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Rupture time of droplets impacted by a burst of picosecond laser pulses
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Liquid Sn droplets were irradiated with shaped bursts of picosecond laser pulses. The shapes of the deforming
droplets following the impact of the recoil pressure induced by these bursts were imaged using a high-speed
shadowgraph system. The rupture time t̃b of the droplet expanding as a thin fluid film was measured for each
case. A Rayleigh-Taylor instability analysis is done in order to determine the dependences governing t̃b. The
evidence supports the hypothesis that the initial perturbations of the developing Rayleigh-Taylor instabilities are
on the order of the ablation depth and that there is a lower cutoff wavelength of these initial perturbations of
∼10 μm.
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I. INTRODUCTION

Droplet deformation and rupture by a pulsed laser impact
has been of continuing interest over the past decade. A
large contributor to this interest has been the development of
droplet-based laser produced plasma (LPP) light sources with
a focus on the generation of extreme ultraviolet (EUV) light
[1,2]. A challenge with these systems is the generation neutral
cluster debris, which are liquid droplet fragments ejected from
the source during the generation of the laser plasma [3].
These neutral clusters can damage or coat sensitive optics
and instruments within the source chamber [4]. In order
to mitigate this damage, it is necessary to understand the
dynamics of the droplet fragmentation. The process of fluid
film perforation determines the neutral cluster size distribution
and trajectory. When the impacted droplet expands either by
accelerated surface rim expansion or by cavitation, the fluid
deforms first as a stretching sheet. At a given time after the
impact, holes form in the sheet that quickly expand and merge
together forming ligaments that fragment into neutral clusters
[5]. Some investigations into this phenomena have already
been done by Klein [6] and Kurilovich et al. [7], where the
rupture time is shown to have an exponential dependence
on the impact Weber number. In this Rapid Communica-
tion, liquid Sn droplets are irradiated by picosecond laser
bursts, with the bursts varying in the number of pulses and
the energy distribution of the pulses within the bursts [8].
The deformation dynamics are observed using a high-speed
shadowgraph imaging system, which images the deforming
droplet shape at different times. A Rayleigh-Taylor instability
analysis similar to that presented by Klein [6] is performed
in order to predict the first hole appearance time, albeit with
different assumptions. The model results present compelling
evidence for the presence of a lower cutoff wavelength of the
excited wave modes of the laser ablation accelerated surface
of the droplet.
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II. EXPERIMENTAL SETUP

The experiment was conducted within a vacuum chamber
at 0.02 mbar with an Ar background gas (see Fig. 1). A droplet
dispenser generates a monodispersed and coherent stream of
droplets of liquid Sn. The droplet frequency is determined
by a piezoelectric actuator and was operated between 20 and
33 kHz for the various cases. The droplet sizes typically vary
between 30 and 100 μm. The droplet dispenser is mounted
to a three-dimensional (3D) motion stage and coupled to a
closed loop control system able to keep the position of the
droplet train at the main laser focus position. The control
system compensates for lateral instabilities with a spatial
resolution of ±0.5 μm [9]. The laser is a master oscillator
power amplifier (MOPA) Nd-doped vanadate (Nd:VAN) sys-
tem with a wavelength of 1064 nm. The master oscillator is
a pulsed laser diode that generates pulses with a duration of
τp = 43 ps [full width at half maximum (FWHM)] that are
amplified through several stages. It is capable of single-pulse
to 100-MHz repetition rates with single-pulse energies up to
Ep � 2 mJ. Using an acousto-optic modulator, the oscillator
output is modulated in order shape bursts with energies up to
EB � 2.7 mJ. The laser spot was focused to a spot diameter of
φ f = 22 μm (FWHM).

The deforming droplet was imaged using a high-speed
shadowgraph system. The shadowgraph system consists of a
high-speed camera (SONY ICX625ALA/AQA) capable of up
to 20 fps. The image resolution was 0.93 μm/pixel. The flash
is a high-powered light-emitting diode (LED) pulsed at 500-ns
duration. The system trigger signals for the laser, camera, and
flash are synchronized such that during the source operation
the delays between these signals can be changed with 0.25-μs
resolution.

In total, 34 unique burst interactions were imaged, with two
or more pulses in a burst. For each case an average of five time
steps were imaged and for each time step ∼100 images were
acquired. Each image is a unique droplet impact. The radius of
the expanding sheet R(t ) (see Fig. 2) was measured for these
images and was found to vary with a maximum standard of
deviation of 8% relative to the mean. Therefore, the images for
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FIG. 1. The functional layout of the experiment. The deforming
droplets were imaged at 90◦ relative to the laser axis.

each time step are considered highly repeatable with regards
to the investigated parameters for this work, mainly sheet
expansion rate and first hole appearance time.

For the investigated cases, the total burst energy EB and
the pulse energy Ep are made dimensionless relative to the
initial surface energy as ẼB = EB/(σd2

0 ) and Ẽp = Ep/(σd2
0 ),

where σ = 0.55 N/m is surface tension, d0 is the original
droplet diameter, and ẼB is varied from ẼB = 6.0 × 104 to
5.6 × 105. Throughout this work all of the length scales are
made dimensionless (indicated by the tilde “∼” notation) with
respect to the initial droplet radius r0 and the timescales with
the droplet capillary time τc =

√
ρr3

0/σ , where ρ is the fluid
density. The capillary timescales in this work are ∼30 μs.
Examples of the burst shapes used for this work are shown
in Figs. 3(a)–3(f).

Another key dimensionless parameter used in this work
is a modified Weber number denoted as the splash Weber
number Wes of the droplet impact defined as Wes = ρd0u2

0/σ ,
where ∼u0 is the peak initial droplet surface velocity after
the acceleration by the laser burst [10]. The surface velocity
decreases in magnitude away from the laser peak irradiation
region [3,11]. Wes is measured for all cases using the function
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FIG. 3. Examples of burst profiles implemented in this work
for (a) double pulse, (b) flattop (FT), (c) rising sawtooth (RST),
(d) falling sawtooth (FST), (e) Gaussian, (f) double burst. Each peak
represents one laser pulse of the shown dimensionless pulse energy
Ẽp at the time from the beginning of the burst t̃ .

for an inviscid, incompressible, impacted droplet deforming
in free space by Villermaux and Bossa [12],

R̃(t̃ ) = 1 +
√

1

2
Wes t̃

(
1 −

√
3

2
t̃

)2

. (1)

By fitting the R̃(t̃ ) to Eq. (1) for data points before the
expanding sheet is perforated, Wes is found for each case (see
Fig. 4). One should note that u0 ≈ Ṙ(t̃ � 0.39). The flow is
considered inviscid by checking the Reynolds number Res =
ρd0u0/μ, where μ is the dynamic viscosity of ∼0.001 05 Pa s

FIG. 2. An example sequence illustrating the rim expansion and sudden rupture of the expanding sheet into a web of ligaments [Np = 8,
ẼB = 2.4 × 105, 20 MHz, rising saw-tooth (RST) [see Fig. 3(c)]]. The timing from left to right is t̃ = 0.071, 0.13, 0.20, 0.27, 0.41, and 0.59.
The third frame displays R(t ), which is defined as the path length along the sheet from the sheet center to the rim.
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FIG. 4. Example cases of varying Wes. The markers represent
the measured R(t ) and the dashed lines represent the corresponding
fit of (1) to measure Wes. The perforation times t̃b for the plotted
cases are also shown. The highlighted area marks the range where t̃b

is observed across all measured cases.

[13]. Res > 20′000 for the experimental cases and therefore
the inviscid assumption is considered valid. The thickness of
the expanding sheet h is approximated using conservation of
mass and the rim radius from Eq. (1) as [12]

h̃(t̃ ) ∼ 4
3 [R̃(t̃ )]−2. (2)

III. SHEET RUPTURE TIME

The observation of the experiments shows that after the
droplet is impacted by the laser burst, the sheet expands into
a thin liquid sheet. Depending upon the burst profile and
energy the sheet will either expand to a maximum rim radius
and then contract due to rim destabilization or the sheet will
rupture during the rim evolution. When the sheet ruptures,
a number of holes will perforate the sheet. The holes then
expand, converting the sheet into a web of ligaments that
break into fragments (Fig. 2). The time from the last pulse
in the burst until the first hole appearance is defined as the
breakup time tb. For each case tb is measured by identifying
the earliest time when a hole appears on the sheet, as shown
in Figs. 5(a) and 5(b). As seen in these figures, the holes can
appear grouped together in clusters while other parts of the
film remain unbroken. The measurement error in tb includes
shadowgraph exposure time and the estimate of the hole
growth rate using Taylor-Culick as tb,err = dh,err

√
ρ h/(8σ ),

where dh,err is the uncertainty in the diameter of the observed
first hole(s). In order to determine the rupture criteria for the
expanding sheet, a similar approach to that done by Bremond
and Villermaux [5] for a bursting fluid thin film is derived.
This approach was further adapted for laser impacted droplets
by Klein [6], which will be emulated in this work, except for
some key differences in assumptions and formulation. The key
differences lay in the formulation of the acceleration term a,
the handling of the threshold time tt for the thin sheet criteria,
and the initial perturbation amplitude and wave-number range
for a laser ablation accelerated target.

FIG. 5. Example cases showing first hole perforation, where
(a) Np = 27 and ẼB = 2.3 × 105, and (b) Np = 8 and ẼB = 3.3 ×
105.

The sheet expansion is divided into three separate time
phases. The first phase is for the time from t = −�t to the
end of the burst t = 0, which is the duration of intermittent
fluid acceleration. The second phase is the period before the
droplet has flattened into the thin sheet t = 0 → tt (k), where
tt is a function of the specific wave number k. The third
phase is defined as the remaining time to the sheet rupture
t = tt (k) → tb, where tb is denoted as the time for the first
hole appearance in the droplet.

The modulations of the local surface waves on the droplet
are represented as Fourier modes [5]

η̃ = η̃0 f (t̃ )eik̃s̃, (3)

where η̃0 is the initial surface wave amplitude after the burst
interaction, s̃ is the length coordinate tangent to the droplet
surface, and f (t̃ ) is the evolution of the amplitude scale for
the specific wave number k̃ as a function of time. Throughout
this analysis k̃ refers to the wave number of the initial wave
mode on the droplet surface before surface stretching occurs.
Effects of stretching on k̃ will be compensated for in the model
separately as explained further below.

There are two perturbation states that need to be deter-
mined for the initial conditions of phase 2, which are the
wave-mode-dependent perturbation amplitude η0 = η(t = 0)
and the perturbation growth rate η̇(t = 0). The initial pertur-
bation amplitude is assumed to be on the order of the ablation
depth. The ablation depth is expected to be in the range of
η0 ∼ 60–80 nm [14].

The initial growth rates for phase 2 are determined by
approximating the intermittent laser driven acceleration as im-
pulsive. Therefore the local acceleration of the droplet surface
at the center of the radiating laser spot is approximated as
a ≈ u0/�t = We1/2

s r0/(τc�t ), where �t is the total duration
of the acceleration period for the burst and �t � τc. The
velocity scale u0 was chosen for the Weber number since
the surface in front of the laser spot will be accelerated to
Ṙ(t = 0) ∼ u0 [12,15]. The acceleration phase of the droplet
is assumed to be impulsive with ω̃1,im � �t̃−1, where ω̃1,im

is the imaginary part of the wave mode growth rate ω̃1. The
capillary wave number for the accelerated surface is defined
as k̃c = �t̃−1/2 We1/4

s , which will determine the growth rates
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of the wave modes of the first phase. Another phenomenon
has been observed for laser ablation accelerated targets where
there is a lower cutoff wavelength of λ ∼ 10 μm for sur-
faces accelerated with 1064-nm light due to the damping
effects caused by the ablation [16,17]. This means there is
a maximum wave number k̃max = 2π/λ excited by the ab-
lation driven acceleration. For the cases investigated, during
the impulsive acceleration k̃c 	 k̃max 	 1 and the dispersion
relation for the surface waves is given as [5]

ω̃2
1 = (

k̃3 − k̃2
c k̃

)
. (4)

The initial conditions of the shape function f (t̃ ) in Eq. (3) are
given such that [5]

f1(t̃ = 0) = 1, ḟ1(t̃ = 0) = 0. (5)

All shape function modes for 1 � k̃ � k̃max start with the
same initial amplitude and zero initial growth rate. The shape
function f1(t̃ ) is governed by [5]

f̈1 = −ω̃2
1 f1(t̃ ). (6)

Using (4) and (5) the differential equation (6) is solved as

f1(t̃ ) = cos[k̃3/2(t̃ + �t̃ )]

+We1/2
s

k̃2�t̃
{1 − cos[k̃3/2(t̃ + �t̃ )]}, (7)

ḟ1(t̃ ) = −k̃3/2 sin[k̃3/2(t̃ + �t̃ )]

+ We1/2
s

k̃1/2�t̃
sin[k̃3/2(t̃ + �t̃ )]. (8)

Since the acceleration phase of the burst is treated as impul-
sive, the duration of phase 1 is approximated �t̃ → 0 and
the small angle approximation is used for the amplitude and
growth rate. Therefore, the shape function at the end of phase
1 is given as f1(t̃ = 0) ≈ 1 and ḟ1(t̃ = 0) ≈ We1/2

s k̃. After
the acceleration phase each surface wave mode will evolve,
characteristic of an infinite medium where k̃c = 0, until the
flattening fluid film reaches the thin layer criteria k̃h̃ � 1 [5].
Since h̃ is a function of time, each wave mode corresponding
to k̃ will reach the flat sheet criteria at a different time denoted
as t̃t . The effect of the sheet surface expansion must be
accounted for by self-similar stretching, since R̃ > 1 for the
wave modes already during phase 2. The stretching of the
wave number is accounted for by dividing k̃ by R̃, giving a
proportionate decrease in the wave number for an increase in
the sheet length [18]. Therefore, tt is the time that satisfies
k̃R̃−1h̃ = 1 (R̃−1 accounts for self-similar stretching), which
by combining with (1) and (2) is

t̃t ≈
[(

4

3
k̃

)1/3

− 1

]√
2 We−1/2

s . (9)

Accounting for the infinite medium and self-similar stretch-
ing, the dispersion relation for the second phase is defined as

ω̃2
2 =

(
k̃

R̃

)3

. (10)

The initial conditions for phase 2 are the final conditions at the
end of phase 1 where f2(t̃ = 0) = f1(t̃ = 0) and ḟ2(t̃ = 0) =
ḟ1(t̃ = 0) [5]. Solving for f̈2 = −ω̃2

2 f2(t̃ ) produces

f2(t̃ ) = cos

[(
k̃

R̃

)3/2

t̃

]
+ We1/2

s k̃

(
k̃

R̃

)−3/2

sin

[(
k̃

R̃

)3/2

t̃

]
,

(11)

ḟ2(t̃ ) = −
(

k̃

R̃

)3/2

sin

[(
k̃

R̃

)3/2

t̃

]

+We1/2
s k̃ cos

[(
k̃

R̃

)3/2

t̃

]
. (12)

Using (11), (12), and (9), f2 and ḟ2 at the end of the second
phase are written as functions of k̃ as

f2(t̃t ) = cos

(
k̃

√
3

4
t̃t

)
+

√
4

3
Wes sin

(
k̃

√
3

4
t̃t

)
, (13)

ḟ2(t̃t ) = −k̃

√
3

4
sin

(
k̃

√
3

4
t̃t

)
+ We1/2

s k̃ cos

(
k̃

√
3

4
t̃t

)
.

(14)

The third phase is characterized by the evolution of the wave
mode on a thinning sheet until the amplitude of the mode
is of the order of the sheet thickness. The mode that fulfills
this condition for the shortest time is the breakup wave mode
characterized by the breakup wave number k̃b. This value
is found computationally by substituting (9) into (14) and
solving for

ḟ2(k̃b)

≈ max

(
We1/2

s k̃ cos

{√
3

2
We−1/2

s k̃

[(
4

3
k̃

)1/3

− 1

]})
.

(15)

The thin sheet dispersion relation in the third phase, which
includes self-similar stretching, is given as [5]

ω̃2
3 = h̃

2

(
k̃

R̃

)4

. (16)

The amplitude function in phase 3 can now be derived with
the same general solution as phase 2 for f̈3 = −ω̃2

3 f3 as [5]

f3(t̃ ) = f2(t̃t ) cos

⎡
⎣

√
h̃

2

(
k̃

R̃

)2

(t̃ − t̃t )

⎤
⎦

+ ḟ2(t̃t )

√
2

h̃

(
k̃

R̃

)−2

sin

⎡
⎣

√
h̃

2

(
k̃

R̃

)2

(t̃ − t̃t )

⎤
⎦. (17)

Substituting (1), (2), (9), (13), and (14) and using the small
angle approximation, this expression conveniently simplifies
to

f3(t̃ ) ≈ We1/2
s k̃t̃ . (18)
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FIG. 6. The breakup time t̃b plotted as a function of Wes and
compared with (21). Rupture of the sheet does not appear for
t̃b � 0.385, which corresponds to the time of the maximum rim
radius. The highlighted area marks the variation in Eq. (21) for
η0 = 60–80 nm. The coefficient of determination for the logarithms
of experimental values compared to Eq. (21) is R2 = 0.90.

The time to the appearance of the first perforation t̃b is the time
at which the amplitude of the fastest growing wave number k̃b

is on the order of the sheet thickness.
There will be a contraction of the perturbation amplitude

due to mass conservation resulting in η̃0/k̃2 ∼ η̃0,3/(k̃/R̃)
2
,

where η̃0,3 is the initial perturbation amplitude attenuated by
self-similar stretching [18]. Using (1) and (2) an expression is
found for the stretched perturbation amplitude in relation to
the sheet thickness [6],

η̃0,3

h̃
= 3

4
η̃0. (19)

Substituting (19) into (3) gives the relation to solve for t̃b,

η̃0,3

h̃
f3(k̃b, t̃b) = 3

4
η̃0 f3(k̃b, t̃b) = 1. (20)

Solving for t̃b reveals

t̃b ≈ 4

3
η̃−1

0 k̃−1
b We−1/2

s . (21)

In Fig. 6 the experimental t̃b was compared against (21)
as a function of Wes where t̃b was measured for all test cases

where hole perforation occurs and the droplet has not been
drilled through. The initial wave amplitude was chosen to fit
the data as η0 = 70 nm, which is within the expected range
of the ablation depth of η0 ∼ 60–80 nm highlighted in light
purple in Fig. 6. It should be noted as well here that t̃b does
not exceed ∼0.45 for any case, which is near the time of the
maximum rim radius t̃ ∼ 0.385 according to (1) [12].

IV. CONCLUSIONS

Experiments were performed imaging sequences of shad-
owgraphs of droplets irradiated by bursts of picosecond laser
pulses. A plethora of different deformation patterns were
observed depending upon the burst parameters. Regardless
of the burst parameters, the breakup dynamics are strongly
coupled to the splash Weber number Wes, which describes
the expansion of the droplet sheet rim radius until breakup.
The experimental data support the claim of damping of the
shorter wavelength hydrodynamic instabilities during the laser
ablation induced droplet surface acceleration. Understanding
these dynamics is necessary in the field of droplet target
shaping in order to predict the maximum target surface size
for the given laser parameters before disintegration. The
derived Rayleigh-Taylor model would potentially allow the
prediction of the perforation spacing λp using the breakup
wave number as λp = 2π R̃(t̃b)r0/k̃b. For the cases measured,
the Mach number on the ablating droplet surface defined as
Ma = Psρ

−1c−2
s , where Ps is the maximum ablation pressure,

is Ma � 1. Therefore, compressibility effects are neglected
in this work. This provides a basis for predicting the fragment
size distribution of the disintegrating sheet. The investigation
of these fragment distributions will be presented in future
work.
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