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Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity
of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the
series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid
values. The MD simulations verify that revised Enskog theory can accurately predict nonequilibrium thermal
conductivities at low densities and this theory is applied to explore the model parameter space. Only certain
mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement
below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas
mixtures and a review of the literature confirms the existence of mixture thermal conductivity below the series
bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The
results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous
thermal conductivities outside the series and parallel bounds as this Rapid Communication demonstrates they
are a fundamental feature of even simple fluids.

DOI: 10.1103/PhysRevE.99.030102

There has been a great deal of interest in increasing
the transport rate of heat through fluids by the addition of
nanometer-sized solid particles. Initial experiments on these
nanosuspensions demonstrated significant enhancements of
the thermal conductivity [1]; however, later measurements
on other mixtures generated substantial controversy [2], with
confusion over what results might be “unsurprising” and what
might be deemed “anomalous.” Disagreements in reported
values led to a comprehensive benchmark study with double
blind tests conducted between several institutions [3]. The
primary conclusion was that the vast majority of the reported
“enhancement” effects lie within the continuum bounds given
by the series λ⊥ and parallel λ‖ limits of the thermal conduc-
tivity [4], which for a binary mixture are

1

λ⊥ = 1 − φ2

λ1
+ φ2

λ2
, (1)

λ‖ = (1 − φ2)λ1 + φ2 λ2, (2)

where φ2 is the volume fraction of component 2 in the
mixture, and λ1 and λ2 are the fluid thermal conductivities
for pure 1 and pure 2, respectively.

A small number of experimental results still remain outside
these conventional bounds, such as the reported dehancements
below the series limit for fullerene-water suspensions [5].
Hence, the question still remains: Are results outside these
bounds correct and, if so, what are the underlying mecha-
nisms? Several physical mechanisms have been proposed in

*m.campbellbannerman@abdn.ac.uk

an effort to rationalize the behavior of these systems [4]; how-
ever, there is as yet no unifying framework for predicting and
explaining the thermal performance of nanofluid mixtures. To
be able to understand these results, a deeper understanding
of thermal conductivity and its underlying molecular mecha-
nisms is required.

Some of the confusion in interpreting thermal conductivity
arises from the different manners in which it can be defined.
The most natural macroscopic and experimental definition
arises from applying a temperature gradient ∇T across a
system and measuring the resultant heat flux Jq. The “ob-
served” nonequilibrium thermal conductivity λN is then de-
fined through the following expression,

〈
Jq

〉 = −λN∇T, (3)

where the brackets 〈· · · 〉 indicate the implicit averaging over
time and volume this approach entails.

In contrast, when considering hydrodynamic models it is
natural to decompose the heat flux Jq into contributions from
thermal and mass diffusion of the individual species; however,
this separation of these two effects is not unique and an
arbitrary number of definitions of the thermal conductivity can
be generated. The so-called mainstream, prime, and double
prime definitions [6,7] are the most common choices. The
mainstream definition is used here as it is convenient for
molecular dynamics simulations and is given below for binary
systems,

Jq = −T −1Luu∇T − Lu1T ∇ (μ1 − μ2)

T
, (4)

where Luu is the mainstream thermal conductivity, Lu1 is the
mainstream thermal diffusivity of species 1, and μ1 is the
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chemical potential of species 1. One possible resolution to the
ambiguity in the definition of Luu is to assume local steady-
state conditions (zero mass flux) [4,8] to yield the following
expression,

Jq = −T −1
(
Luu − L2

u1L−1
11

)∇T = −λ∇T, (5)

where L11 is the mutual diffusion coefficient of species 1
through itself and the final equality implicitly defines the
“steady-state” thermal conductivity λ. The value of λ is inde-
pendent of the choice of mainstream, prime, or double prime
fluxes; however, it is still distinct from λN as it is not averaged
over the nonequilibrium conditions of a system undergoing
conduction but is instead evaluated at a single temperature,
concentration, and density [9]. The first hurdle of this Rapid
Communication is to establish that the macroscopic (λN ) and
microscopic (λ) definitions of the thermal conductivity are
equivalent at steady state.

In principle, atomistic nonequilibrium molecular dynamics
(NEMD) simulations can be used to directly measure the
heat flux Jq through a system’s boundaries to obtain the “ob-
served” nonequilibrium thermal conductivity λN . Equilibrium
simulations can then be used to measure λ for comparison,
as well as to elucidate any underlying mechanisms behind
“anomalous” behavior. Unfortunately, large and long-duration
nonequilibrium simulations are required to directly study heat
conduction in nanofluids [10], and so only a limited range of
molecular models and techniques is computationally accessi-
ble using this method. Due to these limitations, previous simu-
lation work has primarily focused on equilibrium simulations
of nanofluids at fixed size and mass asymmetries between
the fluid molecule and nanoparticle [7,11–15] with only a
few studies at larger asymmetries (e.g., Refs. [8,16]). As
equilibrium molecular simulations are conducted at a single
temperature and concentration, Eq. (3) cannot be used, thus
the equivalence between λN and λ cannot be conclusively
established.

In this Rapid Communication, NEMD simulations of bi-
nary hard-sphere mixtures, consisting of spheres of diameter
σ1 and mass m1 and spheres of diameter σ2 and mass m2,
confined between two smooth parallel walls (see Fig. 1), are
performed using the DYNAMO [17] event-driven molecular
simulation package. The hard-sphere model is both compu-
tationally accessible and well described by revised Enskog
theory [7,18,19] which can be used to yield accurate predic-
tions of λ at low densities [16]. Although the hard-sphere
model is simple, it qualitatively captures the fundamental
effects of density, molecular size, and mass on the transport
coefficients in gases. This Rapid Communication explores
conditions close to the ideal gas limit for simplicity (and to
avoid crystallization as σ2/σ1 becomes large); however, the re-
sults obtained in this limit are fundamental to the behavior of
all fluids and comparison against experiments on gas mixtures
can be made. This limit is also particularly interesting as the
current discussion in nanofluids echoes previous controversy
over reported dehancements in the thermal conductivity of
He-H2 gas mixtures [20]. Although the source of the original
controversy (a sharp minimum in conductivity with concen-
tration) was later shown to be unrepeatable [21,22], a shal-
lower minimum still remains and demonstrates that thermal
conductivity can lie outside the series and parallel bounds

FIG. 1. A schematic of the system configuration used for the
simulations reported here which use a hard-sphere model consisting
of two species with diameters σ1 and σ2, and masses m1 and m2,
respectively. For NEMD simulations, two walls are inserted into the
simulation and a 10% temperature gradient is imposed via velocity
reassignment on collision with the wall [24]. The total number of
spheres N and aspect ratio l‖/l⊥ of the simulation are varied to
explore the effects of system size at a constant density and pressure.

and even beyond the pure fluid values. If this is correct, then
it implies that such minima are also possible for nanofluid
systems which are the subject of some controversy even today.

The first aim of this Rapid Communication is to estab-
lish an equivalence of the observed, λN , and steady-state,
λ, thermal conductivities. This is conducted using a hard-
sphere mass ratio of m2/m1 = 2 corresponding to a He-H2

mixture with the approximate size ratio σ2/σ1 = 260/289, ob-
tained from diffusion measurements [23]. A constant reduced
pressure of pσ 3

1 /(kBT ) = 0.01 (where kB is the Boltzmann
constant) is used and is set by adjusting the system density.
This reduced pressure value corresponds to a packing fraction
of approximately 0.005 over the studied mole fraction x2.
Once the equivalence of λ and λN is confirmed in this system,
a systematic exploration for “anomalous” thermal conductivi-
ties is carried out over the mass and size ratio parameter space
using kinetic theory.

Parallel smooth walls are located at both ends of the simu-
lation domain as illustrated in Fig. 1 with periodic conditions
on all other boundaries. On collision with the wall, the normal
component of a sphere’s velocity is reassigned to a Maxwell-
Boltzmann distribution [24] at a defined temperature. The
heat flux is then measured through the following expression,
〈Jq〉 = 〈Q〉l‖/(l⊥)2, where 〈Q〉 is the time-averaged rate of
energy transferred to the simulation during sphere impacts
with the walls averaged over both walls. The two walls have
different temperatures set to 95% and 105% of the system
temperature T . This value is a trade-off between inducing a
sufficiently large heat flux (compared to thermal fluctuations)
and inducing inhomogeneity in the system.

An example of the inhomogeneity induced by the heat
flux is given in Fig. 2. The temperature, number density, and
concentration plots appear approximately linear. It is clear to
see the effects of thermophoresis in the concentration profiles.
These inhomogeneities make equating λN and λ suspicious
as λ is only evaluated at a single representative concentra-
tion, temperature, and density, whereas NEMD simulations
measure an average thermal conductivity across the system
as temperature, density, and concentration varies. Boundary
layers with high thermal resistance also exist very close to the
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FIG. 2. The profiles of (a) temperature kBT , (b) number density
n, and (c) species mole fraction xi as a function of distance between
the two heated walls r‖ for a single representative simulation. This
system has a mass ratio of m2/m1 = 2, a size ratio of σ2/σ1 =
0.899 654, N = 102 400 spheres, and an aspect ratio of l‖/l⊥ = 50.
All values are reduced by the average values for the system, which
are kBT̄ = 1, n̄ ≈ pσ 3

1 /(kBT ) = 0.01, and (1 − x̄1) = x̄2 = 0.6. Er-
ror bars represent the standard deviation across ten simulations and
are smaller than the marker size for the temperature and number
density fields. Solid lines are linear fits provided as a guide to the
eye.

heated walls and induce a significant system-size dependence
in the NEMD results.

To explore this system-size dependence, the wall temper-
atures are held fixed while the aspect ratio l‖/l⊥ and system
size are varied with the number of spheres ranging from N =
5000 up to N = 102 400. Each simulation is initialized in an
fcc crystal lattice and equilibrated for 1000N collisions before
a further production run of 10 000N collisions to collect data.
This procedure is repeated ten times at each state point and av-
erage values between the production runs are collected while
the errors of the average measurements are estimated using
the standard deviation of values between each production run.
Results are reported here in reduced units, with σ1 the unit of
length, m1 the unit of mass, and kBT the unit of energy.

A system-size dependence calculation for the mole fraction
x2 = 0.8 in the He-H2 system is reported in Fig. 3. The figure
demonstrates that the aspect ratio of a system is relatively
unimportant and that the system length in the direction of
conduction l‖ dominates the system-size effects (due to the
boundary layer resistance near the walls). To estimate the in-
finite system-size (near-zero thermal gradient) value of the
thermal conductivity, linear extrapolation is applied to sys-
tems with the three largest aspect ratios (l‖/l⊥ = 10, 25, and
50). This procedure yields a lower bound for the thermal
conductivity as the gradient of the system-size dependence
monotonically increases with system size. The extrapolated
λN value is in excellent agreement with the equilibrium ther-
mal conductivity λ from revised Enskog theory evaluated at
the average conditions of the system.

FIG. 3. The observed thermal conductivity λN obtained from
NEMD simulations as a function of the distance between the walls
σ1/l‖ from binary hard-sphere systems with varying numbers of
spheres and aspect ratios at a mole fraction of x2 = 0.8 for a
m2/m1 = 2, σ2/σ1 = 0.899 654, and pσ 3

1 /(kBT ) = 0.01. A linear fit
to the data points obtained using an aspect ratio of 10, 25, and
50 (dashed line) is used to extrapolate to infinite system size and
approaches the value of λ predicted by revised Enskog theory (solid
line).

The above procedure is repeated over a range of mole
fractions and the final infinite-system extrapolated results are
reported in Fig. 4. This system exhibits thermal conductivities
that are far outside the predictions of continuum approaches
such as Maxwell theory or the limits of series and parallel
resistance. In accordance with the experimental results for
He-H2 [20–22], the system displays a minimum in the thermal
conductivity below both the pure fluid thermal conductivities.
This conclusively demonstrates that anomalous thermal con-
ductivities are not only possible but a fundamental feature of
simple molecular fluids such as the binary hard-sphere gas.

FIG. 4. The extrapolated infinite system-size NEMD λN (trian-
gles) and equilibrium steady-state λ(MD) (square) thermal conductiv-
ities as a function of the nonunit species mole fraction x2. Parallel
(dotted line) and series (dashed line) limits bound the region of
continuum values (shaded). The revised Enskog theory predictions
for the steady-state conductivity λ(E ) (solid line) are in excellent
agreement with the simulation results. A slight apparent overestima-
tion arises from the remaining system-size dependence of our NEMD
results.
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FIG. 5. A contour map of steady-state thermal conductivities
outside the series (dashed) and parallel (solid) bounds as a function
of mass and size ratio. The contours denote the increase and decrease
of the thermal conductivity relative to the parallel and series bound
at the concentration of maximum deviation. A cross indicates the
maximum decrease of the steady-state thermal conductivity which
occurs at m2/m1 ≈ 59.6 and σ2/σ1 ≈ 0.102. A dotted line indicates
where mass scales with molecular volume, assuming a constant
density.

To further validate the Enskog and NEMD results, equilib-
rium simulations with N = 32 000 spheres in a cubic system
are equilibrated for 1000N events before being run for a
further 100 000N events to calculate Luu, Lu1, and L11 for
this system. The Einstein form of the Green-Kubo relations
[25,26] is used with the first 15 mean free times of the
correlation discarded to avoid ballistic motion and a maximum
correlation time of 50 mean free times used to avoid correla-
tions from the periodic boundary conditions. This is beyond
the sound wave traversal time of the system; however, as the
density is so low, correlations from the boundary conditions
take much longer to establish than in higher density systems.
The excellent agreement in Fig. 4 between revised Enskog
theory and the equilibrium molecular dynamics completes the
verification of the anomalous dehancement reported and the
use of revised Enskog theory to further study the system at
low densities.

The full parameter space of the binary hard sphere model is
explored using revised Enskog theory to determine the extent
of the anomalous behavior. Figure 5 maps the maximum
possible departure from series or parallel bounds achievable
by varying the mole fraction of the system for a particular
mass and size ratio. A reduced pressure of pσ 3

1 /(kBT ) =
10−7, corresponding to packing fractions below 0.044 for
this parameter space, is used in these calculations to reveal
the symmetry of the map in the ideal gas limit which is
otherwise prevented by pure species 2 freezing [which occurs
at a size ratio of σ2/σ1 � 4.87 for pσ 3

1 /(kBT ) = 0.01; how-
ever, this change makes little difference to the results below
this boundary]. Anomalous enhancement above the parallel
bounds is found at extreme mass ratios with size ratios near
unity. Reductions below the series bounds are also found

FIG. 6. As described in Fig. 5 but focused on the parameter
space relevant for the noble gases, hydrogen, and nitrogen. Kinetic
diameters are taken from Refs. [27–29].

for smaller but heavier spheres. Surprisingly, a maximum
achievable reduction in thermal conductivity is found which
is ≈ 40% below the series limit (see the cross in Fig. 5). The
bulk of the anomalous parameter space lies in the larger-but-
lighter region of the map; however, the region of anomalous
reduction approaches the line where the species 2 mass scales
with its volume which is the experimentally relevant region.

To explore the experimental relevance of the results, the
kinetic diameter and molecular mass ratios for combinations
of the noble gases, along with nitrogen and hydrogen gas, are
plotted in Fig. 6. The map indicates that several real mixtures
may exhibit anomalous dehancements; however, care should
be taken to verify this as the Enskog theory expressions
used here do not take into account the additional degrees of
freedom of diatomic gases and in general are not capable
of quantitatively predicting the behavior of real gases, only
general trends. It is expected that more complex molecules
can exhibit more extreme effective size and mass ratios, al-
though the anomalous enhancement region probably remains
inaccessible and the applicability of the hard-sphere model is
dubious in this limit.

In conclusion, the observed thermal conductivity of binary
hard spheres can exhibit values which lie outside the limits of
series-parallel resistance, in agreement with experimental re-
sults on He-H2 systems. These anomalous results are present
even in the ideal gas limit, which implies that they cannot
be explained by any structural or clustering effect such as
those which are prevalent in the nanofluid literature. To better
understand results in nanofluids, liquid densities can be ex-
plored using the techniques outlined here; however, the binary
hard-sphere model has two serious shortcomings: an ideal-gas
heat capacity and the absence of a gas-liquid transition. Future
work will explore adding internal degrees of freedom to the
spheres to account for varying heat capacity which will allow
a better parametrization of real fluids. Attractive systems, such
as square wells, may also be used to explore liquid systems
which do not have strong density-pressure dependences, and
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the comparison at pressures where the nanoparticle forms a
crystalline phase will be explored. Finally, work on a mul-
tiscale modeling approach using kinetic theory to provide
phenomenological closures to a hydrodynamic description is
underway to allow fluid dynamics simulations of nanofluidic
devices where transient effects may dominate over steady-
state conduction.

The authors acknowledge the support of the Maxwell
computing service at the University of Aberdeen, and the
Aberdeen-Curtin Alliance [30] between the University of
Aberdeen (Scotland, U.K.) and Curtin University (Perth,
Australia) which is funding the Ph.D. of C.M. Also, P.R.
and J.D.G. thank the Australian Research Council for
funding.

[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson,
Appl. Phys. Lett. 78, 718 (2001).

[2] P. Keblinski, R. Prasher, and J. Eapen, J. Nanopart. Res. 10,
1089 (2008).

[3] J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell,
J. Townsend, R. Christianson, Y. V. Tolmachev, P. Keblinski,
L.-w. Hu, J. L. Alvarado et al., J. Appl. Phys. 106, 094312
(2009).

[4] J. Eapen, R. Rusconi, R. Piazza, and S. Yip, J. Heat Trans. 132,
102402 (2010).

[5] Y. Hwang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong,
C. G. Lee, B. C. Ku, and S. P. Jang, Thermochim. Acta 455,
70 (2007).

[6] S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
(Dover, New York, 1984).

[7] J. J. Erpenbeck, Phys. Rev. A 39, 4718 (1989).
[8] S. Bastea, Phys. Rev. E 75, 031201 (2007).
[9] It should be noted that this is not the only definition of the ther-

mal conductivity which is independent of the choice of fluxes.
For example, another definition can be derived by assuming no
concentration gradients are present (e.g., at the onset of thermal
conduction) but allowing chemical potential gradients to arise
due to gradients in the temperature. This is not explored here as
it is demonstrated that λN ≈ λ at steady state, but this definition
may have relevance for systems undergoing rapid changes in
temperature.

[10] J. Armstrong and F. Bresme, Phys. Chem. Chem. Phys. 16,
12307 (2014).

[11] J. J. Erpenbeck, Phys. Rev. A 45, 2298 (1992).
[12] J. J. Erpenbeck, Phys. Rev. E 48, 223 (1993).

[13] D. M. Heyes, J. Chem. Phys. 96, 2217 (1992).
[14] J. Eapen, J. Li, and S. Yip, Phys. Rev. Lett. 98, 028302

(2007).
[15] N. A. T. Miller, P. J. Daivis, I. K. Snook, and B. D. Todd,

J. Chem. Phys. 139, 144504 (2013).
[16] M. N. Bannerman and L. Lue, J. Chem. Phys. 130, 164507

(2009).
[17] M. N. Bannerman, R. Sargant, and L. Lue, J. Comput. Chem.

32, 3329 (2011).
[18] M. López de Haro, E. G. D. Cohen, and J. M. Kincaid, J. Chem.

Phys. 78, 2746 (1983).
[19] M. J. Lindenfield and B. Shizgal, Chem. Phys. 41, 81 (1979).
[20] P. Mukhopadhyay and A. K. Barua, Br. J. Appl. Phys. 18, 635

(1967).
[21] L. Biolsi and E. A. Mason, J. Chem. Phys. 54, 3020 (1971).
[22] A. G. Shashkov, F. P. Kamchatov, and T. N. Abramenko, J. Eng.

Phys. 24, 461 (1973).
[23] B. D. Freeman, Macromolecules 32, 375 (1999).
[24] T. Pöschel and T. Schwager, Computational Granular Dynam-

ics (Springer, New York, 2005).
[25] M. S. Green, J. Chem. Phys. 22, 398 (1954).
[26] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[27] D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry,

and Use (Wiley, New York, 1973).
[28] A. F. Ismail, K. Khulbe, and T. Matsuura, Gas Separation

Membranes (Springer, New York, 2015).
[29] S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, in

Materials Science of Membranes for Gas and Vapor Separation
(Wiley, Chichester, 2006), Chap. 1.

[30] http://aberdeencurtinalliance.org.

030102-5

https://doi.org/10.1063/1.1341218
https://doi.org/10.1063/1.1341218
https://doi.org/10.1063/1.1341218
https://doi.org/10.1063/1.1341218
https://doi.org/10.1007/s11051-007-9352-1
https://doi.org/10.1007/s11051-007-9352-1
https://doi.org/10.1007/s11051-007-9352-1
https://doi.org/10.1007/s11051-007-9352-1
https://doi.org/10.1063/1.3245330
https://doi.org/10.1063/1.3245330
https://doi.org/10.1063/1.3245330
https://doi.org/10.1063/1.3245330
https://doi.org/10.1115/1.4001304
https://doi.org/10.1115/1.4001304
https://doi.org/10.1115/1.4001304
https://doi.org/10.1115/1.4001304
https://doi.org/10.1016/j.tca.2006.11.036
https://doi.org/10.1016/j.tca.2006.11.036
https://doi.org/10.1016/j.tca.2006.11.036
https://doi.org/10.1016/j.tca.2006.11.036
https://doi.org/10.1103/PhysRevA.39.4718
https://doi.org/10.1103/PhysRevA.39.4718
https://doi.org/10.1103/PhysRevA.39.4718
https://doi.org/10.1103/PhysRevA.39.4718
https://doi.org/10.1103/PhysRevE.75.031201
https://doi.org/10.1103/PhysRevE.75.031201
https://doi.org/10.1103/PhysRevE.75.031201
https://doi.org/10.1103/PhysRevE.75.031201
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1103/PhysRevA.45.2298
https://doi.org/10.1103/PhysRevA.45.2298
https://doi.org/10.1103/PhysRevA.45.2298
https://doi.org/10.1103/PhysRevA.45.2298
https://doi.org/10.1103/PhysRevE.48.223
https://doi.org/10.1103/PhysRevE.48.223
https://doi.org/10.1103/PhysRevE.48.223
https://doi.org/10.1103/PhysRevE.48.223
https://doi.org/10.1063/1.462072
https://doi.org/10.1063/1.462072
https://doi.org/10.1063/1.462072
https://doi.org/10.1063/1.462072
https://doi.org/10.1103/PhysRevLett.98.028302
https://doi.org/10.1103/PhysRevLett.98.028302
https://doi.org/10.1103/PhysRevLett.98.028302
https://doi.org/10.1103/PhysRevLett.98.028302
https://doi.org/10.1063/1.4824140
https://doi.org/10.1063/1.4824140
https://doi.org/10.1063/1.4824140
https://doi.org/10.1063/1.4824140
https://doi.org/10.1063/1.3120488
https://doi.org/10.1063/1.3120488
https://doi.org/10.1063/1.3120488
https://doi.org/10.1063/1.3120488
https://doi.org/10.1002/jcc.21915
https://doi.org/10.1002/jcc.21915
https://doi.org/10.1002/jcc.21915
https://doi.org/10.1002/jcc.21915
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1016/0301-0104(79)80134-2
https://doi.org/10.1016/0301-0104(79)80134-2
https://doi.org/10.1016/0301-0104(79)80134-2
https://doi.org/10.1016/0301-0104(79)80134-2
https://doi.org/10.1088/0508-3443/18/5/313
https://doi.org/10.1088/0508-3443/18/5/313
https://doi.org/10.1088/0508-3443/18/5/313
https://doi.org/10.1088/0508-3443/18/5/313
https://doi.org/10.1063/1.1675287
https://doi.org/10.1063/1.1675287
https://doi.org/10.1063/1.1675287
https://doi.org/10.1063/1.1675287
https://doi.org/10.1007/BF00842864
https://doi.org/10.1007/BF00842864
https://doi.org/10.1007/BF00842864
https://doi.org/10.1007/BF00842864
https://doi.org/10.1021/ma9814548
https://doi.org/10.1021/ma9814548
https://doi.org/10.1021/ma9814548
https://doi.org/10.1021/ma9814548
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
http://aberdeencurtinalliance.org



