negligible contribution to the drift
and serves solely to form an asymmetric particle distribution
along the x-axis, ρ+(x), assumed to be proportional to w+(x)
defined in Eq. (3), i.e.,

ρ+(x) = w+(x)/�, � =
∫ L

0
w+(x) dx. (13)

(iii) We assume that immediately after transition to the −
state, the particle diffuses freely because it is being located
far away from the channel boundary [in view of the inequality
w−(x) > w+(x)]. Then the probabilities that after time τ the
particle initially (when the transition to the − state occurs) at
point x, 0 < x < L, escapes from a given unit cell to the right
and to the left can be estimated as follows:

p(x, τ ) = 1
2 erfc[(L − x)/

√
4D−τ ],

q(x, τ ) = 1
2 erfc(x/

√
4D−τ ). (14)

It is instructive to map the continuous particle dynamics in the
− state into a discrete random walk process along the x axis
in which the walker is allowed to jump on the distance l to the
right or to the left, or to remain in the same site, the duration
of each step being τ . Let the probabilities of these events be

p(τ ) =
∫ L

0
p(x, τ )w+(x) dx, q(τ ) =

∫ L

0
q(x, τ )w+(x) dx,

(15)

and o(τ ) = 1 − p(τ ) − q(τ ), respectively. Then the mean and
variance per step time interval τ of the walker displacement
read

λrw(τ ) = l[p(τ ) − q(τ )],

ε2
rw(τ ) = l2{p(τ ) + q(τ ) − [p(τ ) − q(τ )]2}. (16)

(iv) The description of the particle motion in the − state
in terms of the 1D random walks formulated above is jus-
tified at times, when the particle feels no confinement. This
approximation fails as the particle approaches the channel
wall and the steady state distribution ρ+(x) transforms into
a new one. To improve the estimates given in Eq. (16), it is
necessary to account for the effect of transverse diffusion on
the longitudinal displacement. The simplest (though not most
convincing) way to do this is to introduce a single exponential
attenuation factor, e−t/trel , which reduces the system response,
as confinement effects become more and more significant.
More specifically, the mean and variance per step of the

032102-6



EFFECT OF PARTICLE SIZE OSCILLATIONS ON DRIFT … PHYSICAL REVIEW E 99, 032102 (2019)

displacement predicted by Eq. (16) should be corrected by
multiplication with the factor e−t/trel . A crude estimate for the
relaxation time is [26]

trel = 4b−(a − b+)(1 − b−/b+)

3D+
. (17)

(v) We suppose that when the particle distribution reaches
a stationary one in the − state, its motion can be considered
as an unbiased diffusion in the entropy potential U−(x) with
the effective diffusion coefficient DFJ, − given by Eq. (8).
Moreover, we assume that this mechanism comes into play
gradually, leading to the mean square displacement for time
interval τ equal to 2τDFJ, −(1 − e−t/trel ).

2. Expressions for the drift velocity and effective
diffusion coefficient

The definitions of the drift velocity and effective diffusion
coefficient given in Eqs. (5) and (6) can be rewritten in terms
of the mean and variance of the particle displacement for the
period 2τ , λ(τ ) and ε2(τ ), respectively:

v(τ ) = λ(τ )

2τ
, D(τ ) = ε2(τ )

4τ
. (18)

With these definitions and the assumptions formulated above,
approximate formulas for the desired quantities can be easily
obtained.

The only contribution to the mean displacement comes
from the particle motion in the − state, i.e., λ(τ ) 	 λrw(τ ).
Then for the drift velocity we get

v(τ ) = l

2τ
e−τ/trel [p(τ ) − q(τ )]. (19)

The total variance of the displacement for the period
consists of several contributions due to the various sources
discussed above. By summing up all these variances, we
obtain

ε2(τ ) = e−τ/trelε2
rw(τ ) + 2τ [(1 − e −τ/trel )DFJ,− + DFJ,+].

(20)

Then, according to its definition given in Eq. (18), the effective
diffusion coefficient can be written as follows

D(τ ) = l2

4τ
e−τ/trel{p(τ ) + q(τ ) − [p(τ ) − q(τ )]2}

+ [(1 − e −τ/trel )DFJ,− + DFJ,+]/2. (21)

The probabilities p(τ ) and q(τ ) entering into the final expres-
sions Eqs. (19) and (21) are defined by Eqs. (13)–(15). The
diffusion coefficients DFJ,± are found from Eqs. (8) and (9).
The step-length l is taken to be scaled to the channel period L,
i.e., l = αL, where α is an adjustable dimensionless parameter
(of order unity) fixed by comparing with the simulation data.

The derivation of Eqs. (19) and (21) is based on several
physically reasonable assumptions rather than on strict math-
ematical proof. Nevertheless, as it easy to see, both equations
correctly reproduce the main qualitative features of the quan-
tities of interest. In particular, it follows from Eq. (19) that the
drift velocity: (1) disappears in a symmetric channel, k1 = k2,
as well as in the absence of size oscillation, b+ = b−, and
with the effective bottleneck size, a − b+, approaching zero;

(2) exhibits a nonmonotonic behavior versus the switching
time, vanishing in the low- and high-frequency limits, and
having a maximum in between; (3) is directed toward the
steeper wall of the channel. The appearance of a peak in the
dependence v(τ ) may be interpreted as a kind of resonance
between the periodic stimulus and the system response. The
particle drift is produced most effectively when the switching
time τ matches the characteristic time of the system response
(discussed in detail in Sec. III B 2 in our previous work [26]).

Equation (21) predicts a nonmonotonic behavior of D(τ )
if the particle size varies in time, b+ �= b− and the largest
particle radius is smaller than the bottleneck radius a. This
dependence approaches two plateau values at slow and fast
switching frequency, and has a broad maximum in between.
While the large τ plateau coincides with that predicted by
Eq. (10), the small τ plateau value drawn from Eq. (21)
proves to be much less than the value given by expression
(12). The latter is not a surprise, since in the fast switching
regime the assumptions formulated in the previous section
[especially (i) and (ii)] fail and the description outlined above
becomes inadequate. At the same time, it should be noted
that at slow and intermediate switching frequencies Eq. (21)
provides a satisfactory description of the effective diffusivity,
as demonstrated in the next section.

D. Analytical versus simulation results

Equations (19) and (21) provide an approximate analytical
description of the particle transport in the channel, induced
by oscillation of the particle size. To assess its relevance,
accuracy, and range of applicability, this description should
be verified by the simulations results.

Figure 2 illustrates Eq. (19) (recast in dimensionless form,
with α taken to be 0.5) for several values of b+/b− and
compares its predictions to the results for the drift velocity
obtained from Brownian dynamics simulations. As one would
expect, at small and large τ , where the effect is very weak,
the accuracy of Eq. (19) is quite low since the approximations
made in its derivation are too coarse in this range of τ . How-
ever, the analytical results provided by this equation agree
satisfactorily with the numerical ones in the most interesting
range of τ , where the velocity takes its maximum values and
the particle drift is most evident. The smaller b−, the better
agreement is seen. As Fig. 2 clearly indicates, Eq. (19) yields
sensible predictions for the position and magnitude of the peak
of v(τ ) at different values of b+/b−. In accordance with the
simulations results, the position of the peak shifts to smaller τ

and its magnitude grows as the radius b− decreases. Moreover,
a more extended analysis [26] gives evidence that Eq. (19)
leads to appropriate quantitative estimates of the position and
magnitude of the peak.

Figure 3 compares the dependence of the effective dif-
fusivity on the switching time as calculated from Eq. (21)
(recast in dimensionless form, with α taken to be 0.5) with
that obtained from the simulations for a few values of b+/b−.
Additionally, the large- and small τ asymptotic values of D(τ )
determined by Eqs. (10) and (12), respectively, are shown in
this figure. As can be seen, the large τ plateau value, Eq. (10),
agrees quite well with the results obtained in simulations for
all considered values of b+/b−. The approximations involved
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in the derivation of Eq. (12) describing the opposite limit are
less reliable. This is why the small τ limit is predicted not
so accurate as that at large τ . As the comparison with the
simulation data shows, Eq. (12) gives an overestimate of D(0),
but the relative mistake does not exceed 10%.

The solid and dotted lines in Fig. 3 illustrate Eq. (21) in the
asymmetric and symmetric cases, respectively. Note that the
influence of the channel asymmetry on the effective diffusivity
is weak, in agreement with that observed in the simulations.
At large τ Eq. (21) is reduced to Eq. (10), so that it provides
a good fit to the simulations. At intermediate values of τ the
agreement with the simulations data is quite satisfactory. In
particular, this equation yields reasonable predictions in the
τ range, where the dependence D(τ ) exhibits the resonant
behavior. The position of the peak shifts to smaller τ and its
magnitude grows as the radius b− decreases, in agreement
with that observed in the simulations. As already noted, at
small τ Eq. (21) fails to reproduce the correct behavior of
D(τ ). For this reason, the left-hand branches of the curves
are not shown in Fig. 3.

Thus, summing up the comparison results, it can be stated
that the approximate description of the particle transport given
by Eqs. (19) and (21) is not only qualitatively correct, but also
in semi-quantitative agreement with the results obtained from
the simulations, except the range of small switching times. So
the proposed approach provides a satisfactory way to handle
the problem analytically.

IV. CONCLUSIONS

The present paper is devoted to nonequilibrium particle
transport along the channel, schematically shown in Fig. 1, re-
sulting from periodical switching of the particle size between
two values. We have demonstrated that the combined action of
spatiotemporal variation of the entropy potential and thermal
noise essentially affects the transport properties of the system.
The two main observations are: emergence of the particle drift
(in case of asymmetric channel) and resonant diffusion, both
of purely entropic origin.

The drift induced by the particle size oscillation exhibits
a resonance-like behavior with respect to the switching time
(see Fig. 2). It approaches zero both for fast and slow switch-
ing between states, and has a maximum in between, when
the period of the size oscillation matches the characteristic
time of the system response. The larger the amplitude of the

input signal, the greater the drift velocity. The oscillation of
the particle diffusion coefficient accompanying the oscilla-
tion of the particle size leads to significant enhancement of
the effect.

The dependence of the effective diffusion coefficient on the
switching time bridges the limits of slow and fast size mod-
ulation, estimated by Eqs. (10) and (12), by going through a
broad resonance maximum (see Fig. 3). For optimal geometric
parameters one could achieve diffusion rates exceeding those
for free diffusion, providing selective enhancement of the
process. The basic physical mechanism for this resonant-like
behavior is the cooperation of spatially periodic gradients,
time periodic modulation, and thermal noise. The stronger
the size oscillation amplitude, the more pronounced this non-
monotonic behavior. The oscillation amplitude affects not
only the magnitude but also the position of the maximum.
While the channel asymmetry plays a crucial role in the drift
inducing mechanism, it has only insignificant influence on the
rate of diffusion. The directed motion induced by the particle
size variation exhibits a low level of coherence, in agreement
with the conclusion of previous studies concerning reliability
of operating mechanisms of simple flashing ratchets.

The effects detected in the present work require an ana-
lytical description beyond the FJ theory. We have proposed
an approximate analytical treatment to clarify the simulation
results. The derivation of the expressions for the drift velocity
and the effective diffusivity, Eqs. (19) and (21), relies on a few
intuitive arguments capturing the main physics of the model.
Comparison of the analytical predictions and the numerical
results (see Figs. 2 and 3) has shown that Eqs. (19) and (21)
qualitatively reproduce all features of the process. Moreover,
they are found to be in satisfactory quantitative agreement,
except the high-frequency switching regime. Thus, the pro-
posed approach provides a simple, satisfactory tool to handle
the problem analytically.

Systems, where geometrically restricted diffusion is cou-
pled with a time variation of the particle size, can potentially
be realized experimentally. We hope that our theoretical work
may stimulate experimental research on transport properties
of such systems.
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