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A theory is developed to calculate values of the potential-energy barriers to structural relaxation in molecular
glass formers from the data of static pair-correlation function. The barrier height is shown to increase due to
an increase in the number of “stable bonds” a particle forms with its neighbors and the energy of each bond
as liquids move deeper into the supercooled (supercompressed) region. We present results for a system of hard
spheres and compare calculated values of the structural relaxation time with experimental and simulation results.
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The structural relaxation time of a molecular glass former
grows by many orders of magnitude over a small range of
temperatures when the system is cooled close to the glass
transition temperature [1]. The glass transition is linked to
dynamical arrest caused by particles being trapped in cages
formed by their nearest neighbors [2,3]. It is widely accepted
that the dynamics close to the glass transition is dominated
by activation [4]. If the potential-energy barriers to relaxation
were constant in temperatures, the relaxation time would fol-
low the Arrhenius law. The super-Arrhenius behavior suggests
that the potential-energy barriers in molecular glass formers
increase with decreasing temperature and increasing density.
The ubiquity of the phenomenon, irrespective of molecular
details, points to a collective or cooperative behavior charac-
terized by a length scale that grows as one approaches the
glass transition. Beginning at least from Adam and Gibbs
[5] who introduced the concept of “cooperatively rearranging
regions” in the mid-1960s, many microscopic models [6–11]
have been developed to uncover the physical mechanism
behind growth of the cooperative length scale. One of the
issues has been to define and determine objectively such a
length scale [10–12], and relate it with the potential-energy
barrier.

In dealing with classical many-body particle systems one
often integrates out the kinetic energy of particles and con-
siders only the potential energy of interactions in framing a
theory or in simulations. In this Rapid Communication we
show that when kinetic energy is allowed to compete with
the effective potential energy felt by particles in a system, a
new way of understanding the properties of dense systems
emerges. Such an idea was first proposed by Hill [13] and used
by Stogryn and Hirschfelder [14] and others [15] to describe
the equilibrium and transport properties of gases.

A particle in a dense system feels a potential-energy barrier
created by its neighbors. Depending upon the height of the
barrier and the relative momenta of the surrounding particles,
the central particle may get trapped and bonded (defined be-
low) with neighboring particles. A particle whose total energy
is higher than the barrier moves freely and collides with other
particles. The concentration of these particles depends on
density and temperature; the potential barrier becomes higher

on increasing the density and lowering the temperature, and
the kinetic energy of particles decreases on decreasing the
temperature. A molecular liquid at high densities and low
temperatures can therefore be considered as a network of
particles connected with each other by (nonchemical) bonds
with some free particles which move around and collide
with other particles. Depending upon bonding energies, the
lifetime of bonds may vary from microscopic to macroscopic
time. When a particle dissociates from the network either by
collision or by thermal activation, it may initiate breaking of
neighboring bonds and creating a dynamical active domain
[16,17]. The precipitous onset of slowness can be associated
with the increasing number of bonds and the larger bond
energy with which particles are bonded with neighbors.

One way to find the number of bonds formed by a particle
with its neighbors is to use the data of static pair-correlation
function. The theory we describe is applicable to all those
systems for whose values of pair-correlation function in a
supercooled (supercompressed) region are available. Here we
consider a system of hard spheres and use the data of the radial
distribution function (RDF) evaluated from an approximate
integral equation theory [18] (our aim here is to show useful-
ness of the theory rather than numerical rigor).

In the case of a system of hard spheres where potential
is zero when particles do not overlap and infinite otherwise,
temperature becomes irrelevant apart from rescaling quan-
tities; the natural control parameter is the packing fraction
η = π

6 ρσ 3, where ρ is number density and σ is particles
diameter. Experimentally, hard-sphere systems are obtained
using colloidal particles [19], emulsions, or granular materials
[20]. The fluid-crystal transition takes place at η = 0.494
and the melting transition at η = 0.545. When the system is
compressed following a protocol which avoids crystallization,
the structural relaxation time τα increases rapidly showing
super-Arrhenius behavior. Whether τα diverges at a density
lower than the random close-packed density, ηrcp(�0.64) or
not is still a highly debated issue [21–23]. Kinetic arrest must
occur at ηrcp because all particles block each other at that
density.

The RDF g(r) of a homogeneous and isotropic system
consisting of particles of mass m in the center-of-mass
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FIG. 1. (a) The reduced effective potential βW (r) between a pair
of particles separated by distance r (expressed in units of hard-
sphere diameter σ ) in a system of hard spheres at a packing fraction
η = 0.59. βWui, rhi are, respectively, value and location of the ith
maximum and rli is the location on the left-hand side of the shell
where βWi(r) = βWui (shown by a dashed line). The locations r′

li

and r′
hi are values of r on the left- and the right-hand sides of the shell

where βWi(r) = βWui − 1 (shown by a solid line). βWdi is the depth
of the ith shell. (b) Radial distribution functions g(r) (dash-dotted
line), gb(r) (solid line) and gs(r) (dashed line) vs r at η = 0.59. The
various peaks correspond to various shells around a central particle.
While g(r) oscillates around one, gb(r) and gs(r) become zero at
boundaries defined by (rli, rhi ) for gb(r) and (r′

li, r′
hi ) for gs(r). In

the inset we show how values in the first shell differ from each other.

coordinates can be written as

g(r) =
(

β

2πμ

)3/2 ∫
dp e−β[(p2/2μ)+W (r)], (1)

where β = (kBT )−1 is the inverse temperature measured in
units of the Boltzmann constant kB and p is the relative
momentum of a particle of mass μ = m/2. The effective
potential W (r) = −kBT ln g(r) [24] is the sum of the (bare)
pair potential and the system-induced potential energy of
interaction between a pair of particles separated by distance r.
In Fig. 1 we plot βW (r) for a system of hard spheres at η =
0.59 as a function of r expressed in units of σ . The curve has
several maxima and minima. We denote a region between two
maxima i − 1 and i (i � 1) as the ith shell and the minimum
of the shell by βWdi. The value of the ith maximum is denoted
by βWui and its location by rhi.

All particles of the ith shell whose energies are less or equal
to βWui, i.e., β[ p2

2μ
+ Wi(r)] � βWui, get confined in the shell

and can be considered to be bonded with the central particle.
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FIG. 2. (a) Number of total bonds Nb, metastable bonds Nm, and
stable bonds Ns formed by a particle in a system of hard spheres
vs packing fraction η. (b) Number of total particles nt1, metastably
bonded particles (m particles) nm1, and stably bonded particles (s
particles) ns1 in the first shell. The number ns1 increases rapidly
and crosses nm1 at η � 0.524. At η = 0.524 the crossover from
nonactivated to activated dynamics takes place, due to the formation
of cage by s particles.

The contribution made to g(r) by these particles is

gbi(r) = 4π

(
β

2πμ

)3/2

e−βWi (r)
∫ √

2μ[Wui−Wi (r)]

0
e−βp2/2μ p2d p

= e−βWi (r) 	
{

3
2 , β[Wui − Wi(r)]

}
	

(
3
2

) , (2)

where 	(m, n) is the incomplete gamma function and Wi(r) is
the effective potential of the ith shell in the range rli � r �
rhi. Here rli is the value of r where βWi(rli ) = βWui on the
left-hand side of the shell (see Fig. 1). In Fig. 1(b) we plot
g(r) and gb(r) as a function of r at η = 0.59. The number of
bonded particles of the ith shell at packing fraction η is

nbi(η) = 24η

∫ rhi

rli

gbi(r)r2dr. (3)

The total number of particles bonded with the central
particle is Nb(η) = ∑

i nbi(η). As shown in Fig. 2(a) by a solid
line, Nb increases rapidly above the freezing density. This
is due to an increase in the number of shells that surround
the central particle and values of βWui and βWdi with η.
It may, however, be noted that these particles (or bonds)
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are embedded in a system which is equipped with thermal
energy kBT . Therefore, all those particles whose energies
lie between βWui − 1 and βWui may not remain bonded for
long due to thermal fluctuations; the lifetime depends on the
bonding energy. We call these particles metastably bonded
(henceforth referred to as m particles) and those particles
whose energies lie between βWdi and βWui − 1, stably bonded
(henceforth referred to as s particles). Most particles of Nb

shown in Fig. 2(a) surrounding the central particle over a
length of the pair-correlation function are m particles with
bond energies much smaller than the thermal energy and are
therefore transient.

The contribution made to g(r) by the s particles of the ith
shell is

gsi(r) = 4π

(
β

2πμ

)3/2

e−βWi (r)
∫ √

2μ[Wui−kBT −Wi (r)]

0

× e−βp2/2μ p2d p, (4)

where Wi(r) is in the range r′
li � r � r′

hi. Here r′
li and r′

hi are,
respectively, values of r on the left- and the right-hand sides
of the shell where βWi(r) = βWui − 1 (see Fig. 1). We show
values of gs(r) vs r in Fig. 1(b) by a dashed line for η = 0.59.
The number of s particles with which the central particle is
bonded, is

Ns(η) =
∑

i

nsi(η); nsi(η) = 24η

∫ r′
hi

r′
li

gsi(r)r2dr. (5)

We plot Ns vs η in Fig. 2(a) along with Nb and Nm = (Nb −
Ns).

To understand why above a certain density a particle
gets trapped by a stiff barrier and there is a crossover from
nonactivated to activated dynamics, we examine the nature
of particles of the first shell surrounding the central particle
as a function of η. In Fig. 2(b) we plot the number of total
particles nt1, m particles nm1, and s particles ns1. We note that
nt1 reaches the maximum value 12 at a density lower than
the freezing density where most particles are still free. The
number of m particles nm1 first increases and after reaching
a maximum value (�3) at η � 0.50 starts decreasing and
crosses ns1 at η � 0.524, The number of s particles (ns1)
which build up the potential-energy barrier increases rapidly
on increasing the density. We therefore consider η = 0.524
as the density which separates the two distinct dynamical
domains. As for η < 0.524, the potential barrier is inconse-
quential and the activation is not the main mechanism of re-
laxation; the dynamics can be described by the mode coupling
theory [25]. The activated dynamics becomes dominant for
η � 0.524 when the central particle gets surrounded by an
increasing number of s particles and the barrier starts caging
the particle.

The potential-energy barrier to relaxation (activation en-
ergy) is assumed to be equal to the energy with which a
particle is bonded with s particles. Thus the activation energy,

βEs(η) = 24η
∑

i

∫ r′
hi

r′
li

[βWui − βWi(r)]gsi(r)r2dr. (6)

Here the bonding energy of each bond is measured from
the barrier height.
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FIG. 3. (a) The potential-energy barrier (activation energy) βEs

vs η. Values found from the expression βEs(η) = A + B
(η0−η)δ

with
(i) δ = 1.2, η0 = 0.632 (dashed line) and (ii) δ = 1.6, η0 = 0.649
(dash-dotted line) are compared with the calculated values. (b) Cal-
culated values (solid line) of ln[ τα

τ0
] are compared with experimental

values (filled square [26] and open circles [27]) and simulation values
(open triangles [27] and stars [28]). The values of Refs. [27,28] are
shifted to lower density by an amount �η = 0.03.

In Fig. 3(a) we plot βEs(η) vs η and note that βEs

increases sharply for η > 0.524. The energy βEs can be
considered as the activation energy in the Arrhenius law,
τα (η) = τ0exp[βEs(η)] where τ0 is a microscopic timescale.
Out of different functional forms used to fit the data of βEs(η),
the best fit was found for βEs(η) = A + B

(η0−η)δ . In Fig. 3(a)
we compare values found with (i) δ = 1.2, η0 = 0.632 and
(ii) δ = 1.6, η0 = 0.649; both sets give equally good fit but
while one set gives a value of η where τα diverges, lower, the
other is higher than ηrcp (=0.64) indicating a limitation of such
fitting. We emphasize that the fit shown in Fig. 3(a) does not
necessarily favor the Vogel-Fulcher-Tammann law over other
laws of relaxation as the low-density data where nonactivated
dynamics mainly contributes to relaxations are not included in
the fitting.

In Fig. 3(b) we compare our results of τα with experimental
results reported for colloidal hard spheres in Refs. [26,27]
and simulation results reported in Ref. [28]. It may, however,
be noted that while our result is for a monodisperse system,
the simulation result [28] is for a 50:50 binary mixture with
diameters σ and 1.4σ and the experimental results are for
polydisperse systems with polydispersity, s, of about 6%
in [26] and above 10% in [27]. From simulation studies
[29–31] it has been found that while moderately disperse hard
spheres (s ∼ 5%–6%) behave almost like a monodisperse
system, systems with larger dispersity (s � 10%) behave in a
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complex way. One such effect is to move the glass transition
to higher η. The unusual aging behavior due to strong decou-
pling between small and large spheres for η > 0.59 has also
been observed [31,32]. The experimental [27] and simulation
[27,28] data plotted in Fig. 3(b) are shifted to lower density
by an amount �η = 0.03, whereas the experimental values
taken from Ref. [26] are plotted (shown by filled squares)
without any shift. It may be noted that while the shifted values
of Refs. [27,28] are in good agreement with the values of
Ref. [26] for η > 0.53, a considerable difference remains in
their values for η < 0.53. This suggests the need for more
experimental data of moderately disperse systems [33]. The
theoretical values shown by the solid line in the figure is in
good agreement with these data for η � 0.50; agreement for
η � 0.50 is not expected as the dynamics in this region as
argued above, is other than activation which has not been
considered.

In summary, we developed a theory to calculate
the potential-energy barriers to structural relaxation in a

molecular glass former from the data of static pair-correlation
function. A particle in a molecular liquid in the supercooled
(supercompressed) region gets localized by forming (non-
chemical) “stable bonds” with neighboring particles. The
number of bonds and the bonding energy increase on low-
ering the temperature and increasing the density. The barrier
height (activation energy) is equal to the energy βEs with
which a particle is bonded with the s particles. When βEs

is substituted in the Arrhenius law, a super-Arrhenius feature
emerges. Using values of the radial distribution function for
a system of hard spheres found from an approximate integral
equation theory [18], we calculated the activation energy. The
calculated values of τα are found to be in agreement with
the experimental and simulation data in the region where
activated dynamics is dominant.

We acknowledge financial help from the Council of Scien-
tific and Industrial Research and the Indian National Science
Academy, New Delhi.
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