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Kinetics of polymer tumbling in shear flow: A coarse-grained description
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We study the classic problem of dynamical evolution of a polymer in a shear flow. Interestingly, the polymer
goes through several distinctly identifiable conformations during its passage from coiled to stretched states back
and forth. We identify these conformations assumed by the polymer while tumbling and study the kinetics of
the process in terms of the residence and recurrence times of individual conformations. The distribution of
residence times exhibits exponentially decaying tails which helps us build an effective Markovian picture of the
truly non-Markovian problem. We present the explicit W matrix for the coarse-grained evolution via a master
equation and study its elements as a function of the Weissenberg number. We show that the timescales of decay
of the autocorrelation function for the full Langevin dynamics compare quite well with the approximate results

from the master equation approach.
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Introduction. Conformational changes in polymers in shear
flows is a classic problem in polymer physics and has
been studied extensively [1,2] with applications ranging from
materials science to mechanical engineering, biology, and
medicine [3—-7]. Large fluctuations in chain extensions in such
flows show that the polymers continually tumble from one
end to the other, characteristic of the underlying dynamics of
polymer in shear flow [8]. The typical time of tumbling varies
sublinearly with the flow rate [9-17].

Under a shear flow a tumbling polymer [18] exhibits a
nonequilibrium steady state [19,20] in which the probability
of the two major states (stretched and coiled) as well as
intermediate conformations [21] becomes time invariant. A
complete description however has to go beyond and look
at both residence times of intermediate states and transi-
tion rates among them. For example, Venkataramani and co-
workers [21] discuss the various conformations taken by a
polymer tumbling in shear flow at a coarse-grained level.
However, their description is limited to classify different
conformations and their relative occurrences. We take the
study further by classifying the all major intermediate confor-
mations and providing transition rates at which the polymer
jumps from one conformation to another.

In this Rapid Communication, we approach the classic
problem of a polymer tumbling in a shear flow in terms
of the residence and recurrence time statistics of individual
conformations. Using the results of our detailed microscopic
simulations, we develop an effective theoretical “Markovian
picture” for a truly non-Markovian problem [22,23]. We
find that at this coarse-grained level, the Markovian approx-
imation captures the underlying dynamics to a very good
extent.
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Langevin dynamics simulation. The polymer consists of N
beads with interbead interaction given by the repulsive part
of the Lennard-Jones (LJ) potential Vij(r) = 4e[(o/r)'? —
(0 /r)®]. The bonded beads experience finite extensible non-
linear potential (FENE) Vgng = —(kR% /2)In[1 — (r/Ro)z].
The symbols denote: r, separation between monomers; &,
strength of interaction; o, diameter of monomer; Rj, maxi-
mum extension of the bond; and k, the stiffness constant. The
ith bead (of unit mass) in shear flow follows the Langevin
equation [24-27]:

P(1) = F{(t) — T[E:(0) — pyidl + pyi + Ri@), (1)

where F{(t) = —ﬁ(VLJ + Veene) and the second and third
terms are the contribution from the flow. The shear rate
y defines the flow profile V,(y) = yy and the Weissenberg
number (Wi) Wi = y 1y, whereas 1 is the relaxation time of
the autocorrelation of end-to-end distance at zero shear rate.
The last term in Eq. (1) is Gaussian white noise with corre-
lations [28]: (Ri(t)R]T(t’)) = 2kgTT8;;6(t —t')I3. We solve
Eq. (1) using a fifth-order predictor corrector method [29]
with a time step of Ar =0.006 for a system of N =50
monomers. We measure energy in units of & and distance
in units of o. In addition, we choose ¢ =1, 0 =1, Ry =
1.50, k= 308/0’2 [30], kgT = 1.2¢,and I' = 7.5 in our sim-
ulations [27].

Classification of conformations. In order to develop
a coarse-grained description of the polymer kinetics, we
group different microscopic conformations along the lines
of Refs. [1,19-21]. Sample conformations belonging to nine
groups of “coarse-grained states” are depicted in Fig. 1(a). Let
us define the x-directional extension X = [max{x;, ..., xy} —
min{xy, ..., x,}] of the chain in units of equilibrium bond
length a and the contour length C;, of the polymer chain. The
extension X varies as a function of time (see the Supplemental
Material [31]).

We define c¢ states to have small fractional extension
X/Cp, (<0.3) and s states to have large X/Cp (>0.6). As

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.030501&domain=pdf&date_stamp=2019-03-14
https://doi.org/10.1103/PhysRevE.99.030501

SINGH, SINGH, DAS, AND KUMAR

PHYSICAL REVIEW E 99, 030501(R) (2019)

S-8 04,0000000 0000000000900 000, ,, 00000
k-7 ”WWW

£-6 A e Lo
d-s e & RO

hd-hf - 4 0902 30 00-e% 4 o oggioe

fl3 eSS AT L0
heoa &ttt et ettt aceeepaneeriisng
hd-1 Gosesoessesomlivypie’

c-0 Gsany (@)

c d, hd, hd-hf, hf, f, k S
I S — R
0 025 03 0.6 0.75 1

X/Cy (b)

d,=1.35

dy=1.45 dy=2.4

X/C;=0.6

(c)

FIG. 1. (a) Sample conformations in coarse-grained states i
during tumbling: coiled (c), half-dumbbell (hd), half-folded (hf),
forked (fk), half-dumbbell-half-folded (hd-hf), dumbbell (d), folded
(f), kink (k), and stretched (s). The corresponding values of n; €
{0, ..., 8} are shown alongside (see the text). (b) The range of values
of X/C, of the nine states are shown. (c) A hf conformation is shown
as an example with its X/Cy, di, d,, and d3 and N;, N,, and N;
values.

shown in Fig. 1(b), other states (d, hd, hd-hf, hf, f, and
k) have intermediate values of X/Cy in the range of (0.25,
0.75). As there are some overlapping regions, it is evident
that finer criteria and more detailed quantities need to be
considered, beyond merely X, to define these states precisely.
For this purpose we imagine every conformation to have
three equal segments of length X; = X /3. We further consider
three segment densities d; = N;/X;, d» = N,/X;, and d3 =
N3 /X;, where Ny, N,, and Nj, respectively, are the number
of monomers in each segment. We show a hf conformation in
Fig. 1(c) which has a larger d; than d; and d, [as expected
from Fig. 1(a)]. Similarly, a dumbbell should have larger d,
and d5 than d, [from Fig. 1(a)]. The precise ranges of (d;, d»,
and d3) used to distinguish the six groups of conformations are
shown in Table I. Finally, the U -shaped forked conformations
[see Fig. 1(a)] are classified by checking that the x-extensions
X and X, of the two halves of the chain are each >0.35C;.
Conformations occurring during a transition over a small
but finite time-interval At between two coarse-grained states
are often ambiguous. We assign the ones over the interval

TABLE 1. Classification of the six intermediate conformations
according to the segment densities d;, d,, and d; of the three
constituent parts of the polymer.

d £ hd-hf hd hf k
d >3 (18,3) (18,3 <18 <1.8 <2
& <18 <2 <2 <3 <25 >3
ds >3 (1.8,3) <3 >3 (18,3) <2

[0, At/2] to the initial state and the ones over times €
(At /2, At] to the final state.

Results. To quantify the effect of the shear flow, we show
in Fig. 2 the likelihood of individual coarse-grained states i at
different Wi’s. The label i represents different coarse-grained
states of the polymer tumbling in shear flow, viz. c, hd, hf,
fk, hd-hf, d, f, k, and s, defined in the above section. Some
conformations which have coil formation in all or some part
of the chain viz. coil, half-dumbbell, dumbbell, etc., become
unlikely conformations with increasing Wi. On the other hand,
some other conformations, such as half-folded, folded, fork,
stretch, etc., become more likely with increasing flow rate Wi.
This is because at higher Wi’s the drag force to stretch the
chain is dominant over the entropic force responsible to coil
the chain. Hence, the tendency of stretching is higher at high
values of the Wi. A central aim would be to study the nature
of transitions between the different states i.

One of the ways in which the dynamical properties of a
polymer tumbling can be addressed is using the autocorrela-
tion C(7) as a function of the Wi (see Fig. 3). It is defined as

C(r) = (ni(Oni(r + 1)) — (mi(@)) (it + T))7 ?)

Oni(t)On;(1+7)

where 0, is the standard deviation of the stochastic variable
n;(t) which takes the following values: n; € {0, ..., 8}.
Explicitly: ne=0, ng=1, niy =2, npe =3, ng =
4, npgnt =95, nf=6,n =7,n, =8 [see Fig. 1(a) for i
and n; values]. (---) denotes a time average over the states.
The autocorrelation exhibits an oscillatory behavior giving a
characteristic timescale related to the cyclic conformational
changes. Following Ref. [22], we fit the autocorrelation
as C(t) =exp(—t1/t.)cos(wygT + ), wherein 7. is the
relaxation time, w} = a)j + 172 is the natural frequency

0.5 ;

Wi=4.5 HE-
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Gy
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hd-hf

FIG. 2. Probability of different conformations with varying Wi.
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FIG. 3. Variation of autocorrelation C(t) with lag t for different
Wi’s. The inset (log-log scale) shows that wy ~ Wil

of the oscillation, and 1 is the initial phase. As seen from
the inset of Fig. 3, wy varies sublinearly with the Wi with
an exponent ~0.67. This is identical to the characteristic
frequency of a polymer tumbling in shear flow [9,10,22].
This confirms that our classification of these coarse-grained
conformations is consistent with the tumbling dynamics of
the chain studied in earlier literature.

We now address the question of the transitions which
take the polymer from one conformation to another during
the tumbling process. We study these transitions in terms of
residence and recurrence times of individual conformations.
The residence time 7.5 of a given conformation i is the time
t spent by the polymer in that conformation before it jumps
to any other conformation. Figure 4(a) shows the residence
time probability P(t.s > t) for the stretched state for different
Wi’s. The linear decay of P(t.s =>t) on a log-linear plot

0 500 t1000 1500

0 500 thOO 1500

FIG. 4. (a) Distribution of residence times t,.;, Wi = 15 (o) and
Wi =75 (A) and (b) the algebraic decay of the characteristic resi-
dence time ., with the Wi. The inset in (a) shows the nonexponential
behavior at short times, and the dashed line is a fit used to estimate
the characteristic time of decay. The corresponding quantities for
the recurrence time .. are shown in parts (c) and (d). The symbols
represent the corresponding conformations: V, c¢; W, hd; o, hf; 4, fk;

O, hd-hf; A, d; O, f; 0, k; e, s.

implies that P(tes > t) ~ exp(—t/15,) with the inset in (a)
showing the nonexponential character at short times. Other
conformations show similar behavior, and from Fig. 4(b)
we find that the characteristic time of residence is 7, ~
Wi—0:68+£0.08 for almost all the conformations.

In contrast to the residence time, the recurrence time Ty
denotes the time intervals in which the system leaving a state i
returns back to it. The recurrence time of a given conformation
is related to the first-passage time to that conformation which
has been used previously in Ref. [32] to provide typical times
of the tumbling process. As observed from Fig. 4(c), the
distributions of recurrence times P(t,. > t) for the stretched
conformation are nonexponential at short times and become
exponential at long times. The characteristic recurrence times
of individual conformation 7., however, do not exhibit sim-
ilar behavior with the Weissenberg number. For example, the
recurrence time of the coiled conformation decreases very
slowly with the Wi, and the dumbbell becomes less recurrent
with increasing Wi. This is because of the dominant nature
of the drag force to stretch the polymer as compared to the
entropic force tending to coil it. This is also the reason for in-
creasing recurrence times of the dumbbell with the Wi as it be-
comes less feasible to maintain higher densities symmetrically
at both ends of the chain at higher shear rates. Even though
the characteristic recurrence times 75, . show variability among
the conformations, <, ~ Wi 07000 for the stretched state
provides a measure of the timescale of the tumbling process
as it becomes more likely with increasing Wi.

The observation of residence times vs Wi are similar to
relaxation times from C(t). Recurrence times vs Wi are
more nontrivial, and that shows that first-passage properties
can be quite distinct from transport properties. The whole
story of recurrence is actually a step-by-step buildup of many
intermediate transitions among coarse-grained states. This
motivates us to now focus on the properties of transition.
We hypothesize that an effective kinetic description does
not require the inherent details of the model, and we may
use the statistics of residence times and a knowledge of the
transition probability to provide a coarse-grained description
of the phenomenon. As we will see in the next section, this
approach makes the problem effectively Markovian which
may be addressed employing the master equation formalism.

Markovian description. The exponentially decaying tails
of the residence distributions imply that the original non-
Markovian problem can be reduced to an approximate Marko-
vian limit. To achieve this, we employ the master equation
formalism [33,34] for the stochastic process in which the
polymer makes the transition from one conformation to an-
other. This coarse-grained description would assume that the
time taken by the polymer to jump from one conformation
to another is instantaneous, and the residence time within a
state is exponentially distributed with its characteristic time
(calculated from Langevin dynamics simulations). Such a
coarse-grained description uses minimal information from the
underlying model of polymer tumbling and hence is expected
to capture the essence of it.

To proceed with our goal, define the transition rate for a
jump from state i to j,

wij = p(]'l)/tr%s’ (3)
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FIG. 5. Color map of the W matrix for (a) Wi = 15 and (b) Wi =
75. With increasing Wi the jump rates increase, e.g., Wsq is higher
for Wi = 75 as compared to that of Wi = 15. The diagonal elements
of the W matrix are negative. (c) The colored boxes indicate the
matrix elements of W for Wi = 75 which are zero for Wi = 15. The
elements W;; are shifted for the purpose of visibility.

where p(j|i) is the probability of a jump from i to j and
75, is the characteristic time of residence in state i, defined
in terms of its distribution P(tes > t) ~ exp(—t/t5,) at long
times. The jump probability p(j|i) is calculated by dividing
the number of jumps from a given i to a given j by the total
number of jumps which occur from state i. The calculation is
performed using a time series generated from the Langevin
equation, long enough to realize all the conformations during
the tumbling process. The probability of a given jump from
i to j, however, is dependent on the Wi. This is because
an increment in the Wi makes the polymer tumbling more
frequent thus increasing p(j|i). In addition, we have seen from
Fig. 4(c) that the characteristic time of residence 75 has a
tendency to decrease with increasing Wi. This implies that
the transition rate w;;, which is the ratio of p(jl|i) to 7%, will
increase with increasing for arbitrary conformations i and j.
The transitions rates w;; are, however, constant in time, and

this implies that the master equation,

p=pW “4)
can be solved exactly in terms of the spectrum of the W
matrix, defined as W;; = w;; for i # j and W;; = — Zj w;j

otherwise.

The structure of the W matrix becomes clear from Fig. 5,
which shows the color map of the elements W;; for (a) low
Wi =15 and (b) high Wi =75 shear rates. If we look at
a coil-to-stretch transition, then we find that a direct jump
is highly unlikely as Wy = 0 [white color in Figs. 5(a)

and 5(b)]. However, there exists a path ¢ & hd & hf %

s [cf. Fig. 1(a)] which becomes more probable for higher Wi
[compare the colors in (a) and (b)]. In addition, the increased

shear rate also reduces the number of steps from four to three:

C & hd & s; note W;g = 0 for Wi = 15 and W53 > O for

Wi = 75. This implies that, in addition to increasing transition
rates, new transition paths are also created with increasing
Wi. The W-matrix formalism also captures the increase in
tumbling events (i.e., from stretched to coiled) with increasing
shear rates. This becomes evident by the emergence of new

.. W, W, W W, W,
transitions paths s —> hf —> fk —> c and s —> hf —>

W . . .. W, W, W,
f =% ¢ for Wi = 75 in addition to s —> hf —> hd —> ¢,

which is also present for Wi = 15.

In Fig. 5(c), we show the emergence of new transitions
for higher Wi—the terms of the W matrix which are zero
for Wi = 15 and nonzero for Wi = 75 are shown in colors.
This implies that new paths involving new intermediate states

emerge in the tumbling process. Particularly interesting are

. .. W, W
the nontrivial transitions, such as f —> fk and k —> fk,

which now take place in a single step. The difference in our
coarse-grained approach is that it can capture the existence
of such intermediate steps in the process of macroscopic
tumbling from the stretched to the coiled state, which are far
from obvious.

The master equation (4) admits a unique stationary dis-
tribution pg in accordance with the Perron-Frobenius theo-
rem [35,36] defined as O = py W. This defines the steady-state
autocorrelation,

1
() = — D = () — ()™ )l ()

St

where (n;)q = Y, nips(i) and ol = (niz)st — (m;)? are the

steady-state mean and variance, respectively. The experi-
mentally relevant quantity C(t) can be calculated exactly
using [exp(Wr)];;. From Figs. 6(a)-6(c) we find that the

1.0
(a) Wi=7.5 Langevin dynamics ——
0.4 [ Master equation ——
e
1.0 -
_ (b) Wi=75
l_)
S 04 f
0.2 [ . . . . . . . . .
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. 0.02 | 1
l—’o L 4
0.01 1
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FIG. 6. Autocorrelation C(t) for the time series of states from
the Langevin dynamics simulations and master equation for (a) Wi =
15, (b) Wi=75, and (c) Wi = 150. It is evident that the two
autocorrelations decay at nearly the same timescale [see (d)].
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autocorrelation C(t) decreases exponentially with lag t for
the effective (Markovian) and full (non-Markovian) problem.
The exponential decay of the autocorrelation implies that
a relaxation time 7. can be defined as C(t) ~ exp(—7t/1.)
for its decay. We find from Fig. 6(d) that these relaxation
times show a similar behavior with the Wi for the two
approaches. The proximity of the two curves implies that
the coarse-grained picture of the tumbling process captures
the generic properties of the processes to a very good
extent.

It is also noted from Figs. 6(a)-6(c) that the Markovian
description does not capture the oscillatory behavior of the
autocorrelation C(t), which is present in the original problem.
The reason for the difference is attributed to the approxima-
tion that the residence times of the states are exponentially
distributed in the master equation formalism is only partly true
as far as the original dynamics is concerned [37].

Discussion. Although polymer tumbling in shear flow is an
old classic problem which has received wide attention in the
literature, a kinetic description in terms of residence times and
transitions from one conformation to another is still missing.
We propose a coarse-grained approach to study the problem
using the information about the residence times of individual
conformations and jump probability from one conformation
to another. The distributions of residence times exhibit ex-
ponentially decaying tails which helps us build an effective

Markovian picture of the truly non-Markovian problem. In
the Markovian picture, the problem is solved using the master
equation formalism. The structure of the W matrix reveals
a robust sequence of transitions between different conforma-
tions i taken by the polymer while tumbling in the flow. With
increasing Wi new paths are realized, and rates of existing
jumps tend to increase. The coarse-grained description pro-
vides us with insights about the intermediate steps which arise
during the process of macroscopic tumbling. At this coarse-
grained level, the autocorrelation between different confor-
mations is calculated exactly, and we show that its relaxation
time compares quite well with that estimated using Langevin
dynamics simulations of the original non-Markovian problem.
The two approaches predict almost identical dependence of
the relaxation times on the Weissenberg number. This implies
that the Markovian approach, despite being a coarse-grained
representation of the full non-Markovian problem, captures
the kinetics of the tumbling process to a very good extent. We
hope that the ideas presented here will be useful in addressing
similar problems in polymer kinetics under different flow
fields from this perspective.
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