
PHYSICAL REVIEW E 99, 023311 (2019)

Network inference in stochastic systems from neurons to currencies: Improved performance
at small sample size

Danh-Tai Hoang,1,2 Juyong Song,3,4,5 Vipul Periwal,1,* and Junghyo Jo6,7,†

1Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
Bethesda, Maryland 20892, USA

2Department of Natural Sciences, Quang Binh University, Dong Hoi, Quang Binh 510000, Vietnam
3Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

4Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
5Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

6School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
7Department of Statistics, Keimyung University, Daegu 42601, Korea

(Received 31 October 2018; revised manuscript received 23 January 2019; published 15 February 2019)

The fundamental problem in modeling complex phenomena such as human perception using probabilistic
methods is that of deducing a stochastic model of interactions between the constituents of a system from observed
configurations. Even in this era of big data, the complexity of the systems being modeled implies that inference
methods must be effective in the difficult regimes of small sample sizes and large coupling variability. Thus,
model inference by means of minimization of a cost function requires additional assumptions such as sparsity of
interactions to avoid overfitting. In this paper, we completely divorce iterative model updates from the value of a
cost function quantifying goodness of fit. This separation enables the use of goodness of fit as a natural rationale
for terminating model updates, thereby avoiding overfitting. We do this within the mathematical formalism of
statistical physics by defining a formal free energy of observations from a partition function with an energy
function chosen precisely to enable an iterative model update. Minimizing this free energy, we demonstrate
coupling strength inference in nonequilibrium kinetic Ising models, and show that our method outperforms other
existing methods in the regimes of interest. Our method has no tunable learning rate, scales to large system
sizes, and has a systematic expansion to obtain higher-order interactions. As applications, we infer a functional
connectivity network in the salamander retina and a currency exchange rate network from time-series data of
neuronal spiking and currency exchange rates, respectively. Accurate small sample size inference is critical for
devising a profitable currency hedging strategy.
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I. INTRODUCTION

An explosion in data availability in recent years has ush-
ered in a new era of data-driven research for natural and
social sciences. Identifying systems dynamics from observed
data, e.g., biochemical reactions [1], gene expression mea-
surements [2], neuronal or brain region activities [3–6], and
population dynamics [7], is of fundamental interest in science
[8–12]. For complex phenomena, such as human perception,
modeling system dynamics in a probabilistic framework be-
came possible with the advent of inexpensive computational
resources, and has led to great progress in the last 25 years.
Regardless of whether stochasticity is inherent in the sys-
tem or only apparent due to partial observability [13], many
stochastic processes have been analyzed by autoregressive-
moving-average models [14] or probabilistic directed acyclic
graphical models, often termed Bayesian networks [15].

The structure of such dynamic processes is often unknown
and, in the social sciences in particular, there may be no
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underlying fundamental theory to delineate possible models.
Thus, a data-driven approach has merit for the inference of
models from time-series data [16]. Machine learning using
recurrent neuronal networks is such an approach [17], but
it usually requires a large amount of training data and is
computationally intensive. Given time series of N variables,
network inference rapidly becomes computationally demand-
ing with increasing N. Even restricting to pair-wise interac-
tions requires determining N2 parameters and demands L �
N2 samples. Including higher-order interactions leads to an
exponential increase in the number of model parameters, and
a concomitant increase in required sample size. In scientific
contexts, however, we often encounter the case that data
generated from experiments are not big enough to recon-
struct the interaction network for a given system. Theorists
contend with the computational difficulties of inferring large
systems by positing properties such as sparsity of interactions
or specifying distributions of couplings, usually with scant
experimental support.

Statistical physics is often used for model inference
[18,19], but, in fact, for small sample sizes, the observed
configurations of the system may bear no semblance to ran-
dom sampling or a thermodynamic limit. We develop here
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an iterative parameter-free model estimator using only the
mathematical formalism of statistical physics to define a free
energy of data, and show that minimizing this free energy
enables a systematic nonparametric model inference.

Over-fitting is a major problem in the analysis of under-
determined systems. Cross validation splits the observation
into a training set and a testing set, e.g., in a (k − 1)-to-1
proportion, namely, k-fold cross validation, for model training
and validating, respectively [20]. However, for small sample
sizes, it is imperative to avoid further reductions in the data
available for training. Approaches such as LASSO [21] and
Ridge regression [22,23] add a penalty for nonzero coupling
strengths. Regularization terms have been widely applied for
inference of sparse networks [24,25]. Here, by decoupling
an iterative multiplicative model update step from any cost
function minimization, we are free to use the likelihood or
any other measure of discrepancy between observation and
model expectation as a stopping criterion, so that we can use
the entire data set for model inference.

In Sec. I, we explain the theory underlying our approach.
We demonstrate that our free energy minimization (FEM)
approach infers coupling strengths in nonequilibrium kinetic
Ising models, outperforming previous approaches particularly
in the large coupling variability and small sample size regimes
in Sec. III. Real data are always a stringent test of model
inference, so we demonstrate applications of FEM to infer
biological and financial networks from neuronal activities and
currency fluctuations. Finally, we summarize the computa-
tional merits of FEM in Sec. IV. Some mathematical details
are explained in the Supplemental Material [26]. We provide
complete source code and documentation on GITHUB [27].

II. THEORY

The kinetic Ising model is commonly used as an illustrative
example in stochastic model inference. In this model, the
N-spin state σ = (σ1, . . . , σN ) at time t + 1 is stochastically
determined from the current state σ (t ) at time t with the
following conditional probability:

P(σi(t + 1)|σ (t )) = exp[σi(t + 1)Hi(σ (t ))]
exp[Hi(σ (t ))] + exp[−Hi(σ (t ))]

, (1)

for i = 1, . . . , N. The local field Hi(σ (t )) represents the
influence of the present state σ (t ) on the future state σi(t +
1). Here, for ease of explanation, we focus on the simplest
case Hi(σ (t )) = ∑

j Wi jσ j (t ), with the aim to determine the
weight matrix Wi j . Of course, Hi(σ (t )) could include higher-
order interactions of σ (t ) in general, and we show later that
the formalism extends to this case with no change. The state
σi(t + 1) tends to align with the local field Hi(σ (t )), so the
model expectation defined by

〈σi(t + 1)〉Hi (σ (t )) ≡
∑
ρ=±1

ρ P(σi(t + 1) = ρ|σ (t )) (2)

is just 〈σi(t + 1)〉Hi (σ (t )) = tanh[Hi(σ (t ))]. Our goal is to infer
the coupling strength Wi j between variables σi(t + 1) and
σ j (t ) from time series data of {σ (t )}L

t=1.

Notice that∣∣∣∣ 〈σi(t + 1)〉Hi (σ (t ))

σi(t + 1)

∣∣∣∣ = | tanh[Hi(σ (t ))]| � 1, (3)

so, if we define an improved Hnew
i (σ (t )) by

Hnew
i (σ (t )) ← σi(t + 1)

〈σi(t + 1)〉Hi (σ (t ))
Hi(σ (t )), (4)

then ∣∣〈σi(t + 1)〉Hnew
i (σ (t ))

∣∣ � ∣∣〈σi(t + 1)〉Hi (σ (t ))
∣∣, (5)

because |Hnew
i (σ (t ))| � |Hi(σ (t ))| and, therefore,

| tanh[Hnew
i (σ (t ))]| � | tanh[Hi(σ (t ))]|. Then, Eq. (5) means

that the model prediction for σi(t + 1) is closer to ±1,

and is therefore better. In fact, if the model prediction
has the wrong sign, Eq. (4) will even correct the sign of
Hnew

i (σ (t )). An important point to note is that the suggested
update, Eq. (4), appears to be multiplicative, rather than an
incremental additive correction based on error gradients.
In actual fact, the update is multiplicative for nonvanishing
Hi(σ (t )) but because x/ tanh x → 1 for x → 0, the update
becomes a shift if the local field vanishes, Hi(σ (t )) = 0, with
Hnew

i (σ (t )) ← σi(t + 1). In other words, the multiplicative
update includes an inhomogeneous update which prevents
the iteration from being trapped in an Hi = 0 state if it is
inconsistent with σi(t + 1) �= 0. This obviously could not
happen with a naive multiplicative update.

However, we are considering each t independently of any
other if we update using Eq. (4), but the aim is to find the
best functional form of Hi(σ (t )) that will determine the system
for all t . For the linear example, Hi(σ ) = ∑

j Wi jσ j, it is not
difficult to find the best W new

i j directly from Hnew
i (σ (t )) =∑

j W new
i j σ j (t ) averaged in a principled way over all t :∑
t

Hnew
i (σ (t ))δσk (t ) =

∑
t

∑
j

W new
i j σ j (t )δσk (t ), (6)

∑
t

δHnew
i (σ (t ))δσk (t ) =

∑
t

∑
j

W new
i j δσ j (t )δσk (t ), (7)

〈
δHnew

i δσk
〉 =

∑
j

W new
i j 〈δσ jδσk〉, (8)

where we multiplied fluctuations of microstates δσk (t ) ≡
σk (t ) − 〈σk〉 on both sides. Note that the sample average is
defined as 〈 f 〉 ≡ 1/L

∑L
t=1 f (t ) and the sample average of

fluctuations always vanishes with 〈δ f 〉 = 0. Therefore, one
can obtain

W new
i j =

∑
k

〈
δHnew

i δσk
〉
[C−1]k j, (9)

by inverting the connected correlation matrix Cjk ≡ 〈δσ jδσk〉
on the right-hand side of Eq. (8). The challenge now is to find
the appropriate theoretical principles and framework for this
kind of update that apply not just to this simple linear form
of the local field Hi but also to all functional forms of Hi

including higher-order terms.
For this, we turn to Schwinger’s famous idea to use gen-

erating functions to provide a natural connection between
expectation values m = 〈σ 〉 of microstates σ and expectation
values 〈Hnew

i 〉m of any observable Hnew
i conditioned on m [28],
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which therefore gives the expectation value, 〈Hnew
i 〉m, as a

function of m. This is the foundation of modern approaches
to field theory as described in textbooks, for example, [29].
We start by defining a moment generating function,

Zi(J, β ) =
∑

t

exp
[
J · σ (t ) − βHnew

i (σ (t ))
]
, (10)

which is a function of a vector parameter J, a scalar parameter
β, and an observable Hnew

i (σ (t )) of data σ (t ). A convex free
energy Fi ≡ ln Zi can be used to obtain expectation values of
spin activities and observables by differentiation,

∂Fi

∂Jj
=

∑
t σ j (t ) exp

[
J · σ (t ) − βHnew

i (σ (t ))
]

∑
t exp

[
J · σ (t ) − βHnew

i (σ (t ))
]

= 〈σ j〉J ≡ mj (J ), (11)

∂Fi

∂β
= −

∑
t Hnew

i (σ (t )) exp
[
J · σ (t ) − βHnew

i (σ (t ))
]

∑
t exp

[
J · σ (t ) − βHnew

i (σ (t ))
]

= −〈
Hnew

i

〉
J
. (12)

As usual, a convex dual free energy Gi can be defined to
make the expected activity vector m the independent vari-
able, and J (m) the dependent vector, by using the convex-
ity preserving Legendre transform Fi(J ) + Gi(m) = J · m. By
defining a normalized probability, P(σ (t )) ≡ exp[J · σ (t ) −
βHnew

i (σ (t )) − Fi] in Eq. (10), we can show that Gi can be
indeed interpreted as a thermodynamic free energy,

Gi = β
〈
Hnew

i

〉
J − Si (13)

with the expectation value of Hnew
i taking the place of

internal energy and the Shannon entropy of data, Si =
−∑

t P(σ (t )) ln P(σ (t )). At β = 0, minimizing the free en-
ergy Gi is exactly maximizing the entropy Si.

The duality between the free energies Fi and Gi through
their Legendre transform leads to

∂Gi

∂mj
= Jj, (14)

∂Gi

∂β
= −∂Fi

∂β
= 〈

Hnew
i

〉
m, (15)

where we identify 〈Hnew
i 〉J (m) ≡ 〈Hnew

i 〉m. Therefore, once
we know the free energy Gi, it is straightforward to obtain
〈Hnew

i 〉m, the expectation value of observable Hnew
i condi-

tioned on the expectation value m = 〈σ 〉 of microstates σ .
For our purposes, however, it will not be necessary to obtain
Gi(m) for all possible values of m, as it will suffice to know
its derivatives at its minimum for β = 0. The free energy Gi is
minimized when J (m∗) = ∂mG(m∗) = 0 from Eq. (15), which
happens at the data expectation:

m∗ ≡ 〈σ 〉J=0 = 1

L

L∑
t=1

σ (t ). (16)

Therefore, this is the value of m about which we expand
in a Taylor series, hence this method is termed free en-
ergy minimization. The Taylor expansion of Gi(m) up to

second-order terms at m = m∗ is

Gi(m) = Gi(m
∗) + 1

2

∑
j,k

[
∂2Gi

∂mj∂mk

]∗
(mj − m∗

j )(mk − m∗
k ),

(17)

where the derivatives [·]∗ are taken at m = m∗. Differentiating
the expanded Gi(m) with respect to β leads to

∂Gi(m)

∂β
= ∂Gi(m∗)

∂β
−

∑
j,k

∂m∗
k

∂β

[
∂2Gi

∂mj∂mk

]∗
(mj − m∗

j ).

(18)

Here, each derivative in Eq. (18) is calculated as follows:

−∂mk

∂β
= ∂

∂β

[∑
t σk (t ) exp

[
(J · σ (t ) − βHnew

i (σ (t ))
]

∑
t exp

[
(J · σ (t ) − βHnew

i (σ (t ))
]

]

= 〈
δHnew

i δσk
〉
, (19)

and

∂2Gi

∂mj∂mk
= ∂Jk

∂mj
= [C−1] jk, (20)

where

Cjk = ∂mj

∂Jk
= ∂

∂Jk

[∑
t σ j (t ) exp

[
(J · σ (t ) − βHnew

i (σ (t ))
]

∑
t exp

[
(J · σ (t ) − βHnew

i (σ (t ))
]

]

= 〈δσ jδσk〉m. (21)

Here, we have used standard abbreviated notation: 〈 f 〉∗ ≡
〈 f 〉J=0, and 〈δ f 〉m ≡ 〈 f 〉m − 〈 f 〉∗. Plugging in Eqs. (15), (19),
and (20), we obtain〈

δHnew
i

〉
m =

∑
j,k

〈
δHnew

i δσk
〉∗

[C−1]∗k j〈δσ j〉m, (22)

which is valid for any choice of observable Hnew
i .

Now, if we take our observable Hnew
i to be the right-hand

side of Eq. (4), then an improved estimate of Wi j for the linear
term in Hi is

W new
i j ←

∑
k

〈
δHnew

i δσk
〉∗

[C−1]∗k j, (23)

exactly as suggested by Eq. (9). Moreover, higher-order con-
tributions of σ j to Hi are obtained simply by expanding to
higher orders in the Taylor series in Eq. (17). For instance,
when the interactions between variables contain not only lin-
ear terms but also quadratic terms, Hi(σ (t )) = ∑

j Wi jσ j (t ) +
1
2

∑
j,k Qi jkσ j (t )σk (t ), the formalism gives

Qnew
i jk ←

∑
μ,ν

〈
δHnew

i δσμσν

〉∗
[C−1]∗jμ[C−1]∗kν

−
∑

l

∑
λ,μ,ν

〈
δHnew

i δσl
〉∗〈δσλδσμσν〉∗

× [C−1]∗jλ[C−1]∗kμ[C−1]∗lν, (24)

and

W new
i j ←

∑
k

{〈
δHnew

i δσk
〉∗

[C−1]∗k j − Qnew
i jk 〈σk〉∗

}
(25)
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(see Supplemental Material, Text I [26]). Therefore, with
our choice of observables, Hnew

i , the Schwinger formalism
estimates improved W new

i j and higher-order terms like Qnew
i jk

from previous estimates.
Note that we have not made any use of a cost function in

our update rule, which was based on the simple observation
in Eq. (4). However, overfitting is a major problem for small
sample size inference, so we now turn to the crucial issue
of a stopping criterion for the update iteration in Eq. (23).
We consider the overall discrepancy between the observed
σi(t + 1) and the model prediction 〈σi(t + 1)〉Hi (σ (t )) :

Di ≡
∑

t

[
σi(t + 1) − 〈σi(t + 1)〉Hi (σ (t ))

]2
. (26)

Clearly, the parameter update of Wi j, Qi jk, . . . through
Eqs. (22), (24), and (25) is completely independent of the
computation of Di. As Di can be rewritten as

Di ≡
∑

t

[
1 − 〈σi(t + 1)〉Hi (σ (t ))

σi(t + 1)

]2

, (27)

we see that each term in Di would be individually reduced
by virtue of Eq. (5), consistent with Eq. (4), but clearly the
common functional form of Hi(σ ) means that these are not all
independent. Therefore, we stop the iteration when Di starts
to increase. This crucial decoupling between the stopping cri-
terion and our multiplicative update is only possible because
the update is completely independent of Di.

To summarize the inference algorithm with FEM:
(i) Compute Hi(σ (t )) = ∑

j Wi jσ j (t ) (initialize with a
random Wi j).

(ii) Compute Hnew
i (σ (t )) as the right-hand side of Eq. (4).

(iii) Update Wi j = W new
i j ← ∑

k〈δHnew
i δσk〉∗[C−1]∗k j .

(iv) Repeat (i)–(iii) until Di starts to increase.
(v) Compute (i)–(iv) in parallel for every index i ∈

{1, 2, · · · , N}.
The algorithm is similarly applied to the model containing

both linear terms Wi j and quadratic terms Qi jk with Eqs. (25)
and (24).

III. RESULTS

A. Kinetic Ising model

We first tested FEM on the inference of connection
weights Wi j ( �= Wji) in the kinetic Ising model, which is
often used as a benchmark for stochastic causality inference.
The Sherrington-Kirkpatrick (SK) model assumes Wi j are
normally distributed with zero mean and variance equal to
g2/N [30]. In the limit of large sample size (large L/N2),
our iterative method decreases the mean-square error, MSE
= N−2 ∑N

i, j=1(Wi j − W true
i j )2, as the number of iterations in-

creases [Fig. 1(a)]. We obtain good agreement between true
and predicted weights [Fig. 1(b)]. In real world problems,
W true

i j is inaccessible so MSE cannot be defined. However,
Di in Eq. (26) is an alternative measure of the discrepancy
between observation σi(t + 1) and model expectation. The
discrepancy measures Di are independent for each spin i.
We checked that MSE and D = N−1 ∑N

i=1 Di change simi-
larly during iterations. More importantly, for small sample
sizes (small L/N2), MSE and D decrease with iterations

initially, but start to increase after some number of itera-
tions [Fig. 1(c)]. For the kinetic Ising model, Di = 4

∑
t [1 −

P(σi(t + 1)|σ (t ))]2 with the transition probability, P(σi(t +
1)|σ (t )) in Eq. (1). Therefore, decreasing Di can only result
from P(σi(t + 1)|σ (t )) saturating the causal relation between
observations, σ (t ) and σi(t + 1), through W. Distinct spins
indexed by i often require different numbers of iterations.
Stopping the iteration for spin i when Di saturates leads to ac-
curate inference with minimal computation. For limited data
(e.g., L/N2 = 0.2), these stopping criteria lead to accurate
inference [Fig. 1(d)] without overfitting.

Now we compare the inference performance of our
method with other representative methods [31–33]: naïve
mean field (nMF), Thouless-Anderson-Palmer mean field
(TAP), exact mean field (eMF), and maximum likelihood
estimation (MLE). MLE requires maximizing the data like-
lihood, P = ∏L−1

t=1

∏N
i=1 P(σi(t + 1)|σ (t )), and uses gradient

ascent to update Wi j incrementally through W new
i j = Wi j +

α/(L − 1)∂ lnP/∂Wi j [31,33], where the learning rate α is
an undetermined parameter controlling the updating speed.
In contrast, the maximizing condition (∂ lnP/∂Wi j = 0) and
mean-field approximations provide matrix equations, W =
A−1BC−1, where matrices Bi j = 〈δσi(t + 1)δσ j (t )〉 and Ci j =
〈δσi(t )δσ j (t )〉 represent time-delayed and equal-time correla-
tions in data, and A are diagonal matrices, which are different
for nMF, TAP, and eMF (see Supplemental Material, Text 2
for brief reviews of these mean-field methods [26]).

As shown in our Jupyter notebook [27], our stopping crite-
rion can also help eMF and MLE avoid unnecessary iterations
and improve the performance of these methods. Therefore,
as a concrete illustration, in the following, we consider the
case of eMF and MLE with our stopping criterion. For weak
coupling (g = 1), TAP, eMF, MLE, and FEM have similar
inference accuracy that increases with sample size [Fig. 1(e)].
nMF showed poor accuracy independent of data size, since the
zeroth-order mean-field approximation works only for very
weak coupling strengths [31]. As we further increase coupling
strength, the other two mean-field methods, TAP and eMF,
also start to give less accurate results than MLE and FEM
[Fig. 1(f)–1(h)]. The errors at the large coupling strength orig-
inate from the approximation of weak coupling expansions in
nMF and TAP and the assumption of a Gaussian distribution
of

∑N
j=1 Wi jσ j in eMF, developed in the thermodynamic limit

(N → ∞). However, our iterative method, FEM, and the
standard MLE do not make assumptions on the coupling
strength. For large sample size (L/N2 > 1), FEM works as
well as MLE, but for small sample size, FEM provides better
accuracy than MLE. For example, the inference error (MSE)
of FEM is approximately 4 times lower than that of MLE
for L/N2 = 0.2 and g = 4. As noted above, the separation
between model updates and goodness of fit cost, Di, in FEM
is critical for stopping model updates for small sample size.

In addition to inference accuracy, FEM has two advantages
in computation. First, the FEM update is multiplicative and
not incremental, while MLE updates (using conjugate gradi-
ent ascent or some other numerical maximization) have an
undetermined parameter, the learning rate α, which needs to
be tuned. A very large rate (α = 3) leads to loss of conver-
gence, whereas a very small rate (α = 0.5) leads to many
iterations with infinitesimal updates. We set α = 1. Second,
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(a) (c) (d)

(e) (f)

(b)

(g) (h)

FIG. 1. Network inference for the kinetic Ising model. Inference mean-square error (MSE, black) and discrepancy (D, gray) are shown
as functions of the number of iterations for large observed configurations, L/N2 = 1 (a) and few observed configurations, L/N2 = 0.2 (c).
Predicted couplings vs actual couplings for L/N2 = 1 (b) and L/N2 = 0.2 (d). The inference errors are obtained for naïve mean-field (nMF),
Thouless-Anderson-Palmer (TAP), exact mean-field (eMF), maximum likelihood estimation (MLE), and free energy minimization (FEM), for
various numbers of observed configurations, L/N2 from 0.2 to 1 in the limit of weak coupling, g = 1 (e), and in the limit of stronger coupling,
g = 2 (f), g = 3 (g), and g = 4 (h). A system size N = 100 is used. A learning rate α = 1 is used for MLE.

FEM requires 20 times fewer updates than MLE [Fig. 2(a)],
which reduces computation time 100-fold [Fig. 2(b)]. Note
that the matrix inversion of C∗

i j is performed only once at the
beginning and is not a computational efficiency consideration
in either FEM or any of the MLE based methods. There are
no other matrix inversions in FEM.

To further demonstrate the effectiveness of FEM, we show
two examples of inferred networks when Wi j has more general
coupling distributions than the SK model, as real systems
often deviate strongly from normally distributed coupling
strengths. In the first example, the spins have alternating bands
of positive and negative couplings modulated by distance as
|Wi j | = W0/ ln(Ri j ), where Ri j represents the radius of the
circle [Fig. 3(a)]. The couplings are non-normally distributed
[Fig. 3(b)]. The spin raster scan exhibits nontrivial structure
[Fig. 3(c)], reminiscent of binocular rivalry [34]. As the
number of observed configurations increases, the predicted

(a) (b)

FIG. 2. Efficiency of inference. Number of iterations per spin
(a) and real computational time (b) by using MLE vs FEM for
various coupling strengths g from 1 to 4 and number of observed
configurations L/N2 from 0.2 to 1. A system size N = 100 is used.
A learning rate α = 1 is used for MLE.

coupling strengths [Fig. 3(d)] approach their true values
[Fig. 3(a)]. In the second, the photograph of the 2018 Gerber
baby, Lucas Warren, was used as the heat map of the coupling
matrix [Fig. 3(e)]. These couplings are also non-normally
distributed [Fig. 3(f)] with periodic bursting in the simulated
spin raster scan [Fig. 3(g)], but the couplings are still predicted
well [Fig. 3(h)].

Our formulation, based on the differential geometry of the
data free energy, automatically includes higher-order regres-
sion equations for the local field Hi(σ ) in Eq. (24). For ex-
ample, we checked higher-order inference with FEM by using
a generalized kinetic Ising model with linear and quadratic
couplings, Hi(σ (t )) = ∑

j Wi jσ j (t ) + ∑
j,k Qi jkσ j (t )σk (t )/2,

where Wi j and Qi jk are normally distributed. The quadratic
couplings are symmetric (Qi jk = Qik j) and have no self-
interactions (Qi j j = 0) since σ 2

j = 1. The number of Qi jk

parameters is N2(N − 1)/2. The recovery of both linear and
quadratic couplings is evident (Fig. 4).

B. Neuronal network

We applied our method to infer a neuronal network from
temporal neuronal activities in the tiger salamander (Am-
bystoma tigrinum) retina [35]. The multichannel experiment
recorded stochastic firing patterns of 160 neurons when the
salamander retina was stimulated by a film clip of fish swim-
ming. As in Ref. [36], we considered only the 100 most
active neurons. After processing the data [see Supplemen-
tal Material, Text 3 [26]; Fig. 5(a)], we inferred the neu-
ronal network governing the local field, Hi(σ (t )) = H ext

i +∑
j Wi jσ j (t ). Here we included a constant bias external field

H ext
i for neuron i to consider the persistent silence of neurons.

We inferred the neuronal network weights Wi j [Fig. 5(b)],
and the external local fields for each neuron by using H ext

i =
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(a) (b) (c) (d)

(h)(e) (f) (g)

FIG. 3. Effectiveness of FEM in inferring network with specific structures. Given true coupling weights of N = 40 (a) and 350 (e) spin
variables with non-Gaussian distributions, typical time series of their activities are generated, (c) and (g). Predicted coupling weights are
obtained for different data lengths L/N2 = 0.5, 1, and 4 from left to right, (d) and (h). The image is converted from the photograph of the 2018
Gerber baby, Lucas Warren (with permission from Gerber).

〈Hi〉 − ∑
j Wi j〈σ j〉. The external local fields are mostly neg-

ative, which implies that neuronal activities are biased to be
silent [Fig. 5(c)].

The true couplings are unknown for this system. As a
validation, with the H ext

i and Wi j that we had determined, we
simulated neuronal activities. We found agreement between
the covariances of neuronal activities Ci j = 〈δσi(t + 1)δσ j (t )〉
of the observed and simulated data [Fig. 5(d)]. For a more
stringent validation, we reconstructed the full neuronal ac-
tivities from specific “pinned” neuron activities, representing
inputs. Fixing the time sequences σ j (t ) of specific chosen
input neurons j ∈ I , we reconstructed the activities σi(t + 1)
of the remaining neurons i �∈ I .

As a control, we selected the input neurons at random and
compared them with input neurons selected on the basis of
the coupling strength |Wi j | as the input set I. As more input
neurons are considered, the reconstruction predicts σi(t + 1)
more accurately [Figs. 5(e) and S2 [26]]. Pinning the activities
of only |I| = 10 strongly coupled neurons gave predicted
activities of the remaining 90 neurons that were very close

(a) (b)

FIG. 4. Accurate inference of higher-order coupling strengths.
Linear (a) and quadratic (b) coupling strengths in the nonlinear
kinetic Ising model are predicted from FEM. Here the true coupling
strengths are normally distributed with a system size N = 40. Three
different data lengths, L = 1.6 × 104 (gray), 6.4 × 104 (blue), and
2.56 × 105 (red), are examined.

to the observed activities [Fig. 5(f)], in contrast to predicted
activities obtained by pinning randomly selected sets of 10
input neurons [Fig. 5(g)].

C. Currency network

Finally, we apply our method to another difficult and rep-
resentative stochastic problem, currency exchange rate fluctu-
ations. We obtained time series of currency exchange rates
from January 2000 to December 2017 [37], and examined
exchange rates denominated in Euro (EUR) of 11 actively
traded currencies [Fig. 6(a)]. First, we concentrate on the
daily fluctuations of the exchange rates, since most financial
analyses center on price increments rather than absolute prices
[38]. We binarize the real-valued rates to concentrate on the
sign of their daily fluctuations [Fig. 6(b)]. We defined the
binarized rate σi(t ) = 1 for a day-to-day increase of exchange
rate i at time t[ri(t ) > ri(t − 1)], and σi(t ) = −1 for the
decrease. If there was no change [ri(t ) = ri(t − 1)], we set
σi(t ) = σi(t − 1). Second, we divide the data for different
periods to investigate the time dependence of the couplings
between exchange rates. Using the Fourier transform of the
binarized time series, we identified a characteristic period, 550
business days (∼2 years), of the fluctuations [Fig. 6(c)]. We
inferred the currency network weights Wi j separately in two-
year periods, shown here [Figs. 6(d)–6(f), upper] for the three
periods 2012–2013, 2014–2015, and 2016–2017. We found
agreement between the covariance Ci j = 〈δσi(t + 1)δσ j (t )〉
of the observed currency data and that of the simulated cur-
rency data using Hi(σ (t )) = H ext

i + ∑
j Wi jσ j (t ) [Figs. 6(d)–

6(f), lower]. In contrast, when we estimated the currency
network using the data for the entire period 2000–2017, the
network had weaker connections and smaller covariances Ci j

compared to the time-dependent analysis [Fig. 6(g)].
The raw exchange rate data are continuous. Is our binarized

inference of any practical value? To address this, we simulated
a currency trade strategy, and checked if the strategy was
profitable. Using only data within a time window of a period
T, {σ (t − T + 1), σ (t − T + 2), . . . , σ (t )}, we predicted the
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(a)

(f)

(g)

(b) (c)

(e)(d)

FIG. 5. Inference of coupling strengths between neurons, external local fields, and neuronal activities. From activities of 100 neurons (a),
the neuronal network (b) and external local field H ext

i (c) are predicted. The red and blue edges represent positive and negative couplings,
respectively. Edge direction is clock-wise. Inferred correlation covariances Ci j are compared with actual correlation covariances Ctrue

i j (d).
Inference accuracy of remaining neuronal activities vs number of input neurons selected based on large |Wi j | (filled black circles), and randomly
selected (empty blue circles). Error bars represent the standard deviation from 50 random trials (e). Neuronal activities are reconstructed with
10 input neurons, selected based on large |Wi j | (f), and randomly selected (g).

currency fluctuations σ (t + 1) on the next day. For the trade
simulation, we considered a hedging trader who buys one
currency with 1 EUR and sells one currency with 1 EUR.

To earn profits, the trader is supposed to sell or buy a cur-
rency that has the highest probability of increase or decrease
in exchange rate: the currency sell = arg maxi P(σi(t + 1) =

(a)

(d) (e) (f)

(b)

(g)

(c)

(h)

(i)

FIG. 6. Inference of coupling strengths between currency exchange rates. Normalized exchange rates relative to EUR of 11 currencies are
plotted with different colors representing distinct currencies (a). A raster representation of binarized exchange rate fluctuations is plotted with
black dots representing increase, white dots decrease. Average power spectrum obtained from a Fourier transform of exchange rate fluctuations
vs time-window size in which error bar represents standard deviation from different currencies (c). The currency networks are predicted for
different periods, e.g., from the years of 2012 to 2013 (d), 2014 to 2015 (e), and 2016 to 2017 (f). The network for the whole data, from 2000
to 2017, is also predicted (g). The red and blue edges represent positive and negative couplings, respectively. Edge direction is clock-wise.
Predicted covariances are shown to compare with observed covariances Ctrue

i j [(d)–(g), lower]. Cumulative profit vs time period with trading
every day (without D, black) and trading only on days specified by lower model discrepancy (with D, red) strategies (h). Profit per transaction
using our strategy is plotted as a function of time-window size (i).
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+1|σ (t )) and the currency buy = arg maxi P(σi(t + 1) =
−1|σ (t )). Then, a daily profit can be defined as profit(t ) =
rsell(t + 1)/rsell (t ) − rbuy(t + 1)/rbuy(t ). We calculated cumu-
lative profits of the trade simulation from 2004 to 2017
with various time window sizes that we considered as past
information [Fig. 6(h) for T = 500 days]. Hedging strategies
profit from market volatility and, indeed, our trade simulation
showed large profits when the exchange rates had large fluctu-
ations [Fig. 6(a)]. The window size T had an optimal period of
500–750 business days [Fig. 6(i)]. For a more refined strategy,
we considered the quality or accuracy of our inference by
probing the discrepancy Di in Eq. (26). Instead of trading
every day, we traded only on the days when the discrepancy
at that day, D(t ) ≡ ∑

i [σi(t ) − 〈σi(t )〉Hi (σ (t−1))]
2, was lower

than the average T −1 ∑T
t=1 D(t ) for a fixed window size T .

This strategy doubled the profits per transaction [Figs. 6(h)
and 6(i)], showing that the discrepancy Di is a useful measure
of model accuracy.

IV. DISCUSSION

We demonstrated that underdetermined stochastic systems
can be inferred in a conceptually simple and computationally
efficient manner using the mathematical framework of statis-
tical physics. Since network inference is an important subject,
many different approaches have been developed. Equilibrium
approaches assume symmetric interactions (Wi j = Wji) be-
tween node i and node j, and estimate the pair-wise interac-
tion strengths that can maximally explain the observed static
patterns of network activity in brains [36,39,40], proteins
[41,42], and stock markets [43]. In contrast, nonequilibrium
approaches do not assume symmetry, and infer asymmetric
causal relations between nodes that can better explain dy-
namic patterns of network activity [33]. Network inference
for nonequilibrium models (e.g., using recurrent neuronal
networks) is computationally expensive. Although mean-field
methods have been introduced to circumvent this practical
problem [31,44,45], these approximation methods only work
for weak-interaction regimes with large sample size. All small
sample size inference must contend with overfitting so the
key feature of our approach was to consistently decouple
the model update step and a discrepancy measure that is
similar to expectation maximization. This decoupling allows
us to iterate with a multiplicative model update, and to stop

when the discrepancy measure quantifies that the multiplica-
tive update has saturated. We derived this within a standard
statistical physics formulation [28,29], so no ad hoc averaging
or approximation steps were involved. We demonstrated that
our method outperforms others in inferring the asymmetric
interactions of the kinetic Ising model, especially in strong-
interaction regimes, and particularly when available data are
limited. Another aspect of small sample size inference is that
longer time-scale modulation of couplings can be uncovered.
This is of considerable practical import as we demonstrated
with the currency exchange rate network.

FEM has several computational merits. Besides having no
incremental learning rate that requires tuning, the method
is parallelizable and scalable: We computed results for the
kinetic Ising model with up to N = 5000 interacting spins,
determining 2.5 × 107 parameters (Fig. S3 [26]). We also
demonstrated that the method can infer not only linear inter-
actions but also higher-order interactions. Moreover, FEM is
generalizable to systems with any number of discrete states,
although we focused on binary stochastic systems here.

We have addressed the inference of networks but without
addressing the predictive capabilities of the networks inferred
directly. While our profitable trade demonstration shows that
the inferred model is generalizing well, we emphasize that
just because we have found a good stopping criterion for
our iterative update does not imply that the predictions from
the inferred model are as accurate as the stopping criterion
value would indicate. Finding a stopping criterion that would
include predictive accuracy is an area that we are investi-
gating. The usual approach is to perform a training-testing
split to evaluate predictive performance, but this may not be
optimal for small datasets. Finally, uncovering hidden nodes
for stochastic network inference [46] is an exciting avenue for
future work.
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