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The phenomena of diffusion in multicomponent (more than two components) mixtures are universal in
both science and engineering, and from the mathematical point of view, they are usually described by the
Maxwell-Stefan (MS)-theory-based diffusion equations where the molar average velocity is assumed to be
zero. In this paper, we propose a multiple-relaxation-time lattice Boltzmann (LB) model for the mass diffusion
in multicomponent mixtures and also perform a Chapman-Enskog analysis to show that the MS continuum
equations can be correctly recovered from the developed LB model. In addition, considering the fact that the
MS-theory-based diffusion equations are just a diffusion type of partial differential equations, we can also adopt
much simpler lattice structures to reduce the computational cost of present LB model. We then conduct some
simulations to test this model and find that the results are in good agreement with the previous work. Besides,
the reverse diffusion, osmotic diffusion, and diffusion barrier phenomena are also captured. Finally, compared to
the kinetic-theory-based LB models for multicomponent gas diffusion, the present model does not include any
complicated interpolations, and its collision process can still be implemented locally. Therefore, the advantages
of single-component LB method can also be preserved in present LB model.
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I. INTRODUCTION

Diffusion, an important transport process, has received
increasing attention for its physical significance in the study of
most chemical engineering and energy problems [1–4]. From
the physical point of view, diffusion is the result of random
molecular motion [1], while mathematically, diffusion can
also be depicted by two classic continuum mechanical models
[1–3,5], i.e., Fick’s-law-based equations [6] and Maxwell-
Stefan (MS)-theory-based diffusion equations [7,8]. In the
first model, the diffusion flux of one component is assumed to
be proportional to the negative of its concentration gradient,
and the cross effects (or the influences of other components)
in a system with more than two components are not in-
cluded, although they are well-known to appear in reality. In
the past decades, Fick’s-law-based diffusion equations have
been widely used to investigate the multicomponent diffu-
sion problems for their simplicity, while they are only valid
for the diffusion in binary mixtures or diffusion of a dilute
species in a multicomponent system, and thus some curious
phenomena caused by the cross effects in the multicompo-
nent mixtures, including reverse diffusion (up-hill diffusion
in direction of the concentration gradient), osmotic diffusion
(diffusion without a concentration gradient), and diffusion
barrier (no diffusion with a concentration gradient) [9,10],
cannot be captured by this kind of diffusion equations [1–3].
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To account for such complex diffusion phenomena observed
in the multicomponent mixtures [2,10,11], MS-theory-based
diffusion equations must be considered. However, MS-theory-
based diffusion equations are nonlinear coupled partial differ-
ential equations, and usually it is difficult or even impossible
to obtain their analytical solutions. For this reason, most
available work focuses on the approximate solutions of such
complicated partial differential equations. Basically, there are
two possible ways that can be used to obtain the approximate
solutions of the MS-theory-based diffusion equations. The
first one is theoretical approach [1]. In this approach, usually
the MS-theory-based diffusion equations are first linearized
where the effective diffusivities are assumed to be constants,
then some mathematical methods are applied to derive the
solutions of the linearized equations [1,12,13]. Although this
approach can be used to reveal the complex diffusion mech-
anisms in multicomponent mixtures [9–11,14], it is usually
limited to one-dimensional problems and sometimes may
also bring some undesirable errors due to the assumption
of composite-independent effective diffusivities in the lin-
earized equations [15]. The other one is numerical approach
[16,17]. In the derivation of approximate solutions with this
approach, there are no assumptions, but we need to develop
some numerical schemes with certain truncation errors to dis-
cretize MS-theory-based diffusion equations. With the devel-
opment of computer technology and scientific computing, this
approach has become more popular in solving the MS-theory-
based diffusion equations. Actually, some numerical meth-
ods, including the finite-difference method [18,19], finite-
volume method [20–25], finite-element method [26–29], and
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smoothed particle hydrodynamics method [30], have been
developed to solve MS-theory-based diffusion equations.

As an alternative to the above-mentioned numerical meth-
ods for multicomponent diffusion problems, the lattice Boltz-
mann (LB) method [31,32], a mesoscopic numerical method
developed from lattice gas automata [33] or continuum Boltz-
mann equation [34], has also been adopted to study the diffu-
sion in multicomponent mixtures for its kinetic background
[35,36]. Generally, there are three main kinds of LB mod-
els, i.e., kinetic-theory-based LB models [37–46], pseudo-
potential-based LB models [47–49], and free-energy-based
LB models [50,51], that have been used for multicomponent
diffusion problems. The LB models of the first kind are
developed from some particular kinetic equations for multi-
component gas mixtures [35] and can also be viewed as a
natural extension of the LB models for single-component fluid
flows. Due to the solid physical background, these LB models
have also been applied to investigate the multicomponent
gas transport in complex porous media at pore scale level
[52–56]. However, the LB models of this kind also have
some limitations. For instance, when these LB models are
adopted to study the diffusion in multicomponent mixtures
with different molecular weights, some complicated interpola-
tions [38,45,46], modifications on the equilibrium distribution
function of the truncated Maxwellian form [38,41–43], or
finite-difference techniques [39,40,44] must be needed. In
the LB models of the second kind, a so-called pseudopoten-
tial is introduced to depict the interaction between different
species [47,48]. To obtain correct macroscopic governing
equations for multicomponent problems with different molec-
ular weights, however, some modifications on equilibrium
distribution functions and more discrete velocities are usually
needed, as reported in Ref. [49]. In the last kind of LB models
[50,51], some free-energy functions are introduced to give
the chemical potentials and mean field forcing terms, and
the equilibrium distribution functions and/or the forcing terms
must be devised properly to recover the correct macroscopic
equations.

Different from the models mentioned above, Hosseini et al.
[57] also developed a LB model for multicomponent diffu-
sion, which can be considered as a direct numerical solver
to macroscopic governing equations for multicomponent fluid
problems. To obtain correct governing equations from their
LB model, a more complicated equilibrium distribution func-
tion including a gradient term is adopted, and to further
determine the gradient term in the equilibrium distribution
function, the local schemes developed in the framework of LB
method [58–60] are used. We point out that, however, to ob-
tain the gradient term related to species i in a multicomponent
system, a linear system of equations rather than Eq. (28) in
Ref. [57] must be solved. In this work, we would propose
a MS-theory-based multiple-relaxation-time LB model for
diffusion in multicomponent mixtures where a much simpler
equilibrium distribution function is adopted. In our model, the
coupling effects among different species are reflected through
corresponding cross-collision terms, which is similar to that
in the kinetic models for multicomponent gas mixtures [61].
In addition, through the Chapman-Enskog analysis, one can
also show that the MS-theory-based diffusion equations can
be recovered correctly from this model.

The rest of the paper is organized as follows. In Sec. II,
the MS-theory-based equations for the diffusion in multi-
component mixtures are first introduced, then the LB model
for these equations is developed in Sec. III. In Sec. IV, we
present some numerical results and discussion, and finally,
some conclusions are given in Sec. V.

II. MAXWELL-STEFAN THEORY OF THE DIFFUSION IN
MULTICOMPONENT MIXTURES

For an ideal gas mixture composed of n chemical species,
the molar concentration ci of species i satisfies the following
conservation equation [1,19,62]:

∂t ci + ∇ · Ni = 0, (1)

or

∂t ci + ∇ · (ciu) = −∇ · Ji, 1 � i � n, (2)

where Ni = ciui is the molar flux of species i, Ji = ci(ui − u)
is the molar diffusion flux. ui is the molar velocity, and u is
the molar average velocity defined by

u = 1

ct

n∑
i=1

ciui =
n∑

i=1

ξiui, ct =
n∑

i=1

ci, (3)

where ξi = ci/ct is the mole fraction of species i, and ct is
total molar concentration, a constant at the isobaric condition.
Based on the definitions of molar diffusion flux and mole
fraction, one can obtain the following relations:

n∑
i=1

Ji = 0, (4a)

n∑
i=1

ξi = 1. (4b)

In the present work, we only consider the diffusion in
multicomponent mixtures, and the molar average velocity u
is assumed to be zero. In this case, Eqs. (1) and (2) can be
rewritten as

∂t ci = −∇ · Ji, 1 � i � n. (5)

In the following, we would present some details on how to
determine the molar diffusion flux Ji in the framework of MS
theory.

In the MS theory, the thermodynamical driving force di

exerted on species i is balanced by the total friction force of
species i and other species. For an ideal gas mixture at the
constant pressure P and temperature T , the driving force di

takes the following form [1,2,62]:

di = ξi

RT
∇μi = ∇ξi, (6)

where μi is the chemical potential, R is the gas constant.
However, if the mutual friction force between species i and
j is assumed to be proportional to the relative velocity and
mole fraction [2,62], and based on the balance between the
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driving forces, one can obtain

∇ξi = −
n∑

j �=i

σi jξiξ j (ui − u j ) = −
n∑

j �=i

σi j (ξ jciui − ξic ju j )

ct
,

(7)

where σi j > 0 is the drag coefficient. Through incorporating
the molar diffusion flux Ji, we can also rewrite Eq. (7) as

∇ξi = −
n∑

j �=i

ξ jJi − ξiJ j

ct Di j
, (8)

which is the so-called MS equation for species i. Di j = 1/σi j

is the MS diffusivity, and is also symmetric based on the fact
σi j = σ ji [1,62].

Next, we would determine the explicit expression of molar
diffusion flux Ji from the MS equations. Through a summa-
tion of Eq. (8) over i and with the help of Eq. (4b) or the
symmetry of Di j , we can first derive the following equation,

n∑
i=1

∇ξi = −
n∑

i=1

n∑
j �=i

ξ jJi − ξiJ j

ct Di j
= 0, (9)

which indicates that the MS equations for all n species are
linearly dependent. To eliminate the linear dependence, we
can use Eqs. (4a) to remove the molar diffusion flux Jn and
the equation related to ∇ξn from the MS Eqs. (8),

∇ξi = − 1

ct

⎛
⎝Ji

n∑
j �=i

ξ j

Di j
− ξi

n∑
j �=i

J j

Di j

⎞
⎠

= − 1

ct

⎛
⎝Ji

n∑
j �=i

ξ j

Di j
− ξi

n−1∑
j �=i

J j

Di j
+ ξi

Din

n−1∑
j=1

J j

⎞
⎠

= − 1

ct

⎡
⎣
⎛
⎝ ξi

Din
+

n∑
j �=i

ξ j

Di j

⎞
⎠Ji + ξi

n−1∑
j �=i

(
1

Din
− 1

Di j

)
J j

⎤
⎦,

1 � i � n − 1, (10)

which can also be rewritten in a matrix form,

ct

⎛
⎜⎜⎜⎜⎝

∇ξ1

∇ξ2

...

∇ξn−1

⎞
⎟⎟⎟⎟⎠ = −B

⎛
⎜⎜⎜⎜⎝

J1

J2

...

Jn−1

⎞
⎟⎟⎟⎟⎠, (11)

where B is a (n − 1) × (n − 1) matrix, and the element Bi j is
given by

Bi j =
{

ξi
(

1
Din

− 1
Di j

)
, i �= j,

ξi

Din
+∑n

k �=i
ξk

Dik
, i = j.

(12)

If the matrix B is assumed to be invertible, then Eq. (11) can
be written as ⎛

⎜⎜⎜⎜⎝
J1

J2

...

Jn−1

⎞
⎟⎟⎟⎟⎠ = −ct D̃

⎛
⎜⎜⎜⎜⎝

∇ξ1

∇ξ2

...

∇ξn−1

⎞
⎟⎟⎟⎟⎠, (13)

where D̃ = B−1 is the matrix of the effective diffusivity or
generalized Fick diffusivity and is also a function of Di j and
ξi. From Eq. (13), we can express the molar diffusion flux Ji

as

Ji = −ct

n−1∑
j=1

D̃i j∇ξ j, 1 � i � n − 1, (14)

which can be considered as the generalized Fick’s law.
Substituting Eq. (14) into Eq. (5) and based on the defi-

nition of mole fraction, one can obtain the MS-theory-based
diffusion equation for species i,

∂tξi = ∇ ·
⎛
⎝n−1∑

j=1

D̃i j∇ξ j

⎞
⎠, 1 � i � n − 1, (15)

while for the species n, the mole fraction ξn can be de-
termined directly by Eq. (4b). In the following, we adopt
the MS-based diffusion Eq. (15) to study the diffusion in
multicomponent mixtures. It should be noted that, however,
in the derivation of the MS-theory-based diffusion Eq. (15),
the assumptions of u = 0, constant temperature and pressure
has been adopted, which gives rise to the zero total molar
flux (Nt =∑n

i=1 Ni = ct u = 0) and constant total molar con-
centration (ct = constant). That is to say that the MS-theory-
based diffusion equations are only suitable for the special
multicomponent diffusion problems with zero total molar flux
and constant total molar concentration.

Here we would also like to present some remarks on some
special cases of the MS-theory-based Eq. (15), especially the
matrix D̃ and molar diffusion flux Ji [Eq. (14)].

Remark I. For a binary mixture, we can obtain the follow-
ing relations:

J1 = −J2, ξ1 + ξ2 = 1, D12 = D21 = D, (16)

where D is denoted as the diffusivity. Based on Eq. (16), one
can rewrite the molar diffusion flux Ji, i.e., Eq. (14), as

Ji = −ctD∇ξi, i = 1, 2, (17)

which is just the classic Fick’s law.
Remark II. For a multicomponent system where all MS

diffusivities Di j (1 � i, j � n − 1) are equal to each other,
and are represented by D, the matrix B [see Eq. (12)] and
its inverse D̃ can be simplified by

B = 1

D
I, D̃ = DI, (18)

where I is the (n − 1) × (n − 1) unit matrix. With the help
of Eq. (18), the molar diffusion flux Ji [see Eq. (14)] can be
written in a much simpler form,

Ji = −ctD∇ξi, 1 � i � n − 1, (19)

which is also consistent with the Fick’s law.
Remark III. For a multicomponent system where the

species i is dilute (ξi → 0), the elements of matrix B (Bi j) can
be approximated by

Bi j =
{

0, i �= j,

Deff , i = j,
Deff = 1

/ n∑
k �=i

ξk

Dik
, (20)
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whereDeff is the effective diffusivity. Then we can obtain the
molar diffusion flux of specified dilute species i from Eq. (10),

Ji = −ctDeff∇ξi. (21)

It is clear that Eq. (21) is similar to the Fick’s law, but the
effective diffusivity Deff is a function of ξ j ( j �= i) and Di j

rather than a constant.

Remark IV. For a three-component system, the matrix B
can be explicitly expressed as [62]

B =
[

1
D13

+ ξ2
(

1
D12

− 1
D13

)
ξ1
(

1
D13

− 1
D12

)
ξ2
(

1
D23

− 1
D12

)
1

D23
+ ξ1

(
1

D12
− 1

D23

)
]
, (22)

where Eq. (4b) has been used. It is also easy to show that the
matrix B is invertible since its determinant is not equal to zero,
as seen below:

|B| = ξ1

D12D13
+ ξ2

D12D23
+ ξ3

D13D23
> 0. (23)

Then one can obtain the inverse of matrix B,

D̃ = 1
ξ1

D12D13
+ ξ2

D12D23
+ ξ3

D13D23

[
1

D23
+ ξ1

(
1

D12
− 1

D23

)
ξ1
(

1
D12

− 1
D13

)
ξ2
(

1
D12

− 1
D23

)
1

D13
+ ξ2

(
1

D12
− 1

D13

)
]
, (24)

or equivalently,

D̃ = 1

ξ1D23 + ξ2D13 + ξ3D12

[
D13(ξ1D23 + (1 − ξ1)D12) ξ1D23(D13 − D12)

ξ2D13(D23 − D12) D23(ξ2D13 + (1 − ξ2)D12)

]
, (25)

which can be used to determine the explicit expression of molar diffusion flux Ji.

III. LATTICE BOLTZMANN MODEL FOR
MAXWELL-STEFAN-THEORY-BASED

DIFFUSION EQUATIONS

The LB method, as one of kinetic-theory-based numerical
approaches, has made great progress in the study of complex
fluid flows in the past three decades [31,32,35,36,63–67],
while simultaneously, it can also be considered as a general
solver to nonlinear diffusion and convection-diffusion equa-
tions [59,68–78]. Based on the collision term, the basic LB
models can be classified into three categories, i.e., the single-
relaxation-time (SRT) LB model (or lattice BGK model)
[79], the two-relaxation-time (TRT) LB model [80], and the
multiple-relaxation-time (MRT) LB model (or generalized LB
model) [81]. Here we consider the MRT-LB model for its
advantages in generalization, stability, and accuracy [82–86].

Considering the fact that the MS-theory-based equations
are only a special case of nonlinear coupled diffusion equa-
tions, some available LB models for diffusion or convection-
diffusion equations can be extended to solve the MS-theory-
based diffusion equations. In this work, we propose a MRT-
LB model for these diffusion equations, and incorporate the
cross collision terms in this model to reflect the coupling
effects among different species which is similar to that in
Ref. [70].

A. Multiple-relaxation-time lattice Boltzmann model

In the MRT-LB model for Eq. (15), the evolution equation
can be written as [81,82]

f i
k (x + ckδt, t + δt )

= f i
k (x, t ) −

n−1∑
j=1

(M−1�i jM)kα

[
f j
α (x, t ) − f j,(eq)

α (x, t )
]
,

1 � i � n − 1, (26)

where f i
k (x, t ) (k = 0, 1, · · · , q − 1 or 1, 2 · · · , q, with

q representing the number of discrete velocity directions) is
the distribution function of species i at position x and time
t , ck is the discrete velocity. f i,(eq)

k (x, t ) is the equilibrium
distribution function, and for diffusion problems, it can be
simply given by [69,76,78]

f i,(eq)
k (x, t ) = ωkξi, (27)

where ωk is the weight coefficient. In some commonly used
DdQq (q velocity directions in d dimensional space) lattice
models, the weight coefficient ωk and discrete velocity ck are
defined as [78]

D1Q2:

ω1 = ω2 = 1
2 , (28a)

c = (1,−1)c, (28b)

D1Q3:

ω0 = 2
3 , ω1 = ω2 = 1

6 , (29a)

c = (0, 1,−1)c, (29b)

D2Q4:

ωi=1−4 = 1

4
, (30a)

c =
(

1 0 −1 0
0 1 0 −1

)
c, (30b)

D2Q5:

ω0 = 1

3
, ωi=1−4 = 1

6
, (31a)

c =
(

0 1 0 −1 0

0 0 1 0 −1

)
c, (31b)
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D2Q9:

ω0 = 4

9
, ωi=1−4 = 1

9
, ωi=5−8 = 1

36
, (32a)

c =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c,

(32b)

D3Q6:

ωi=1−6 = 1

6
, (33a)

c =
⎛
⎝1 −1 0 0 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1

⎞
⎠c, (33b)

D3Q7:

ω0 = 1

4
, ωi=1−6 = 1

8
, (34a)

c =

⎛
⎜⎝

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎞
⎟⎠c, (34b)

D3Q15:

ω0 = 2

9
, ωi=1−6 = 1

9
, ωi=7−14 = 1

72
, (35a)

c =

⎛
⎜⎝

0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1

0 0 0 1 −1 0 0 1 −1 −1 1 1 −1 −1 1

0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 1 −1

⎞
⎟⎠c. (35b)

c = δx/δt is the lattice speed, and δx and δt are the lattice
spacing and time step, respectively. We note that although
there are some other lattice models [35,36], for the sake of
brevity, they are not presented here. M is a q × q transforma-
tion matrix, and can be used to determine the moments of the
distribution function f i

k and equilibrium distribution function
f i,(eq)
k in moment space,

mi := Mfi, mi,(eq) := Mf i,(eq), (36)

where f i = ( f i
0, f i

1, · · · , f i
q−1)� or ( f i

1, f i
2, · · · , f i

q)�,

f i,(eq) = ( f i,(eq)
0 , f i,(eq)

1 , · · · , f i,(eq)
q−1 )� or ( f i,(eq)

1 , f i,(eq)
2 ,

· · · , f i,(eq)
q )� with � representing the transpose of a matrix.

�i j = diag(λi j
0 , λ

i j
1 , · · · , λ

i j
q−1) or diag(λi j

1 , λ
i j
2 , · · · , λ

i j
q )

is a diagonal relaxation matrix, and λ
i j
k is the relaxation

parameter corresponding to the kth moment of distribution
function.

For a specified one-, two-, or three-dimensional prob-
lem, one can first determine the corresponding lattice model,
the transformation matrix M and the relaxation matrix �i j

[78,84], then the evolution Eq. (26) can be implemented with
the following two steps:

Collision: mi,+(x, t )

= mi(x, t ) −
n−1∑
j=1

�i j[m j (x, t ) − m j,(eq)(x, t )], (37a)

Propagation: f i
k (x + ckδt, t + δt )

= f i,+
k (x, t ), f i,+

k (x, t ) = M−1mi,+(x, t ), (37b)

where f i,+
k (x, t ) is the post-collision distribution function.

We note that although the present model is suitable for one-,
two-, and three-dimensional multicomponent diffusion prob-
lems, for the sake of simplicity, here we only consider the
two-dimensional MRT-LB model with D2Q5 lattice structure

in which the transformation matrix M and relaxation matrix
�i j are given by [74,78]

M = Cd M0, Cd = diag(1, c, c, c2, c2),

M0 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

0 1 −1 1 −1

−4 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠, (38a)

�i j = diag
(
λ

i j
0 , λ

i j
1 , λ

i j
1 , λ

i j
2 , λ

i j
2

)
. (38b)

Based on Eq. (38a), we have

M−1
0 �i jM0 = M−1�i jM, (39)

which can also be used to rewrite the evolution Eq. (26) in
another form,

f i
k (x + ckδt, t + δt )

= f i
k (x, t ) −

n−1∑
j=1

(
M−1

0 �i jM0
)

kα

× [ f j
α (x, t ) − f j,(eq)

α (x, t )
]
. (40)

We also point out that in Eq. (38b), the second and third diag-
onal elements of relaxation matrix �i j are denoted by a same
parameter λ

i j
1 since both of them correspond to the first-order

moment of distribution function, while the fourth and fifth
relaxation parameters represented by λ

i j
2 corresponds to the

second-order moment of distribution function. Besides, one
can also show that if all the relaxation parameters are equal to
each other, the MRT-LB model would reduce to the SRT-LB
model [79], while if the relaxation parameters corresponding
to odd and even-order moments are given by two different
values (e.g., λ

i j
0 = λ

i j
2 = λ

i j
e , λ

i j
1 = λ

i j
o ), the MRT-LB model

would be the same as the TRT-LB model [71].
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In present MRT-LB model, the mole fraction ξi can be
computed through a summation of the distribution function
[76],

ξi(x, t ) =
4∑

k=0

f i
k (x, t ), (41)

the relation between the effective diffusivity D̃i j and elements
of relaxation matrices can be expressed by the following
Eq. (60).

In addition, it should be noted that in the MRT-LB model,
besides the relaxation parameter λ

i j
1 corresponding to effective

diffusivity D̃i j , there are also two free relaxation parameters
that need to be determined. In the following simulations, the
relaxation parameter λ

i j
0 corresponding to the conservation

variable is set to be λ
i j
0 = 1 since it almost has no influence

on the accuracy and stability of MRT-LB model [76,84]. The
relaxation parameter λ

i j
2 corresponding to the second-order

moment, however, is a key parameter [84], and to eliminate
the discrete effect of half-way bounce-back boundary condi-
tion, the following relations are adopted,

λ
i j
2 =

{
λ

i j
1 , i �= j,

8
(
λ

i j
1 − 2

)/(
λ

i j
1 − 8

)
, i = j.

(42)

Finally, we point out that compared to the kinetic-theory-
based LB models, the most striking feature of the present
LB model is that it can readily handle the multicomponent
diffusion problems with different molecular weights, and does
not include any complicated interpolations.

B. The Chapman-Enskog analysis

We now conduct a detailed Chapman-Enskog analysis and
show how to derive the MS-theory-based diffusion equations
from present MRT-LB model. In the Chapman-Enskog anal-
ysis, the distribution function f i

k (x, t ), the derivatives of time
and space can be expanded as [31,32,35,36]

f i
k = f i,(0)

k + ε f i,(1)
k + ε2 f i,(2)

k + · · · , (43a)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1 = ε
(
∂x1 , ∂y1

)�
, (43b)

where ε is a small parameter.
Taking the Taylor expansion to Eq. (26), we have

Dk f i
k + δt

2
D2

k f i
k = −

n−1∑
j=1

(M−1�̄i jM)kα

[
f j
α − f j,(eq)

α

]
, (44)

where Dk = ∂t + ck · ∇, �̄i j = �i j/δt . Substituting Eq. (43)
into Eq. (44) yields the following equation:

εDk1 f i,(0)
k + ε2

[
∂t2 f i,(0)

k + Di1 f i,(1)
k + δt

2
D2

k1 f i,(0)
k

]

= −
n−1∑
j=1

(M−1�̄i jM)kα

[
f j,(0)
α + ε f j,(1)

α + ε2 f j,(2)
α − f j,(eq)

α

]
+ O(ε3), (45)

where Dk1 = ∂t1 + ck · ∇1.

From Eq. (45), one can obtain the zeroth-, first-, and
second-order equations in ε,

ε0 :
n−1∑
j=1

(M−1�̄i jM)kα

[
f j,(0)
α − f j,(eq)

α

] = 0, (46a)

ε1 : Dk1 f i,(0)
k = −

n−1∑
j=1

(M−1�̄i jM)kα f j,(1)
α , (46b)

ε2 : ∂t2 f i,(0)
k + Dk1 f i,(1)

k + δt

2
D2

k1 f i,(0)
k

= −
n−1∑
j=1

(M−1�̄i jM)kα f j,(2)
α . (46c)

If we introduce the matrix �̃,

�̃ =

⎛
⎜⎜⎜⎜⎝

�11 �12 · · · �1(n−1)

�21 �22 · · · �2(n−1)

...
...

...
...

�(n−1)1 �(n−1)2 · · · �(n−1)(n−1)

⎞
⎟⎟⎟⎟⎠, (47)

and assume that the matrix is nonsingular, then one can obtain
the following equation from Eq. (46a):

ε0 : f i,(0)
k = f i,(eq)

k . (48)

Multiplying the transformation matrix M on both sides
of the zeroth-, first-, and second-order equations in ε, i.e.,
Eqs. (48), (46b), and (46c), we have

ε0 : mi,(0) = mi,(eq), (49a)

ε1 : D1mi,(0) = −
n−1∑
j=1

�̄i jm j,(1), (49b)

ε2 : ∂t2 mi,(0) + D1

⎛
⎝mi,(1) − 1

2

n−1∑
j=1

�i jm j,(1)

⎞
⎠

= −
n−1∑
j=1

�̄i jm j,(2), (49c)

where Eq. (49b) has been adopted to obtain Eq. (49c). mi,(k) =
Mf i,(k) (k = 0, 1, 2) with f i,(k) = ( f i,(k)

0 , · · · , f i,(k)
4 )�.

Based on Eqs. (27) and (49a), we can express mi,(k)(k =
0, 1, 2) as

mi,(0) = ξi
(
1, 0, 0, 0, − 2

3 c2)�,

mi,(1) = (
0, mi,(1)

1 , . . . , mi,(1)
4

)�
,

mi,(2) = (
0, mi,(2)

1 , · · · , mi,(2)
4

)�
. (50)

D1 = ∂t I + Mdiag(c0α∇0α, · · · , c4α∇4α )M−1, and Mdiag
(c0α∇0α, · · · , c4α∇4α )M−1 can also be determined
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explicitly by

Mdiag(c0α∇0α, · · · , c4α∇4α )M−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ∂x ∂y 0 0
2c2

5 ∂x 0 0 1
2∂x

1
10∂x

2c2

5 ∂y 0 0 − 1
2∂y

1
10∂y

0 c2∂x −c2∂y 0 0

0 c2∂x c2∂y 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (51)

Based on Eq. (49b), we can first derive the first-order equa-
tions in ε, but for simplicity, here only the first three that are
used in the following analysis are presented:

∂t1ξi = 0, (52a)

c2

3
∂x1ξi = − 1

δt

n−1∑
j=1

λ
i j
1 m j,(1)

1 , (52b)

c2

3
∂y1ξi = − 1

δt

n−1∑
j=1

λ
i j
1 m j,(1)

2 , (52c)

where Eqs. (50) and (51) have been used. Similarly, from
Eq. (49c), one can also derive the second-order equations in
ε, but here we only present the first one corresponding to the
conservative variable ξi,

∂t2ξi + ∂x1

⎛
⎝mi,(1)

1 − 1

2

n−1∑
j=1

λ
i j
1 m j,(1)

1

⎞
⎠

+ ∂y1

⎛
⎝mi,(1)

2 − 1

2

n−1∑
j=1

λ
i j
1 m j,(1)

2

⎞
⎠ = 0, (53)

which can also be written in the matrix form,

∂t2ξ + ∂x1

(
I − 1

2�1
)
m(1)

1 + ∂y1

(
I − 1

2�1
)
m(1)

2 = 0, (54)

where ξ , m(1)
k (k = 1, 2) and �1 are defined by

ξ = (ξ1, · · · , ξn−1)�, (55a)

m(1)
k = (

m1,(1)
k , · · · , mn−1,(1)

k

)�
, (55b)

�1 =

⎛
⎜⎜⎜⎜⎜⎝

λ11
1 λ12

1 · · · λ
1(n−1)
1

λ21
1 λ22

1 · · · λ
2(n−1)
1

...
...

...
...

λ
(n−1)1
1 λ

(n−1)2
1 · · · λ

(n−1)(n−1)
1

⎞
⎟⎟⎟⎟⎟⎠. (55c)

However, from Eqs. (52b) and (52c), one can also obtain
m(1)

1 and m(1)
2 ,

m(1)
1 = −c2

3
δt�−1

1 ∂x1ξ, (56)

m(1)
2 = −c2

3
δt�−1

1 ∂y1ξ, (57)

where �1 has been assumed to be invertible. Substituting
Eqs. (56) and (57) into Eq. (54) leads to the following result:

∂t2ξ = ∂x1

[
c2

3
δt

(
�−1

1 − 1

2
I
)

∂x1ξ

]

+ ∂y1

[
c2

3
δt

(
�−1

1 − 1

2
I
)

∂y1ξ

]
= 0, (58)

from which one can also obtain the equation for species i,

∂t2ξi = ∇1 ·
⎛
⎝n−1∑

j=1

D̃i j∇1ξ j

⎞
⎠, (59)

where the diffusivity D̃i j or the matrix D̃ are given by

D̃i j = c2

3
δt

(
�−1

1 − 1

2
I
)

i j

, D̃ = c2

3
δt

(
�−1

1 − 1

2
I
)

. (60)

Through a combination of Eqs. (52a) and (59), i.e., ε ×
(52a) + ε2 × (59), we can correctly recover the MS-theory-
based diffusion equation for species i [see Eq. (15)].

Now let us focus on how to calculate the gradient term
∇ξi (1 � i � n − 1), which can be used to determine the
diffusion flux [see Eq. (13)]. Generally speaking, there are
two possible ways that can be applied to obtain ∇ξi. The first
one is to directly use the nonlocal finite-difference scheme to
compute ∇ξi, while the second is, in the framework of LB
method, to calculate ∇ξi locally through the nonequilibrium
part of the distribution function [59,60]. Actually, the second
approach has also been adopted to improve stability of LB
method [87] and to predict effective diffusivity of porous
media [86].

Here we only consider the latter one for its locality in the
computation of gradient term. If we multiply ε on both sides
of Eqs. (52b) and (52c), then one can obtain

c2

3
∂xξi = − 1

δt

n−1∑
j=1

λ
i j
1

[
m j

1 − m j,(0)
1

] = − 1

δt

n−1∑
j=1

λ
i j
1 m j

1

= − 1

δt

n−1∑
j=1

λ
i j
1

4∑
k=0

ck,x f j
k , (61a)

c2

3
∂yξi = − 1

δt

n−1∑
j=1

λ
i j
1

[
m j

2 − m j,(0)
2

] = − 1

δt

n−1∑
j=1

λ
i j
1 m j

2

= − 1

δt

n−1∑
j=1

λ
i j
1

4∑
k=0

ck,y f j
k , (61b)

where the assumptions of εm j,(1)
1 = m j

1 − m j,(0)
1 and εm j,(1)

2 =
m j

2 − m j,(eq)
2 [59,60,76], and the fact m j,(0)

1 = m j,(0)
2 = 0 have

been adopted. From the above equations, we can finally
determine ∇ξi = (∂xξi, ∂yξi )�,

∇ξi = − 3

δtc2

n−1∑
j=1

λ
i j
1

4∑
k=0

ck f j
k , (62)

which can be further used to calculate the diffusion flux J [see
Eq. (13)].
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IV. NUMERICAL VALIDATION AND DISCUSSION

In this section, several benchmark problems that appeared
in Refs. [1,11,17,19,44,91] are used to validate present MRT-
LB model. The codes are written in C, and all the computa-
tions are conducted on an Intel Core (TM) i7-6700 processor
with four cores of 3.40 GHz and 16 GB RAM. In our simu-
lations, the halfway anti-bounce-back scheme is used for the
Dirichlet boundary condition [88–90],

f i
k (x f , t + δt ) = − f i,+

k̄
(x f , t ) + 2ωk̄ξi,b, (63)

while for no-flux boundary condition, the standard halfway
bounce-back scheme is adopted [74,88],

f i
k (x f , t + δt ) = f i,+

k̄
(x f , t ), (64)

where f i
k (x f , t + δt ) is the unknown distribution function

at the boundary node x f . ξi,b is the mole fraction at the
boundary, specified by the Dirichlet boundary condition, and
k̄ is the opposite direction of k. In the initialization process,
the distribution function is given by its equilibrium part,

f i
k (x, t )|t=0 = f i,(eq)

k (x, t )|t=0 = ωkξi|t=0. (65)

Additionally, to quantitatively measure the deviation be-
tween the numerical and analytical solutions, the relative error
based on L2 norm is used here,

E (φ) =
√∑

(x, y) |φa(x, y, t ) − φn(x, y, t )|2∑
(x, y) |φa(x, y, t )|2 , (66)

where φa and φn denote the analytical and numerical results
of the variable φ (e.g., the mole fraction ξi or one element of
the diffusion flux Ji).

A. A simple two-component diffusion problem

We first consider a simple two-component diffusion prob-
lem with a constant diffusivityD [see Eq. (16)] [91], which is
also used to test the kinetic-theory-based LB models [44,45].
For this problem, the MS-theory-based diffusion equation
would reduce to the Fick’s-law-based conservation equation.
For simplicity, here we only consider the mole fraction ξ1

since the mole fraction ξ2 can be obtained by ξ2 = 1 − ξ1.
Under the following initial and boundary conditions,

t = 0 : ξ1 = C0, x < 0, ξ1 = C1, x � 0, (67a)

x = −∞, ξ1 = C0, x = +∞, ξ1 = C1, (67b)

one can obtain the analytical solutions of ξ1 and diffusion
flux J1,

ξ1 = C0 + C1

2
+ C1 − C0

2
erf

(
x

2
√
Dt

)
, (68a)

J1 = −D∇ξ1 = −C1 − C0

2

√
D
πt

e− x2

4Dt , (68b)

where erf is the error function, and is defined by

erf(y) = 2√
π

∫ y

0
e−η2

dη. (69)

In the following, we consider the problem with the diffu-
sivity D = 0.05, C0 = 0.9, C1 = 0.1, and adopt the periodic

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ξ 1

 

 

FIG. 1. The profiles of mole fraction ξ1 at different time [Solid
line: Eq. (68a), ©: t = 1.0, �: t = 5.0, �: t = 20.0].

boundary condition in y direction. The computational domain
is fixed to be [−6, 6] × [−1, 1], and to ensure our simu-
lations to be consistent with the physical problem, x/2

√
Dt

should be large enough. We first performed some simulations
with the lattice size 240 × 40 and the relaxation parameter
λ11

1 = 1.25, and presented the results at different time in
Figs. 1 and 2. As seen from these two figures, the numerical
results of mole fraction ξ1 and diffusion flux J1 are in good
agreement with the corresponding analytical solutions.

Then we also conducted several simulations with the SRT-
LB model, in which λ11

0 = λ11
1 = λ11

2 = 1.25, and presented a
comparison between these two LB models in Table I. From
this table, one can find that the results of MRT-LB model
is more accurate than the SRT-LB model, which is mainly
caused by the adoption of Eq. (42) in the MRT-LB model. In
addition, the computational costs of the SRT-LB and MRT-LB
models are also measured at t = 20, and they are 5.639 and

−6 −4 −2 0 2 4 6
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

x

J
1

FIG. 2. The profiles of diffusion flux ξ1 at different time [Solid
line: Eq. (68b), ©: t = 1.0, �: t = 5.0, �: t = 20.0].
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TABLE I. A comparison between the errors of MRT-LB and SRT-LB models for mole fraction ξ1 and flux J1.

MRT-LB model SRT-LB model

Time E (ξ1) E (J1) E (ξ1) E (J1)

t = 1 1.4986 × 10−5 2.7702 × 10−4 1.1792 × 10−4 1.0622 × 10−3

t = 5 4.5260 × 10−6 5.5143 × 10−5 3.5758 × 10−5 2.1227 × 10−4

t = 20 2.8366 × 10−6 4.6922 × 10−5 1.3219 × 10−5 6.7868 × 10−5

6.920 s, respectively. These results show that the MRT-LB
model is about 18.5% slower than the SRT-LB model in terms
of CPU time, which is also consistent with the results reported
in Ref. [83].

This problem is also adopted to test convergence rate of the
MRT-LB model. To this end, we carried out some simulations
under different lattice sizes (δx = 1/10, 1/20, 1/30, 1/40),
and the errors of mole fraction ξ1 and diffusion flux J1

are shown in Figs. 3 and 4 where the effects of relaxation
parameter λ11

1 are also considered. As shown in these two
figures, the MRT-LB model has a second-order convergence
rate in space, both for mole fraction ξ1 and diffusion flux J1.
Besides, it is also found that although the relaxation parameter
λ11

1 has some influences on the results of mole fraction ξ1 and
diffusion flux J1, it does not affect the second-order accuracy
of MRT-LB model.

B. A three-component coupling diffusion problem

We continue to consider a three-component coupling dif-
fusion problem [17,19] that is a close approximation to the
classic experiment conducted by Duncan and Toor [10]. In
the study of this problem, the diffusivities are set to be
D12 = D13 = 0.833 and D23 = 0.168, the physical domain of
the problem is [0, 1] × [0, 1], and the initial and boundary

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

δx

E
(ξ

1
)

 

 

λ11
1 = 0.75

λ11
1 = 1.25

λ11
1 = 1.75

Line, slope = 2.0

FIG. 3. The errors of MRT-LB model for mole fraction ξ1 at the
time t = 5, the slope of the inserted line is 2.0, which indicates that
the MRT-LB model has a second-order convergence rate in space.

conditions of ξ1 and ξ2 are given by

ξ1 =
⎧⎨
⎩

0.8, 0 � x < 0.25,

1.6(0.75 − x), 0.25 � x < 0.75,

0, 0.75 � x � 1,

(70a)

ξ2 = 0.2, 0 � x � 1, (70b)

x = 0, J1 = J2 = 0, x = 1, J1 = J2 = 0, (71a)

ξi|y=0 = ξi|y=1 (i = 1, 2, 3). (71b)

Under the condition of D12 = D13, one can rewrite Eq. (24) as

D̃ =
(

D12 0

βξ2
(
1 − D12

D23

)
β

)
, (72)

where the parameter β is defined by

β =
[

1

D23
+ ξ1

(
1

D12
− 1

D23

)]−1

. (73)

We carried out some simulations with the lattice size 200 ×
200 and presented some results in Figs. 5–9. From the
Figs. 5–7, one can first observe that the numerical results at
x = 0.72 are very close to those reported in some previous
work [17,19]. Then let us focus on the changes of mole frac-
tion, diffusion flux, and the negative of mole fraction gradient
in time. As shown in Fig. 5, the mole fraction ξ1 normally
increases in time and finally approaches to the equilibrium

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

δx

E
(J

1
)

 

 

λ11
1 = 0.75

λ11
1 = 1.25

λ11
1 = 1.75

Line, slope = 2.0

FIG. 4. The errors of MRT-LB model for mole fraction J1 at the
time t = 5, the slope of the inserted line is 2.0, which indicates that
the MRT-LB model has a second-order convergence rate in space.
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FIG. 5. The mole fraction ξi (i = 1, 2) at different time (x =
0.72).

value ξ ∗
1 = 0.4 [also see Fig. 8(a) where the time t is increased

to t = 5]. Besides, from Fig. 6, we can also observe that the
diffusion flux J1 and the negative of mole fraction gradient
(−∂xξ1) decrease with the increase of time and becomes zero
when t is large enough [see Figs. 8(b) and 8(c)]. These results
on species 1 are consistent with the theory based on Fick’s
law since there are no cross effects induced by other species
(D12 = D13). However, from Fig. 5, one can also find some
curious results on the mole fraction ξ2 which are caused by the
cross effects from other species, and can also be seen clearly
from Eq. (14) under the specified matrix D given by Eq. (72).
Initially, the mole fraction ξ2 is at its equilibrium value
ξ ∗

2 = 0.2, based on the Fick’s law, there should be no mass
diffusion for species 2. The mole fraction ξ2 first decreases,
however, reaching the minimum value ξmin

2 = 0.1581 at about
t = 0.2. After that, the mole fraction ξ2 begins to increase,
reaching the equilibrium value ξ ∗

2 = 0.2 when the time is

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

J 2
/
−

∂
x
ξ 2
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J2 (Ref. [17])

J2 (Ref. [19])

−∂xξ2 (Present)

−∂xξ2 (Ref. [17])

−∂xξ2 (Ref. [19])

t=t
3

t=t
1

t=t
2

FIG. 7. The diffusion flux J2 and the negative of mole fraction
gradient (−∂xξ2) at different time (x = 0.72).

large enough [see Fig. 9(a)]. We note that these interesting
results are similar to the classic experimental results reported
in Ref. [10] and cannot be depicted by the theory based on
the simple Fick’s law. To elucidate these phenomena more
clearly, we also plotted the variations of diffusion flux and
negative of the mole fraction gradient in time in Fig. 7, from
which one can find that when the time is located in the
range of 0 < t < t1 or t2 < t < t3, the so-called reverse (or
uphill) diffusion (−J2 × ∂xξ2 < 0) is observed, while at the
time t = t1 or t2, the osmotic diffusion (∂xξ2 = 0, J2 �= 0)
can be observed, and at the time t = t3, one can observe the
phenomenon of diffusion barrier (∂xξ2 �= 0, J2 = 0). We refer
the reader to Ref. [2] for more physical explanations on these
curious phenomena.

Finally, we would also like to point out that when the time
t is large enough, the problem would reach a steady state, and
simultaneously, the diffusion flux and mole fraction gradient
would become zero [see Figs. 8(b), 8(c) 9(b), and 9(c)].
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FIG. 6. The diffusion flux J1 and the negative of mole fraction gradient (−∂xξ1) at different time (x = 0.72).
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FIG. 8. The distributions of mole fraction ξ1, diffusion flux J1

and negative of mole fraction gradient (−∂xξ1) at different time.

C. Three-component diffusion in the Loschmidt tube

Arnold and Toor [11] investigated the unsteady diffusion
of three components in a Loschmidt tube (see Fig. 10 where
the schematic of the problem is presented) with the length
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FIG. 9. The distributions of mole fraction ξ2, diffusion flux J2

and negative of mole fraction gradient (−∂xξ2) at different time.

(L) determined by (L/π )2 = 1/60 m2, and also found some
interesting diffusion phenomena. The system they considered
is composed of methane (CH4, species 1), argon (Ar, species
2), and hydrogen (H2, species 3), and the binary diffusivi-
ties among different species are D12 = 21.57 mm2/s, D13 =
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y = −L

y = L

−L ≤ x ≤ L

y = 0

FIG. 10. Schematic of the three-component diffusion in the
Loschmidt tube.

77.16 mm2/s, and D23 = 83.35 mm2/s [1,11]. We note that
this problem is more complicated than the one above, since
the diffusion equations for three species are fully coupled. The
initial and boundary conditions of the problem are given by
[1,11]

0 � y � L : ξ1 = 0.515, ξ2 = 0.485, ξ3 = 0.0, (74a)

−L � y � 0 : ξ1 = 0.0, ξ2 = 0.509, ξ3 = 0.491, (74b)

y = ±L,
∂ξi

∂y
= 0 (i = 1, 2, 3), (75)

x = ±L, ξi|x=−L = ξi|x=L (i = 1, 2, 3). (76)

Before performing simulations, we first introduce the follow-
ing dimensionless parameters:

x̄ = x

Lref
, ȳ = y

Lref
, t̄ = t

tref
, D̄i j = Di jtref

L2
ref

, (77)

where Lref = L = 100π × √
1/60 cm, tref = L2

ref s/cm2.
Based on above dimensionless parameters, the dimensionless
length of Loschmidt tube and the dimensionless diffusivities
can be determined as

L̄ = 1.0, D̄12 = 0.2157, D̄13 = 0.7716, D̄23 = 0.8335.

(78)
Similar to the above problem, the lattice size 200 × 200 is still
applied in our simulations, and to give a comparison between
the present results and some available work [1,11], here we
also measured the average mole fractions ξ̄i (i = 1, 2) in the
bottom and top parts of Loschmidt tube,

Bottom: ξ̄i = 1

2L2

∫ L

x=−L

∫ 0

y=−L
ξidxdy,

Top: ξ̄i = 1

2L2

∫ L

x=−L

∫ L

y=0
ξidxdy, (79)
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Bottom

FIG. 11. The average mole fraction ξ̄1 at different time (Solid and
dashed lines: Present results;� and ©: Experimental data [1]; � and
�: Linearized theory [1]; h: hour).

and presented the results in Figs. 11 and 12. From these two
figures, one can observe that our results are in agreement with
the available experimental data and linearized theory [1].

In addition, it is also found from Fig. 11 that the average
mole fraction ξ̄1 in top part of the Loschmidt tube decreases
with the increase of time, while the average mole fraction ξ̄1

in bottom tube shows an opposite trend. Actually, if the time is
large enough (e.g., t = 5.0 h, h denotes the word “hour”), the
average values of mole fraction ξ̄1 in the bottom and top parts
of the Loschmidt tube would reach to its equilibrium value
ξ ∗

1 = 0.2575, which can be seen clearly from the results in
Fig. 13(a). We also noted that although there are cross effects
for the mole faction ξ1, the changes of its average values are
similar to theory based on the Fick’s law.
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FIG. 12. The average mole fraction ξ̄2 at different time (Solid and
dashed lines: Present results;� and ©: Experimental data [1]; � and
�: Linearized theory [1]).
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FIG. 13. The profiles of mole fraction ξ̄1 along y direction.

Figure 12 shows the change of the average mole frac-
tion ξ̄2 in time. As seen from this figure, the average mole
fraction ξ̄2 in the bottom part of the Loschmidt tube first
increases and is up to the maximum value at the time t∗ =
0.35 h, then it begins to decrease, and would reach to its
equilibrium value ξ ∗

2 = 0.497 when the time is large enough
(see Fig. 14). However, the average mole fraction ξ̄2 in the
top part of the Loschmidt tube presents an opposite trend
during the time evolution, namely, it first decreases before
t = t∗, then begins to increase when t > t∗, and approaches
to its equilibrium value ξ ∗

2 = 0.497 as time goes on. Com-
pared to the average mole fraction ξ̄1, these curious results
of the average mole fraction ξ̄2 are caused by the cross
effects among different species, which can be confirmed by
Eq. (15).

In addition, we also presented the profiles of mole fractions
ξ1 and ξ2 along y direction in Figs. 13 and 14. Similar to the
results in Figs. 11 and 12, the mole fraction ξ1 in top part
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FIG. 14. The profiles of mole fraction ξ̄2 along y direction.

of the Loschmidt tube decreases with the increase of time,
while the mole fraction ξ1 in bottom part of the Loschmidt
tube increases in time, and finally both of them reach to
the equilibrium value ξ ∗

1 = 0.2575 (see Fig. 13). However,
the mole fraction ξ2 shows some curious results although
it approaches to the equilibrium value ξ ∗

2 = 0.497 with the
increase of time. At the beginning, the distribution of mole
fraction ξ2 in the Loschmidt tube is not far from its equilib-
rium state (ξ ∗

2 = 0.497), while under the cross effect caused
by other species, the larger mole fraction ξ2 in the bottom part
of the Loschmidt tube further increases, and simultaneously,
the smaller mole fraction ξ2 in top part of the Loschmidt
tube oppositely decreases when the time is less than a critical
value (see the results at t = 0.1 h, 0.3 h in Fig. 14). Then
the mole fraction ξ2 in bottom part of the Loschmidt tube
begins to decrease, and the mole fraction ξ2 in top part of the
Loschmidt tube increases, and finally they would reach to the
equilibrium value ξ ∗

2 = 0.497 (see the results at t = 5.0 h in
Fig. 14).

V. CONCLUSIONS

In this work, we first developed a MS-theory-based MRT-
LB model for the diffusion in multicomponent mixtures with
zero total molar flux and constant total molar concentration,
and also performed a Chapman-Enskog analysis to show that
the MS-theory-based diffusion equations can be correctly
recovered from present MRT-LB model. Compared to the
available LB models based on kinetic theory, the present LB
model is much simpler, and does not need to apply any in-
terpolations or finite-difference techniques for the multicom-
ponent diffusion problems with different molecular weights.
Then we also tested the developed LB model with some
benchmark problems, and found the present results agree
well with the analytical solutions, available numerical solu-
tions, the experimental data and/or the approximated linear
theory. Besides, we would also like to emphasize that the
present LB model can also accurately capture the interest-
ing diffusion phenomena (osmotic diffusion, reverse diffu-
sion and diffusion barrier) inherent in the multicomponennt
systems.

Finally, it should be noted that in this work, we only con-
sider the diffusion process in the multicomponennt system.
In reality, however, the convection (including diffusion and
advection) process, as one of the major types of mass transfer,
is more prevalent, and would be investigated in a future
work.
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