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Efficient immersed-boundary lattice Boltzmann scheme for fluid-structure interaction
problems involving large solid deformation
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A hybrid numerical method which couples the immersed-boundary lattice Boltzmann method with the
smoothed point interpolation method (S-PIM) is presented in this paper for the fluid-structure interaction
problems involving large solid deformation. In the method, the lattice Boltzmann method is adopted for its
advantages in modeling complex fluid flow, the S-PIM is coupled for its robustness in dealing with large solid
deformation, and the immersed-boundary method is used for its efficiency in handling the interaction of fluid
and solid. In the fluid-solid coupling procedure, a force correction technique based direct-forcing scheme is
introduced to enforce nonslip boundary condition with high accuracy, and an averaged dual time stepping scheme
is proposed to get stronger robustness of the present method. Numerical experiments are carefully carried out
from benchmark problems such as cylinder Couette flow and a beam in a fluid tunnel to more challenging
problems such as a flexible beam in the wake of a cylinder and the swimming of a two-dimensional fishlike
body. Comparisons of the numerical results with the referenced solutions show that all desirable features of
these coupled methods are inherited in the present coupling scheme, and the efficiency of the present method to
model such complex problems is verified.
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I. INTRODUCTION

Numerical modeling of fluid-structure interaction (FSI)
problems is one of the key topics in the field of computational
fluid dynamics due to its wide spread in nature and vast appli-
cations in many industrial fields. The requirement to couple
fluid dynamics and solid mechanics poses a challenging task
in developing related numerical methods. Among the existing
methods, the immersed-boundary method (IBM) has been
proven to be an efficient one since it was first proposed by
Peskin [1] in the 1970s to simulate the heart blood flow. In
this method, the governing equations of fluid field are solved
on a fixed Eulerian grid and the moving solid boundary is dis-
cretized to a set of Lagrangian points. The interactions of the
fluid and solid at the interfaces are modeled by introducing a
body force term to the fluid domain adjacent to the immersed-
boundary points. Unlike the conventional body fitted methods,
the remeshing procedure, which is computationally costly, is
avoided in the IBM [2]. Meanwhile, the additional errors no
longer exist which are brought by the conventional body fitted
methods when they transfer data from the old mesh to the
new one [3]. In addition, the method is mainly focused on
the fluid-solid interaction treatment, and one can have much
flexibility in selecting the numerical methods for fluid flow
and solid deformation modeling. Such advantages of the IBM
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enable its efficiency in the FSI problems, especially when
large boundary deformations are involved.

Many IBM versions in different numerical frameworks for
fluid flow or solid modeling have been proposed in the last
few decades [2–11]. One category of the IBM, namely the
immersed-boundary lattice Boltzmann method (IB-LBM), has
been proposed in the last decade, which was first introduced
by Feng and Michaelides [6] for the fluid-particle interaction
problem. In the IB-LB framework, a mesoscopic method
based on kinetics theory, the lattice Boltzmann method, is
utilized for fluid flow modeling considering many of its dis-
tinguished features, such as a clear physical picture of fluid
flow, simplicity in complex boundary treatment, and natural
parallelism [12]. The advantages of the IBM and LBM are
inherited in the coupling scheme, which enables it to be a
promising tool to handle complex FSI problems [13].

In general, different versions of the IB-LBM mainly differ
from each other by the boundary force calculation methods
they adopt to implement the fluid-solid interaction efficiently,
which is also the main issue in the development of the IBM
in the framework of the LBM. In Feng and Michaelides’s
work [6], Hook’s law is used to calculated the boundary force
by estimating the displacement of the solid boundaries. The
solid velocity is interpolated from the velocities of fluid flow
nearby. It should be noted that here the solid is assumed to
have a fiber-like immersed elastic structure and the method
is applicable only when the solid is quite soft and massless.
To overcome the defect, Kim and Peskin [14] proposed the
penalty method and Tian et al. [2] proposed a modified one
which enables the IB-LBM to handle the fiber-like elastic
structure with finite mass. However, an artificial spring pa-
rameter should be introduced to make such improvement. To
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solve this problem, Yuan et al. [15] employed the momentum
exchange method for boundary force calculation and applied
it to the flexible filament simulations. In the method, the arti-
ficial parameter is eliminated and the boundary force can be
calculated directly. The boundary velocity and displacement
can be updated using Newton’s second law. Although progress
has been made, the above conventional IB-LBMs still cannot
enforce the nonslip boundary conditions on the immersed
boundaries due to the diffusive effect [16–19]. The numerical
accuracy is heavily affected and the robustness problem usu-
ally appears when strong fluid-solid interactions need to be
handled [16–18]. Many efforts have been devoted to the prob-
lem. For example, Luo et al. [20] and Wang et al. [21] pro-
posed a multidirect forcing method in which several iterative
steps are carried out in evaluating the force. Wu and Shu [16]
presented an implicit velocity-correction scheme to enhance
the nonslip boundary conditions by solving a linear equation
system of boundary velocity residual. Hu et al. [18] improved
the momentum exchange method based on an iterative IB-
LBM framework and introduced a relaxation parameter to
speed up the iteration procedure. Cheng et al. [22] proposed
a semi-implicit immersed-boundary lattice Bhatnagar-Gross-
Krook (IB-LBGK) coupling scheme by using the iterative
technique in the coupling cycle to enhance the robustness of
the method. However, all the improvements are achieved at
the cost of large computational time increments.

As another important issue, the solid modeling in
the IB-LBM was also addressed by many authors
[2,3,7–10,14,15,22,23]. Up to now, most of existing works
follow the original model in which the solid is described
as a fiber-like elastic structure [2,14,15,22,23]. To expand
it to more realistic solids and take the inner deformation
of the solid into consideration, Kollmannsberger et al. [3]
investigated the validity and efficiency of coupling the particle
finite element method with the lattice Boltzmann method for
transient bidirectional fluid-structure interaction problems.
Kürger et al. [7] employed an IB-LB finite element method
and analyzed its efficiency and accuracy for simulating
multiple deformable particle problems. Rosis et al. [8,9]
coupled the finite element method into the IB-LBM to handle
the solid deformation involved in their simulations and
applied it for aeroelastic study of flexible flapping wings.
Dorschner et al. [10] proposed a fluid-structure interaction
scheme combining a nonlinear finite element solver with the
entropic multi-relaxation time lattice Boltzmann model. It
should be noted that the robustness and accuracy of the finite
element method (FEM) has strong dependence on the quality
of the solid mesh, and when mesh distortion happens, the
performance of the FEM may also be degraded [24]. In other
words, developing a more efficient IB-LBM especially for
fluid-solid interaction problems with large solid deformation
is still open to the FSI numerical modeling community.

Recently, an improved IB-LBM [19] has been proposed
for FSI problems. In the scheme, a force correction technique
is introduced to enforce the nonslip boundary conditions at
the immersed boundaries in a simple explicit way. Moreover,
the viscosity dependence [25,26], which may lead to velocity
error in the vicinity of the immersed boundaries, is reduced
by employing a multiple relaxation times (MRT) based LBM
model. The improved IB-LBM has superior performance in

terms of accuracy and computational efficiency. However,
in the method, the solid domain is calculated based on the
fiber-like assumption, which is incapable of dealing with
realistic solid structure deformation. Moreover, the stiffness
parameters of the boundary need to be chosen in a quite
limited range or they would cause instability.

Meanwhile, a coupled IB-LBM and smoothed point in-
terpolation method (S-PIM) have been introduced for FSI
problems with large solid deformation [27]. In the method, the
conventional direct-forcing IB-LBM framework is employed
for the fluid flow and the fluid-solid interaction. As for the
solid modeling, the S-PIM is adopted to solve the solid
structure based on the realistic nonlinear constitutive law. As a
mesh-free method, the S-PIM can resist large mesh distortion
and it is suitable for the large solid deformation problems
[28,29]. The coupled scheme is good at dealing with a realistic
solid structure, but the nonslip boundary conditions at the
immersed boundaries cannot be enforced accurately. What is
more, the viscosity dependence is not considered, which may
degrade the accuracy of the coupled scheme.

Thus a question appears: Is it possible to couple the two
schemes which can integrate the most desired features of both
but eliminate shortcomings of each? In this paper, such a
coupled method is proposed. To this end, unlike the previous
two schemes, the following improvements are made:

(1) The present work couples the force-correction-based
IB-LBM with the S-PIM, in which the most desired features
of the two methods are inherited.

(2) Compared with the original force-correction-based IB-
LBM, the solid domain is modeled based on the nonlinear
constitutive law; thus a realistic solid deformation can be
considered. Moreover, by introducing a time-average tech-
nique to the solid boundary velocity calculation, a robustness
improvement of the present coupling scheme is achieved.

(3) Compared with the original IB-LBM coupled with
the S-PIM scheme, the nonslip boundary conditions at the
immersed boundaries are enforced by the force correction
technique and the viscosity dependence is dramatically re-
duced by an MRT-based LBM model.

To validate the present method, several numerical experi-
ments are carried out, e.g., cylindrical Couette flow, a beam
in a fluid tunnel, flow passing a cylinder with a flexible beam,
together with discussions about the accuracy, computational
efficiency, and robust properties of the proposed IB-LBM. In
addition, the self-propelled fishlike body swimming problem
is simulated as an application. The effects of muscle strength
and the body stiffness on the fish’s straight-line swimming
speed are investigated numerically. The remaining sections of
the paper are organized as follows: In Sec. II, the proposed
coupled method is presented. In Sec. III, the numerical ex-
periments and discussions are provided, and in Sec. IV, the
conclusions are given.

II. COUPLED METHOD

In this section, the coupled force-correction-based IB-
LBM with S-PIM scheme is introduced. In the coupled
method, the fluid domain is solved by the LBM, and the
fluid-solid interaction is handled by the IBM in the framework
of the IB-LBM, which is introduced in Sec. II A. The solid
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FIG. 1. Illustration of the immersed-boundary method. The
boundary is represented by the Lagrangian points and fluid points are
represented by the intersection points of mesh lines. The interaction
area between the solid point and the fluid points is enclosed by
dashed lines.

domain is modeled by the S-PIM based on the realistic
nonlinear constitutive law, which is presented in Sec. II B.
Section II C introduces the methods for the boundary force
evaluation, which includes the force correction and the time-
average coupling techniques. The dimensionless procedures
are described specifically in Sec. II D. In Sec. II E, the sum-
mary of the algorithm implementation and main features of
the coupling scheme are provided.

A. Immersed-boundary lattice Boltzmann method

In this section, the IB-LBM used in this work is briefly
introduced. Before this, the basic idea of the IBM, which
will be numerically solved in the framework of the lattice
Boltzmann method, is illustrated by a two-dimensional fluid-
structure interaction problem as an example. As shown in
Fig. 1, a two-dimensional domain � is filled with viscous
fluid, and the solid with boundary curve � is in it. In the IBM,

the fixed Eulerian grid is employed to calculate the fluid flow
and the solid is represented by a series of Lagrangian points.
The governing equations for the fluid flow can be written as

∇ · v f = 0, (1)

ρ f

(
∂v f

∂t
+ v f · ∇v f

)
= −∇pf + μ f ∇2v f + g, (2)

where v f is the fluid velocity, ρ f is the fluid density, pf is
the fluid pressure, and μ f is the fluid dynamic viscosity. The
basic idea of the IBM is to apply a body force term in the
fluid at the neighboring domain of the solid boundary points
to accommodate the fluid-solid interaction, which results in
an extra body force term g in Eq. (2). The Dirac δ function is
employed to interpolate the fluid velocity from the Eulerian
points to the Lagrangian ones and distribute the boundary
force from the Lagrangian ones to the Eulerian ones, which
can be expressed as

v f (X, t ) =
∫

�

v f (x, t )δ(x − X)dx, (3)

g(x, t ) =
∫

�

FFSI(X, t )δ(x − X)ds, (4)

where x and X represent the Eulerian and Lagrangian coordi-
nates, respectively. FFSI is the interaction surface force acting
on the immersed boundaries.

To solve the governing equations above, the split-forcing
lattice Boltzmann equation (LBE) proposed by Guo et al. [30]
is adopted. The LBE is able to recover the Navior-Stokes
equations with a second-order accuracy, which is consistent
with the original LB model’s accuracy [17,30]. The evolution
equations are as follows:

fα (x + cαδt, t + δt ) − fα (x, t )

= − 1

τ

[
fα (x, t ) − f eq

α (x, t )
] +

(
1 − 1

2τ

)
Fαδt, (5)

with

Fα = ωα

(
cα − v f

c2
s

+ cα · v f

c4
s

cα

)
· g, (6)

cα =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), α = 0,

(cos[(α − 1)π/2], sin[(α − 1)π/2])c, α = 1, 2, 3, 4,
√

2(cos[(2α − 9)π/4], sin[(2α − 9)π/4])c, α = 5, 6, 7, 8,

(7)

where fα is the distribution function in the α direction, τ

is the relaxation time, and cα are the discrete velocities for
the D2Q9 model [31]. The grid velocity is c = δx/δt ; sound
velocity cs = c/

√
3. f eq

α is the equilibrium distribution func-
tion; here the He-Luo model [32] is employed, which can be
written as

f eq
α = ωα

[
ρ f + ρ

f
0

(
cα · v f

c2
s

+ (cα · v f )2

2c4
s

− (v f )2

2c2
s

)]
, (8)

with ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36. ρ
f
0 is the static

density of the fluid. The density, velocity, and pressure can
be evaluated as

ρ f =
8∑

α=0

fα, (9)

ρ
f
0 v f =

8∑
α=0

cα fα + 1

2
gδt, (10)

pf = ρ f c2
s . (11)
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The kinematic viscosity ν is determined by

ν = c2
s

(
τ − 1

2

)
δt . (12)

For better numerical accuracy and stability, the lattice Boltz-
mann evolution equation based on MRT model [26], instead
of the single relaxation time (SRT) model, is adopted as

fα (x + cαδt, t + δt ) − fα (x, t )

= −M−1S(m − meq) + M−1(I − S/2)MFαδt . (13)

As shown above, the collision step is executed in the
momentum space m = mk, k = 0, 1, . . . , 8, in the MRT-
LBE instead of executing the collision step in velocity space
f = fk, k = 0, 1, . . . , 8, in the SRT. The relationship between
f and m can be expressed as

m = Mf, meq = Mfeq. (14)

For the D2Q9 model, the transformation matrix M can be
given as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)
S = diag(0, se, sε, 0, sq, 0, sq, sν, sν ) is the relaxation matrix.
The parameter sν and the relaxation time τ have the following
relationship:

sν = 1

τ
. (16)

To achieve expected numerical accuracy, it is crucial
to choose the proper values of the relaxation parameters.
Ginzburg and Adler [33] first proposed to choose the MRT
model by using a certain formula between two relaxation
time parameters; the exact solution can be obtained for a
straight channel for the bounce-back boundary implemen-
tation method based LBM. In the IB-LBM framework, Le
and Zhang [25] also found that the near boundary velocity
becomes abnormal if the single relaxation time (SRT) based
LB model is used, which will lead to serious numerical
boundary slip. This unphysical phenomenon depends on the
relaxation time parameter τ which corresponds to the fluid
viscosity. This is the so called viscosity dependence. Lu et al.
[26] proposed a multiple relaxation times (MRT) model to
reduce the numerical slip by establishing a certain relationship
between sq and sν , which can be expressed as

sq = 4(2 − sν )

4 + 7sν

. (17)

For se and sε, they can be set as

se = sε = sν . (18)

In this paper, Lu et al.’s MRT model [26] is employed and
its efficiency will be illustrated by a comparison with the SRT
model in the numerical test of cylindrical Couette flow.

B. Smoothed point interpolation method

The well-known finite element method (FEM) has been
widely used for a variety of solid dynamics problems, while
the FEM model is inaccurate in stress solutions, especially
with linear triangular or tetrahedral meshes. When the element
mesh is heavily distorted, the standard FEM encounters a
significant accuracy loss due to the strong dependency on
mesh quality [24]. To solve such problems, the S-PIM models
have been developed by using gradient smoothing technology
with simple triangular or tetrahedral meshes. In these models,
the accuracy of the displacement and the stress solution can
be improved significantly. In addition, the intensity to mesh
distortion has been enhanced for large deformation due to
softened model stiffness in the S-PIM [29]. As one of such
models, the edge-based smoothed point interpolation method
(ES-PIM) has shown its superiority in the S-PIM family [28].
The theoretical rate of convergence of the solution error in
the L2 norm of the ES-PIM is expected to be 2.0 [29]. Thus
the ES-PIM is employed in the present IB-LBM to utilize its
efficiency for modeling large deformation involved solids.

1. Solid governing equations

The ES-PIM adopted here is mainly used to deal with the
deformation of nonlinear solids. The governing equation for
the nonlinear solid can be expressed as

ρs ∂
2us

∂t2
= ∂Ps

∂Xs
+ ρsg, (19)

where ρs is the solid density, us denotes the displacement of
the solid, and Ps refers to the first Piola-Kirchhoff stress. The
solid displacement us, velocity vs, and acceleration as can
be interpolated using the point interpolation function s

I as
[34,35]

us =
∑

I

s
I u

s
I , vs =

∑
I

s
I v

s
I , as =

∑
I

s
I a

s
I . (20)

Substituting Eq. (20) into Eq. (19) and implementing the
Galerkin procedure, the motion equation of the solid can be
written as follows:

Ms
IJas

J = f ext
I − f int

I , (21)

with

f int
I =

∫
0�s

0BT
I Sd�, f ext

I =
∫

0�s

s
Jρ

sb +
∫

0�s

s
J T̄d�,

(22)
where Ms

IJ is the lumped mass matrix, as
J is the solid accel-

eration vector, and f int
I and fext

I are the internal and external
force vectors, respectively. b is the body force, for example,
gravity force. T̄ is the boundary force, such as the FSI force.

023310-4



EFFICIENT IMMERSED-BOUNDARY LATTICE BOLTZMANN … PHYSICAL REVIEW E 99, 023310 (2019)

S is the second Piola-Kirchhoff stress, and 0BT
I is the strain-

displacement matrix which includes two components [36]:

0BJi
I0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂s
Ji

∂X s
0

0
∂s

Ji

∂Y s

∂s
Ji

∂Y s

∂s
Ji

∂X s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

0BJi
I1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂s
I

∂X s

∂xs
Ji

∂X s

∂s
I

∂X s

∂ys
Ji

∂X s

∂s
I

∂Y s

∂xs
Ji

∂Y s

∂s
I

∂Y s

∂ys
Ji

∂Y s

∂s
I

∂X s

∂xs
Ji

∂Y s
+ ∂s

I

∂Y s

∂xs
Ji

∂X s

∂s
I

∂X s

∂Y s
Ji

∂Y s
+ ∂s

I

∂Y s

∂Y s
Ji

∂X s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

where 0BJi
I0 represents the initial state and 0BJi

I1 represents the
increment during deformation.

2. Nonlinear constitutive model

The isotropic Saint Venant–Kirchhoff model is used to
calculate the Piola-Kirchhoff (PK2) stress. The strain energy
density function can be expressed as

w = 1
2λ(tr E)2 + μ tr(E)2, (25)

where λ and ν are Lam constants, and E is the Green strain
tensor. The PK2 stress can be calculated by

S = ∂w

∂E
, E = 1

2
(FT F − I), (26)

where I is the unit matrix and F is the deformation gradient
which has the following relationship with the displacement
gradient ui, j :

F = ui, j + I. (27)

3. The gradient smoothing technique in S-PIM

The gradient smoothing operation is introduced in the S-
PIM to soften the model stiffness, which has been overesti-
mated in the FEM with a T3 element [29]. Supposed the solid
domain 0�s is divided into Ns

sd non-overlapping smoothing
domains 0�sd

isd with boundaries 0�sd
isd . As shown in Fig. 2,

based on the discrete T3 elements, edge-based smoothing
domains can be constructed by combining edge points with
the centroid points of the adjacent elements. The smoothed
displacement gradient in 0�sd

isd can be evaluated as

ūs
i, j (xl ) =

∫
0�sd

isd

us
i, j (ξ )W (xl − ξ )d�, (28)

with

W (xl − ξ ) =
⎧⎨
⎩

1/Asd
isd , ξ ∈ 0�sd

isd ,

0, ξ /∈ 0�sd
isd ,

(29)

FIG. 2. Edge-based smoothing domain construction.

where ūs
i, j (xl ) is the smoothed displacement gradient. xl are

the coordinates of the element node. ξ represents the po-
sition of any point in the smoothing domain. W (xl − ξ ) is
the smoothing function and Asd

isd is the smoothing area. By
employing the divergence theorem, Eq. (28) can be rewritten
as

ūs
i, j (xl ) =

∑
I

(
1

Asd
isd

∫
0�sd

isd

s
I (xs)nsd

j d�

)
us

Ii, (30)

where nsd
j is the outward surface normal of the smoothing

domain boundary 0�sd
isd , and I is the number of nodes in the

smoothing domain.
It has been found in Eq. (30) that the derivation of

shape function has been avoided using the gradient smooth-
ing technique. Therefore, compatible variable gradients have
been replaced by smoothed gradients in the S-PIM, such as
the smoothed displacement gradient in Eq. (30). And the
smoothed deformation gradient can be calculated easily using
smoothed displacement gradient in Eq. (27). Other smoothed
variables, like the smoothed Green strain and the smoothed
PK2 stress, can also be obtained in Eq. (26). It has been
verified that the S-PIM can achieve a softened and more
close-to-exact stiffness model compared to the FEM through
a mass of numerical tests, which guarantees the numerical
results with good convergence, accuracy, and efficiency [28].

C. Boundary force evaluation

1. Force correction technique

To evaluate the FSI force FFSI in a simple and accurate
approach, a force correction technique [19] is adopted in
the present paper. The method is in the framework of the
direct-forcing method. The FSI surface force can be obtained
as

FFSI(X, t )= 2ρ f h f

δt
k(X, t )[vs(X, t )−vnof (X, t )], X ∈ �,

(31)
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with

k(X, t ) = 1∑
i, j

∑N
b=1 δ(xi j − Xb)δ(xi j − X)�sh3

f

, (32)

where X and x denote the coordinates of the Lagrangian
point and the Eulerian point, respectively. k(X, t ) is the force
correction coefficient and h f is the fluid grid size. �s is the arc
length between two adjacent IB points. N is the total number
of the Lagrangian points. vs is the solid velocity and vnof is
the fluid velocity without the boundary force, which can be
evaluated as

ρ
f
0 vnof (x, t ) =

8∑
α=0

cα fα (x, t ), (33)

v f (X, t ) =
∑

i j

v f (xi j, t )δ(xi j − X)h2
f . (34)

The detailed derivation of the force correction coefficient can
be found in Ref. [19]. After evaluating the FSI force, FFSI is
distributed to the Eulerian points as

g(x, t ) =
N∑

b=1

FFSI(Xb, t )δ(x − Xb)�s. (35)

Finally, the fluid velocities at the Eulerian points are corrected
as

v f (x, t ) = vnof (x, t ) + g(x, t )δt

2ρ f
. (36)

In actual implementation, the Dirac delta function is smoothly
approximated by a continuous kernel distribution δh proposed
by Peskin [37]:

δh(x − X) = 1

h2
f



(
xi − Xi

h f

)


(
y j − Yj

h f

)
, (37)

with

(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 0 � |r| < 1,

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 � |r| < 2,

0, |r| � 2,

(38)
where (xi, y j ) and (Xi,Yj ) are the coordinates of the Eulerian
point x and the Lagrangian point X, respectively.

By employing the force correction technique, the FSI
force is evaluated more accurately so the nonslip boundary
condition is much better enhanced compared to the conven-
tional IB-LBMs. In addition, the force correction coefficients
are calculated in an explicit way; the computational cost is
reduced compared with the implicit way [16], especially for
complex problems with large scales of Lagrangian points.
When the force correction coefficients are set to be 1 for all the
IB points, the present force correction technique based scheme
reduces to the conventional direct-forcing scheme [17].

2. Time-average coupling technique

In actual implementation for FSI problems with large
deformable boundaries, generally, the time step of solid solver
δts is smaller than that of the fluid solver δt f to ensure stability.
To synchronize the fluid and solid solvers, one can set δt f =
δts. But this choice would lead to large computational cost for
the fluid solving procedure and it is obviously not practical.
An alternative is to employ a dual time stepping approach, in
which the fluid and the solid solvers have different simulation
time steps. In this case, a number of subcycles are performed
for the solid solver within one fluid step. The number of
subcycles in one LBM step is determined by the fluid-solid
time step ratio: n0 = δt f /δts. Using the subcycling procedure,
the solid solver can be given as follows (i from 0 to n0 − 1,
and vnof

t+δt f
has been obtained after the LBM evolution):

Surface force evaluation : T̄t+ i
n0

δt f
= 2ρ f h f kt

δt f

(
vs

t+ i
n0

δt f
− vnof

t+δt f

)
, (39)

S-PIM:
(

Xs
t+ i+1

n0
δt f

, vs
t+ i+1

n0
δt f

)
= �

(
Xs

t+ i
n0

δt f
, vs

t+ i
n0

δt f
, T̄t+ i

n0
δt f

)
, (40)

where Xs and vs represent the solid position and velocity,
respectively. The FSI force is evaluated as

FFSI
t+δt f

= 2ρ f h f kt+δt

δt f

(
vs

t+δt f
− vnof

t+δt f

)
. (41)

After that, FFSI is used to obtain the boundary body force
term exerting on the Eulerian points with Eq. (4) and then
the fluid velocity is corrected with Eq. (10). The subcycling
procedure based coupling scheme brings greater flexibility in
the choice of simulation time steps for the LBM and S-PIM,
and provides an efficient way to synchronize the fluid and
solid solvers. However, the coupling procedures are found to
have poor numerical stability when the problems simulated
involve the deformable boundaries, in which the motions of
the boundaries are unprescribed. In our previous work [19],

the 4-step Runge-Kutta method is adopted to solve the above
coupling equations. It should be noted that the solid and the
fluid domains have to be solved for several times in one
Runge-Kutta difference procedure. It would be quite com-
plicated to implement for the present IB-LBM as the S-PIM
has a much higher algorithm complexity than the fiber-like
assumption based solid solver used in Ref. [19].

To get better numerical stability in a relatively simple
way, a time-averaging coupling procedure is proposed in the
present work to improve the robustness of the coupling algo-
rithm. Assume that when the fluid simulation time approaches
from t to t + δt f , the solid domain undergoes an n0 subcycling
calculation. In the time-averaging coupling procedure, the
solid boundary velocity vs

t+ i
n0

δt f
at each subcycling calculation

is recorded first, where i represents the ith subcycling for the
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solid solver. Then the FSI surface force for fluid is obtained
with the time-average solid velocity v̄s as

FFSI
t+δt f

= 2ρ f h f kt+δt

δt f

(
v̄s

t+δt f
− vnof

t+δt f

)
, (42)

with

v̄s
t+δt f

=
∑n0

i=0 vs
t+ i

n0
δt f

n0 + 1
. (43)

In other words, we use the mean value of vs from t to
t + δt f to substitute for vs(X, t + δt f ) and then the FSI force
term at t + δt f can be obtained using Eq. (42) rather than
Eq. (41), which is the basic idea of the time-average coupling
scheme. The instability of the coupling scheme may due to
the artificial energy created at the fluid-solid interface [3]. In
actual implementation, it is found that the artificial energy is
dramatically reduced when employing the time-average tech-
nique and the stability is improved. More specific verifications
are carried out in Secs. III B and III C.

D. Dimensionless procedures

In the present work, the equations in Sec. II A are con-
sidered dimensionless, which means no physical dimension
is assigned to the variables and they are treated as pure
numbers. Meanwhile the solid solver in Sec. II B uses the
real physical parameters. When the coupling procedure is
implemented, the variables employed from the solid solver
to the fluid solver should be non-dimensionalized. Inversely,
the dimensionalizing procedure is conducted when the solid
solver employs the variables from the fluid solver.

The non-dimensionalizing and dimensionalizing proce-
dures are carried out according to the scaling factors, which
are defined as

Cl = lph

lLB
, Ct = tph

tLB
, Cρ = ρph

ρLB
, (44)

where Cl , Ct , and Cρ are the basic scaling factors for length,
time, and density. The subscripts refer to the physical or LB
variables. For example, defining hLB and δtLB as the grid size
and time step for LBM system, the corresponding length and
time in the real physical system can be written as

hph = hLBCl , δtph = δtLBCt . (45)

It should be noted that other scaling factors, such as Cu and
Cν , are determined by the basic ones, which can be written as

Cu = Cl

Ct
= vph

vLB
, Cν = C2

l

Ct
= νph

νLB
, (46)

where v and ν are the fluid velocity and kinematic viscosity,
respectively.

These scaling factors are defined according the specific
problems simulated and they are are chosen to be able to
ensure stability in the simulations. All the scaling factors for
each numerical test are provided in Sec. III.

E. Summary of the coupled method

The coupling illustration of the IB-LBM with the S-PIM
is presented in Fig. 3, which provides the specific procedures

FIG. 3. Algorithm diagram of the present coupling scheme.

for the implementation of the present method. The coupling
scheme enables the present method to simulate FSI problems
involving large deformable solids in an efficient way. Some
remarks of the features of the present method are given as
follows.

Remark 1: Accuracy. In the FSI force evaluation proce-
dure of the present coupling algorithm, a force correction
coefficient is introduced, which improves the accuracy of the
nonslip boundary condition enforcement at the IB points com-
pared with the conventional direct-forcing scheme. Moreover,
the MRT-based LB evolution equation proposed by Lu et al.
[26] is employed rather than the SRT-model-based one which
enables the present method to reduce the numerical boundary
slip.

Remark 2: Robustness. The S-PIM is employed to solve the
solid domain based on the nonlinear constitutive law, which
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enables the present method to model a realistic solid rather
than the fiber-like structure. In addition, the time-average
technique is proposed in the present coupling scheme when
evaluating the FSI force and this procedure can significantly
improve the robustness of the algorithm.

Remark 3: Computational efficiency. The coupling proce-
dure of the present algorithm is explicit; thus much computa-
tional cost can be saved compared with the implicit IB-LBMs
with the same mesh size, while comparable accuracy with the
implicit IB-LBMs can be obtained.

The above properties of the present method will be verified
in the numerical experiments detailed in the following section.

III. NUMERICAL EXPERIMENTS

In this section, four numerical tests are carried out. The
first one is the cylindrical Couette flow, which is a problem
with analytical solutions. The spatial convergence properties
of the present method are tested and the numerical accu-
racy improvement of the velocity profiles near the immersed
boundary owing to the adopted MRT model is discussed as
well. The second one is a rigid or elastic beam in the fluid,
which is a static state problem. The accuracy of enforcing the
nonslip boundary condition, the computational efficiency, and
the robustness of the present method are demonstrated. The
third numerical experiment is a flexible beam flapping in the
wake of the cylinder, which is a more challenging unsteady
FSI problem. The accuracy and stability of the present scheme
for such transient cases are investigated through a spatial
convergence study and the observation of the artificial energy
created at the fluid-solid interface. Finally, the capability of
the present method is proved for much more complex FSI
problems by simulating a self-propelled fishlike body.

A. Cylindrical Couette flow

To test the spatial convergence properties and the immu-
nity to the viscosity dependence of the proposed method,
the cylindrical Couette flow is simulated. The sketch of the
problem is illustrated in Fig. 4. As Fig. 4 shows, a solid
ring is immersed in a squared fluid domain and it rotates
with a constant velocity of ωs = 2 rad/s. The fluid inside
and outside the ring undergoes a rotating motion around the
center of the ring. If the flow remains laminar, the analytical
angular velocity of the fluid particles inside the ring should
be ω f = 2 rad/s. The exterior and interior radius of the ring
are R1 = 0.5 cm and R2 = 0.4 cm. The size of the fluid
domain is chosen as 8R1×8R1. The center of the ring is at
(4R1, 4R1). The values of the parameters for solid properties
are set as follows: density ρs = 10 g/cm3, Young’s modulus
Es = 1×104 g/(cms2), and Poisson ratio νs = 0.3. Gravity is
neglected in this problem. The fluid density is chosen as ρ f =
1 g/cm3. Two cases with different kinetic viscosities—case 1,
ν f = 0.1 cm2/s and case 2, ν f = 10 cm2/s—are considered.
The deformation of the ring is small enough with the large
Young’s modulus that the ring can be seen as rigid and the
analytical resolutions can be employed to verify the accuracy
of the numerical results.

The general periodic boundary conditions are used for
all the outer boundaries. The problem is simulated by both

R1
R2

θ

8R1

8R1

ωs

x

y

FIG. 4. Sketch of the cylindrical Couette flow.

the MRT- and SRT-based IB-LBMs for the purpose of the
numerical comparison. As for the MRT model, the relaxation
time parameters are chosen following Lu et al.’s work [26].

In this simulation, the non-dimensionalizing and dimen-
sionalizing procedures are carried out according to Eq. (44)
and Eq. (46). The basic scaling factors are set as Cl =
1 cm,Ct = 0.01 s,Cρ = 1 g/cm3. Other scaling factors can
be obtained as Cu=Cl

Ct
= 100 cm/s,Cν = CuCl = 100 cm2/s.

Four different mesh sizes are employed: MS1,
h f = 1/20 cm, hs = 1/30 cm; MS2, h f = 1/25 cm, hs =
1/37.5 cm; MS3, h f = 1/40 cm, hs = 1/60 cm; MS4,
h f = 1/50 cm, hs = 1/75 cm; MS5, h f = 1/80 cm, hs =
1/120 cm, where h f and hs are the mesh spaces of fluid and
solid, respectively. The L2 norm of the error for the fluid
velocity is defined as ev = ||va − vnum||L2/||va||L2, where
vnum and va are the numerical and analytical fluid velocities.
The real physical simulation time is set to be T = 10 s and
the convergent steady state of the fluid velocity is achieved at
t = T .

First, the fluid velocity errors along the line θ = 0 are ob-
served. Figure 5(a) shows the spatial convergence properties
of the present method with the MRT and SRT models in terms
of the fluid velocity errors along the line θ = 0. The slope
of the convergence curve reveals the relationship of the error
and the mesh size. It can be observed that in the case ν f =
0.1 cm2/s, the slopes of the convergence curves of the MRT
and SRT models are about 2. This means the spatial truncation
error for the coupled method is R = o(h2) and the method is of
second-order accuracy. However, in the case ν f = 10 cm2/s,
the accuracy of the SRT model deteriorates, while the MRT
model still has good performance. What is more, for the two
different cases, the MRT model has smaller errors than the
SRT model. When the mesh gets finer, the MRT model can
reach second-order accuracy and the errors are shown to be
nearly independent of the fluid kinetic viscosity.

We further investigate the fluid tangential velocity profiles
along the line θ = 0 in Fig. 5(b). It is illustrated that the fluid
velocity near the boundary shows apparent derivation to the
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FIG. 5. (a) Spatial convergence properties of the fluid velocity. (b) Tangential velocity profiles alone the line θ = 0.

analytical solution with the SRT model in case 2. As pointed
out by Le and Zhang [25] and Lu et al. [26], the abnormal fluid
velocity profiles and the numerical slip at the IB boundary
layers appear if the relaxation time parameters are improperly
chosen. In this numerical test, dimensionless kinetic viscosi-
ties in the LB calculation are ν

f
0 = 0.001 for case 1 and

ν
f
0 = 0.1 for case 2. In all the numerical simulations in this

paper, the dimensionless LB time step δt and lattice size δx
are set to be equal. The corresponding relaxation time τ for
different mesh sizes can be obtained by Eq. (12). As listed in
Table I, for case 1, the relaxation time τ is smaller than 1;
the numerical slip is not obvious. But in case 2, with the LB
mesh getting smaller, τ becomes larger. The results obtained
by SRT deteriorate badly and those from the MRT still appear
good, which is consistent with Le and Zhang’s [25] and Lu
et al.’s [26] results. This also shows that the accuracy of the
present method is significantly improved by employing the
MRT-based LB model compared with the original IB-LBM
coupling S-PIM scheme [27], in which the SRT-based LB
framework is used.

B. Beam in a fluid tunnel

In this section, a classical static state FSI problem, a beam
deformation problem in a fluid tunnel, is simulated. The
accuracy to enforce the nonslip boundary conditions at the
immersed boundary points, the computational efficiency, and
the robustness in the range of solid stiffness of the present
method are discussed. The sketch of this problem is shown
in Fig. 6. In the problem, the deformation of a beam with its
bottom fixed in a tunnel filled with viscous fluid is considered.

TABLE I. The relaxation time parameter τ for different sets of
meshes for the simulation of cylindrical Couette flow.

hf (cm) τ (Case 1) τ (Case 2)

1/20 0.54 4.5
1/25 0.55 5.5
1/40 0.58 8.5
1/50 0.60 10.5
1/80 0.66 16.5

The length of the beam is b = 0.8 cm and the thickness of the
beam is a = 0.04 cm. The length of the tunnel is L = 4.0 cm
and the height of the tunnel is H = 1.0 cm. The viscosity μ f

and density ρ f of the fluid are chosen to be 0.1 g/(cms) and
1 g/cm3, respectively. At t = 0, both solid and fluid are at rest
and the gravity is ignored. The boundary conditions for the
fluid domain are set as follows:

inlet: vx = 1.5(−y2 + 2y) (cm/s), vy = 0;

outlet: ρ f = ρ0;

upper boundary: vy = 0;

bottom boundary: vx = vy = 0. (47)

The nonequilibrium extrapolation method [38] is employed
to implement the boundary conditions except on the beam
surface. Both rigid and elastic beam cases are considered in
the simulation. The scaling factors in this numerical test are
set as

Cl = 1 cm; Ct = 0.1 s; Cρ = 1 g/cm3. (48)

1. Rigid beam

In this case, the beam is rigid which means the solid
boundary velocity and the displacement always remain zero.
Three methods—the direct-forcing IB-LBM [17], the bounce-
back based LBM, and the present method—are employed
for the simulation. The direct-forcing scheme here can be
seen as a reduction version of the present method if we set
the force correction coefficient k to be 1. The bounce-back
method here is used to get benchmark results for compar-
ison considering that the method is more suitable for such
problem with static rigid boundary conditions. Three differ-
ent mesh sizes—MS1, h f = 1/50 cm, hs = 1/50 cm; MS2,

 a

A

y

x
L/4

inlet outlet

L

H

FIG. 6. Sketch of a beam in a fluid tunnel.
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FIG. 7. Comparison of horizontal fluid velocities along the ver-
tical plane x = 2 cm using the direct-forcing IB-LBM [17], the
bounce-back based LBM, and the present IB-LBM. Three mesh sizes
hf = 1/50 cm, 1/100 cm, 1/200 cm are employed using the present
method. The results by the direct-forcing IB-LBM and bounce-back
based LBM are obtained on the finest mesh size.

h f = 1/100 cm, hs = 1/100 cm; MS3, h f = 1/200 cm, hs =
1/200 cm—are employed for the present method. The results
obtained by the direct-forcing and the bounce-back method
are on the finest mesh grid M3.

First, the horizontal fluid velocities are investigated along
the vertical plane x = 2 cm which corresponds to the plane
x = L/2 as plotted in Fig. 7. As shown, the results obtained
by the present method are precisely consistent with those ob-
tained by the bounce-back method. However, the results from

the direct-forcing method show significant errors, and they
even cannot compete with those with the present method using
the coarsest mesh MS1. We further investigate the horizontal
velocity contours and the streamlines near the beam, which
is shown in Fig. 8. As we can see, the present method and
the bounce-back method get almost the same results. The
horizontal velocity contours show a similar pattern outside
the beam. The velocities inside the beam are shown to be
zero. No streamlines can be found to penetrate into the beam
obtained by both methods. The results show that the nonslip
boundary conditions can be well enforced at the IB points
by employing the force correction technique. However, as
shown in Figs. 8(c)–8(d), the results from the conventional
direct-forcing method without using the force correction tech-
nique largely deviate from those from the present method
and bounce-back one. The horizontal velocities inside the
beam become nonzero and the unphysical phenomenon of the
streamline penetration happens. Quantitatively, the boundary
velocity error eb is investigated. eb is defined as

eb = 1

Nb

√√√√ Nb∑
n=1

(U f − Us)

U 2
0

, (49)

where Nb is the number of the immersed-boundary points. U f

and Us refer to the fluid velocity and solid velocity at the
immersed-boundary points, respectively. U0 is the maximum
inlet fluid velocity, which is equal to 1.5 cm/s. As Table II
shows, the boundary velocity error obtained by the present
method is much smaller than the conventional direct-forcing

FIG. 8. Comparison of streamlines for flows over a rigid beam using the present IB-LBM [(a), (b)], the direct-forcing IB-LBM [17]
[(c), (d)], and the bounce-back based LBM [(e), (f)].
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TABLE II. The boundary velocity error eb at the boundary of the
rigid beam obtained by the present method and the direct-forcing
method [17] with different mesh sizes.

MS1 MS2 MS3

Present 0.5% 0.19% 0.09%
Direct forcing 2.12% 1.52% 1.07%

method, which indicates that the nonslip boundary condition
is better enforced owing to the force correction technique. In
addition, it is shown that the improvement becomes more sig-
nificant as the mesh becomes finer. This explains why the error
of the fluid velocity obtained by the direct-forcing method is
so significant as shown in Fig. 7, while the results obtained by
the present method are shown to be more accurate.

2. Elastic beam

An elastic beam is considered in this case. The parameters
for the properties of the beam are set as ρs = 7.8 g/cm3,

Es = 1×105 g/(cms2), νs = 0.3.
The numerical results are first compared with those ob-

tained by the immersed smoothed finite element method
(IS-FEM) in Zhang et al.’s work [39]. Three different mesh
sizes of h f = hs = 1/50 cm, h f = hs = 1/100 cm, and h f =
hs = 1/200 cm are employed. Figure 9 shows the comparison
results of the displacement at the beam tip point A against
time. As shown in Fig. 9, good agreement is achieved between
the results by the two methods. As can be seen, as the time
increases, the beam begins to bend owing to the force from
the fluid flow becoming larger and larger. As a result, the
displacement at the beam tip point A increases gradually.
At the time t = 6 s, the displacement reaches a constant
value of about 0.478 cm because of the force balance of the
fluid flow force and the bending force inside the beam. The
final displacement values are coincident obtained by the two
methods. However, small differences can be observed, which
may caused by the different boundary condition treatments of
the present method and the IS-FEM approach [39].

To test the convergence properties of the present method
for such large deformation involved FSI problems, four dif-
ferent sets of mesh sizes, which are MS1, h f = 1/20 cm,

hs = 1/20 cm; MS2, h f = 1/40 cm, hs = 1/40 cm; MS3,

t (s)
0 2 4 6 8 10

u xA
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m
)
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FIG. 9. Comparison of the tip displacement employing the
present method with Zhang’s results [39].
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FIG. 10. The convergence properties of the beam tip displace-
ment and fluid velocity at t = 10 s.

h f = 1/50 cm, hs = 1/50 cm; MS4, h f = 1/100 cm, hs =
1/100 cm, are chosen to simulate this numerical test. The re-
sults obtained by our finest mesh size of h f = hs = 1/200 cm
are employed as the reference solution. The errors are ob-
tained as follows:

Tip displacement error: es = ∣∣(unum
xA − uref

xA

)
/uref

xA

∣∣;
Horizontal velocity error: e f = ∥∥vnum

x − vref
x

∥∥
L2/

∥∥vref
x

∥∥
L2;

(50)

where uxA and vx are the component of tip point displacement
and the fluid velocity at x = 2.0 cm in the x direction, respec-
tively. The superscripts num and re f mean the numerical and
the reference solutions. The spatial convergence properties
of the present method are shown in Fig. 10. It can be observed
that the second-order accuracy can be achieved for both solid
displacement and fluid velocity. Furthermore, the streamlines

FIG. 11. The horizontal velocity contours and the streamlines
snapshots at t = 10 s. The red dots represent the solid node positions.
Results in (a), (b), and (c) are obtained by the present IB-LBM, the
direct-forcing IB-LBM, and the implicit IB-LBM, respectively, with
the same mesh size of hs = 1/75 cm, hf = 1/100 cm.
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TABLE III. The boundary velocity error eb at the boundary of the
elastic beam obtained by the present method and the direct-forcing
method [17] with different mesh sizes.

MS1 MS2 MS3

Present 0.17% 0.06% 0.03%
Direct forcing 0.73% 0.51% 0.35%

near the solid boundary at t = 10 s obtained by the present
IB-LBM, the implicit IB-LBM [16], and the direct-forcing IB-
LBM [17] are investigated as plotted in Fig. 11. As shown in
Fig. 11, the horizontal velocity contours of the present method
and the implicit method are almost the same. The streamlines
penetration problem is avoided in the present method and the
implicit method, while in the results obtained by the direct-
forcing method, the streamlines penetrate through the solid
surface which reveals that the nonslip boundary conditions are
not guaranteed and it causes the extra errors in the simulation.
And the flow patterns show deviation from those obtained by
the implicit and the present method. Similarly to the analysis
carried out in Sec. III B 1, the boundary velocity error eb

is also investigated quantitatively. As Table III shows, the
boundary error is reduced significantly owing to the force
correction technique and better performance is shown with
the mesh getting finer. Thus it can be concluded that the force
correction technique employed in the present IB-LBM scheme
is crucial for the enforcement of the nonslip boundary condi-
tions, along with the improvement of simulation accuracy.

To test the computational efficiency of the present method,
the computational time and the tip displacement errors es are
investigated. The implicit IB-LBM [16] and the direct-forcing
IB-LBM [17] are also employed for this problem to make a
comparison with different mesh sizes. All simulations are run
on a computer of Intel Core i7-4790, CPU 3.60 GHz, RAM
8.0 G. The CPU time for the implementation of the whole
algorithm is counted as tCPU until it comes to the physical time
t = 10 s. Because the implicit method can accurately enforce
the nonslip boundary condition, the result obtained by the
implicit method is chosen as the reference solution. It should
be pointed out that in the implicit method, the solid/fluid
mesh ratio �h = hs/h f cannot be too small or it would
lead to instability [18]. Thus the mesh size hs = 1/100 cm,

TABLE V. Comparison of the robustness of the present coupling
scheme for the cases with and without the time-average technique. �
means that the simulation is stable until t = 10s. × means that the
simulation blows up before t = 10 s.

Es [g/(cms2)]

Rigid 1×109 1×107 1×105 1×104 1×103

Present � � � � � ×
Conventional � × × × × ×

h f = 1/200 cm is chosen to obtain the reference solu-
tion. In addition, the estimated computational efficiency for
each method is investigated as well, which is defined as
efficiency = 1/(es×tCPU). Table IV shows the CPU time, the
tip displacement error, and the computational efficiency of
different IB-LBMs. It is shown that the present method has no
more than 6% CPU time cost than the direct-forcing method,
but at least 3.5 times less than that of the implicit method with
the same mesh size. As for the accuracy, the present method
is able to obtained much more accurate results compared
with the direct-forcing method under the same conditions.
And with the mesh getting finer, the present method is able
to obtain comparable accuracy with the implicit method. In
terms of the computational efficiency, the present method has
the best performance compared with the other two IB-LBMs.
It should be noted that the efficiency test in this paper is
conducted for simple FSI problems; in actual implementation,
when dealing with complex problems with a large number of
boundary points, the advantage of the present method is more
significant.

Finally, the robustness of the method with different solid
stiffness and solid/fluid density ratio is investigated. First, the
simulations for beams with a wide range of elasticity from
very soft to very rigid type by choosing a different Young’s
modulus are carried out. The other parameters are set the same
as that in the above. The mesh size of h f = hs = 1/200 cm is
chosen. Except for the present coupling method, the conven-
tional method, in which the boundary force is evaluated using
Eq. (41), is also used to simulate this numerical test. As shown
in Table V, the present coupling scheme is able to handle
both the rigid solid and the elastic solid with a wide range
of Young’s modulus [Es = (1×104 ∼ 1×109) g/(cms2)].

TABLE IV. Comparison of the computational time tCPU, the tip displacement errors es, and the computational efficiency employing the
present IB-LBM, the direct-forcing IB-LBM [17], and the implicit [16] methods with different mesh sizes. The fluid size is chosen as
hf = 1/100 cm for all cases.

hs (cm) = 1/30 1/40 1/50 1/75 1/100

Present tCPU (s) 74 88 103 158 230
es 0.0354 0.0211 0.0159 0.0062 0.0013
efficiency 0.04 0.54 0.61 1.03 3.36

Direct forcing tCPU (s) 71 84 98 150 222
es 0.0680 0.0589 0.0550 0.0434 0.0378
efficiency 0.20 0.20 0.19 0.15 0.12

Implicit tCPU (s) 261 416 635 1200
es 0.0331 0.0178 0.0118 0.0025 unstable
efficiency 0.12 0.14 0.13 0.34
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TABLE VI. Comparison of the robustness of the coupling schemes with different solid/fluid ratios λ. “Present” and “Conventional” denote
the schemes with and without the time-average technique, respectively. � means that the simulation is stable until t = 10 s. × means that the
simulation blows up before t = 10 s.

λ

1×10−3 1×10−2 1×10−1 1 1×101 1×102 1×103

Present Stability × � � � � � �
δts (s) 1×10−7 1×10−7 1×10−6 5×10−6 2×10−5 5×10−5 1×10−4

Conventional Stability × × × × × × �
δts (s) 1×10−7 1×10−7 1×10−7 1×10−7 1×10−7 1×10−7 1×10−7

However, it is found that the simulations blow up when using
the conventional method even at a very early stage except for
the rigid beam.

Furthermore, the simulation of a flexible beam with differ-
ent solid/fluid density ratios λ is also carried out. The fluid
density is fixed and a number of solid densities are chosen.
The other parameters are set the same as that in the above.
As Table VI shows, the present method is stable with a wide
range of solid/fluid ratio (0.01 � λ � 1000) except for the
case when λ = 0.001. Meanwhile, it is found that one has
to choose smaller solid time step δts to ensure stability when
λ decreases. As pointed out by Sotropoulos and Yang [40],
numerical instabilities may happen for the loose coupling
schemes when the structure density is close to or lighter than
the density of the fluid and the FSI iteration scheme can
converge as long as the time step is small enough. The results
of this test is shown to be in accordance with Sotropoulos
and Yang’s [40] conclusions. In addition, the cases without
time-average technique are also tested. It is shown that the
simulation blows up when λ � 100 even with the small time
step δts = 1×10−7. Note that the instability may be caused by
the artificial energy generated at the fluid-solid interface and
it will be specifically investigated in Sec. III C.

Illustrated by the test above, the time-average technique
improves the robustness of the present method, which enables
the present coupling scheme to be stable with various solid
stiffness and solid/fluid density ratio.

C. A flexible beam in the wake of a cylinder

In this section, a flexible beam flapping in the wake of a
cylinder is simulated to test the performance of the present
method for this kind of unsteady FSI problem which is
more challenging than the former ones. Turek and Hron [41]
analyzed this problem in detail and the benchmark solutions
are given in their work. Here we will investigate the efficiency
of our method by comparing the results in the previous works.
As shown in Fig. 12, the fluid domain of this problem is set
as L = 2.5 m, H = 0.41 m. A circular cylinder with diameter

y

x

inlet outlet

L

H
A

l

h

d

FIG. 12. Sketch of a flexible beam in the wake of a cylinder.

d = 0.1 m is placed at (0.2 m, 0.2 m). On the right surface
of the cylinder, a flexible beam is fixed with its left head
while its tail is free in the fluid. The length and the thick-
ness of the beam are set to be l = 0.35 m, h = 0.02 m. The
viscosity and density of the fluid are set to be ν f = 1 kg/(ms)
and ρ f = 1×103 kg/m3. The beam’s related parameters are
given as density ρs = 1×104 kg/m3, Young’s modulus Es =
1.4×106 kg/(m s2), Poisson’s ratio νs = 0.4. The cylinder is
treated as a rigid body. The nonslip boundary conditions are
applied at the upper and bottom boundaries of the computa-
tional fluid domain. For the outlet boundary, the fluid density
is equal to ρ0. The inlet velocity is set as

(vx, vy) =
⎧⎨
⎩
(
v̄

1−cos(πt/2)
2 , 0

)
, t < 2.0 s,

(v̄, 0), t > 2.0 s;
(51)

v̄ = 6y(H − y)/H2 m/s is chosen, and thus the Reynolds
number is Re = 100. The fluid boundary conditions are im-
plemented by the nonequilibrium extrapolation method [38].
At t = 0, the fluid and solid are at rest and the fluid density
ρ f = ρ

f
0 . The scaling factors in this numerical test are set as

Cl = 1 m; Ct = 0.1 s; Cρ = 1000 kg/m3. (52)

Several typical snapshots of the velocity contour and the
pressure contour in an oscillating cycle are plotted in Fig. 13
and Fig. 14. As shown in Fig. 13, the vortices shed from the
upper side and the lower side of the cylinder interact with each
other after passing the end point of the beam, which gives
rise to a von Kármán vortex street. The oscillating motion of
the beam produces a regular vortex pattern that is advected
along the channel. Furthermore, as shown in Fig. 14, a high
pressure zone can be observed on the leading side of the
cylinder, which is created by the impingement of the flow on
the cylinder surface. At t = 0T , the beam is at the uppermost
position and the flow is obstructed on the upper surface of the
beam near the end point, resulting in the development of a
high pressure zone and a corresponding low pressure zone at
the upper side and the lower side of the beam, respectively.
Then the beam is forced to move downward and results in
the neutralization of the pressure. As the beam approaches
the horizontal position, it continues to move downward due
to its inertia. In the meantime, a high pressure zone starts to
develop on the lower side of the beam and finally the beam is
stopped once the pressure value increases to a threshold value
at t = T/2. After this time point, the beam would move up
and undergo the complete reversal motion. Figure 15 shows
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FIG. 13. The horizontal velocity contours at four typical time shots in an oscillating cycle. T denotes the oscillating period.

the displacement of the tail point A in the x and y directions. It
is illustrated that after about 9 s, the system settles into a large-
amplitude self-excited oscillation and the tail displacement
of the flag changes periodically. All the phenomena observed
here agree well with those from the previous work [42].

In order to make further comparison with the previous
works [41–43] quantitatively, the mean value and amplitude
of the tail displacement are employed which are defined as

uave = (umax + umin)/2, uamp = (umax − umin)/2, (53)

where umax and umin are the maximum and minimum of the tail
displacement, respectively. Four different mesh sizes are cho-
sen, which are MS1: h f = 1/500 m, hs = 1.5/500 m; MS2:
h f = 1/700 m, hs = 1.5/700 m; MS3: h f = 1/1000 m, hs =
1.5/1000 m; MS4: h f = 1/2000 m, hs = 2/2000 m.
Table VII shows the mean value and amplitude of the
tail point A obtained by the present method. Meanwhile,
the results from the previous works are also listed to make

comparison. It can be seen that the results of the present
method agree well with the reference solutions. In addition,
the temporal evolution of the beam tip is compared with the
benchmark results in Turek et al.’s work [41]. As Fig. 16
shows, the history curves of the tip displacements uy and ux

are shown to deviate from the reference solutions. With the
mesh getting finer, ux and uy converge to Turek et al.’s results
[41] and good agreements are achieved with MS4.

A convergence study for this transient case is carried
out and the results obtained with the finest mesh size are
employed as the reference solutions. As shown in Fig. 17, the
slopes for ux,amp, uy,amp, ux,ave, and uy,ave are 1.37, 1.58,1.22,
and 2.81, respectively. For such transient FSI problems, the
convergence rate of the results may reduce to the first order,
which is due to the dual time step used in the present scheme.
However, the orders of the accuracy obtained from the output
variables are greater than 1, which is satisfactory for an
immersed-boundary method [44].

FIG. 14. The pressure contours at four typical time shots in an oscillating cycle. T denotes the oscillating period.
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FIG. 15. (a) The displacement in the y direction of point A. (b) The displacement in the x direction of point A.

Furthermore, the conservation of energy at the interface is
an important issue for stability. The time-average procedure
employed in the present work is able to reduce the generation
of artificial interface energy effectively, which improves the
stability of the present coupling scheme. The analysis of this
issue is carried out similarly to Kollmannsberger et al.’s work
[3].

The artificial energy �ET is calculated as [3]

�ET =
∫

�

∫ tn+δt f

tn

(T f v f + Tsvs)dtd�, (54)

where � represents the immersed-boundary curve. T f and Ts

are the traction vector of the fluid and solid at the immersed
boundaries. v f and vs are fluid and solid velocities at the
immersed boundaries. Note that several subcycles are carried
out within one fluid step in the present dual time stepping
approach; the evaluation of �ET from fluid step n to n + 1
can be specifically written as

�En→n+1
T =

∫
�

[
T f

n+1v f
n+1 +

n0∑
i=1

(
Ts

n+i/n0
vs

n+i/n0

)]
d�, (55)

where n0 is the number of subcycles. In addition, the total
artificial energy Etotal is also considered. Etotal is obtained
through a summation of the �ET from the starting step n = 1

to the current time step ncurrent, which can be written as

Etotal =
ncurrent∑
n=1

�En→n+1
T . (56)

The transient case in this section is employed to carry out
the analysis of the artificial energy effect. The mesh size is set
as hs = 1.5h f = 1/500 cm. Figure 18 shows the time history
of instantaneous and total artificial energy. The superscripts a
and b denote the results obtained with and without employing
the time-average technique, respectively. It can be clearly
observed that the artificial energy increases rapidly and insta-
bility occurs at t ≈ 0.4 s without the time-average technique.
However, �ET and Etotal remain within acceptable bounds
when employing the time-average technique. The analysis
illustrates that the time-average procedure is able to reduce the
artificial energy at the immersed boundary interface, which
improves the robustness for the present method.

D. Swimming of a self-propelled fishlike body

In the end, a two-dimensional self-propelled fishlike swim-
ming problem is simulated to demonstrate the capacity of the
present method to the problems combining strong fluid-solid
interactions and large solid deformations. In this problem, the
fish body deforms in response to the fluid force and the muscle
force. In the meantime it affects the fluid flow around. Much
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Turek and Hron [41]
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FIG. 16. The temporal evolution of the beam tip with different mesh sizes: (a) tip displacement in the y direction; (b) tip displacement in
the x direction.
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TABLE VII. The mean value and amplitude of the tail point A in
the x and y directions obtained by the present method with different
mesh sizes and in the previous works.

uy,ave uy,amp ux,ave ux,amp

(mm) (mm) (mm) (mm)

Present, MS1 1.27 80.72 −13.61 11.99
Present, MS2 1.31 81.82 −13.83 12.32
Present, MS3 1.33 82.87 −14.12 12.70
Present, MS4 1.34 83.95 −14.50 13.15
Turek and Hron [41] 1.23 80.6 −14.58 12.44
Nordanger et al. [42] 1.30 81.043 −14.710 12.743
Zhang et al. [43] 1.0 83.0

progress has been made to study this problem numerically
[45–53], but in most previous works, the motion of the fish
body is prescribed. In this paper, the fishlike body is self-
propelled which means the muscle force is given to generate
the movement responses of the fish body. The pushing force of
the fish comes from the resulting FSI force acting on the fish
body surface. Muscle force and body stiffness with different
values and their effects on the straight-line fishlike swimming
speed are discussed.

Following the previous work [52], the NACA0012 airfoil
is employed to represent the fish body. As shown in Fig. 19,
the length of the fish is 1 m and it is divided into three parts:
the head part (0 ∼ 0.2L), the muscle part (0.2L ∼ 0.88L),
and the tail part (0.88L ∼ 1.0L). To ensure the straight-line
swimming, the head part is restrained by adding an elastic
constraint force in the y direction as

Fhead(X, t )=−Ks[X(t )−X0]ny, with ny = (0, 1), (57)

where X0 is chosen as X0 = (0, 0). Ks is set to be 1×106 N/m.
The muscle force is simplified by adding a surface force term
on the fish’s muscle part, which results in a periodic flapping
motion, and it can be expressed as follows:

Fbody(m, t ) = Fs sin[π (x − 0.2L)]ns,

if yA > ld, ns = (0,−1);

if yA < −ld, ns = (0, 1).

(58)

log10(hf)
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FIG. 17. The convergence properties of the mean value and
amplitude of the beam tail point A in the x and y directions. The
results from Turek and Hron [41] are employed as the reference
solutions.
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FIG. 18. The time history of instantaneous and total artificial
energy. The superscripts a and b denote the results obtained with and
without employing the time-average technique, respectively.

Initially, the muscle force is at the direction of ns = (0, 1).
No extra muscle force is exerted on the tail part. The
fluid properties are set as follows: kinematic viscosity ν f =
0.01 m2/s, density ρ f = 1×103 kg/m3. The solid parameters
are chosen as density ρs = 1×103 kg/m3, Poisson ratio νs =
0.3. The general periodic boundary conditions are employed
for all the outer boundaries. The scaling factors in this numer-
ical test are set as

Cl = 1 m, Ct = 0.01 s, Cρ = 1000 kg/m3. (59)

First, we test the problem with two fluid domain sizes:
8L×4L and 16L×8L. The fish’s head is initially at (6L, 2L)
and (12L, 4L), respectively. The muscle strength and the body
stiffness are set as Fs = 1×104 N/m2, Es = 1×107 kg/(ms).
The curves of the swimming speed against time at the x
direction obtained by the two different fluid domain sizes are
shown in Fig. 20. From 0 to 2 s, the fish experiences the
acceleration process. After t = 2 s, the fish’s speed reaches
a steady periodic state. Meanwhile, the speed is periodically
fluctuant, which is mainly due to the swing of the tail. Qual-
itatively, the fishlike swimming patterns in the present work
are in accordance with those in the previous works [50,52],
even though there are some differences in the modeling of the
fish body. It is also found that the difference of the mean fish
swimming speed from t = 2 s to t = 6 s simulated by the two
fluid domains is 1.95%. Considering the computational cost,
the fluid domain size of 8L×4L is chosen in the following
simulations.

Next we investigate the flow field, the FSI force exerted on
the fish, and the corresponding swimming speed. Figure 21
shows the fluid motion around the fish at four typical time
stages, in which the muscle strength and the body stiffness are
set as Fs = 1×104 N/m2, Es = 5×106 kg/(ms). Each time the
tail reverses direction, a strong single vortex is shed. Multiple

x
y A

head, 0.2L muscle,0.68L tail,0.12L

B

FIG. 19. Model of the fish.
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FIG. 20. Swimming speed against time in the x direction.

weak secondary vortices are also produced from the fish head
and finally at the tail. At t = 4.33 s and 4.47 s, the fish’s tail
part moves away from the axis of the body and the body
becomes the S shape. At t = 4.42 s and 4.60 s, the fish’s tail
part moves close to the axis of the body and the body becomes
the C shape. The periodic change of the fish body shape
corresponds to different motion states. Figure 22 shows the
displacement of the tail point B at the y direction dyB, total
FSI force Fx at the x direction, and swimming speed vx against
time at the steady periodic state. It is illustrated that the cycle
time of dyB is twice that of Fx. We divide the one cycle of
dyB into four stages: T 1, T 2, T 3, and T 4. In T 1, the fish tail
moves up from the axial line. In T 2 and T 3, the tail goes
down from the top position. The fish tail goes up and back
to the axis line again in T 4. It can be observed that in T 1
and T 3, the fish tail moves away from the axis line and the
fish body presents the S shape. The fish gains the pushing
FSI force and enters into an accelerated motion. In T 2 and
T 4, the tail is moving back to the axis line and the fish body
presents the C shape. The FSI force exerted on the fish surface
acts as the resistance and the fish experiences the deceleration
motion. The phenomena analyzed above are consistent with
those given in Ref. [52].

The body stiffness also affects the mean steady swimming
speed of the fish. The effect of the body stiffness is also
investigated quantitatively. Several types of self-propelled

FIG. 22. Tail displacement dyB, total FSI force Fx , and swimming
speed vx against time in the x direction.

fish with different Es and Fs are simulated. The results are
shown in Fig. 23. It can be observed that with the same
muscle strength Fs, there exists an optimal Young’s modulus
Es

o for the maximum steady speed. And Es
o increases with

the muscle strength Fs. The optimal muscle strength–stiffness
schemes approximately are (Fs (N/m), Es [kg/(ms)]) =
(1.5×104, 1.0×107),(1.0×104,5.0×106),(5×103, 1.0×106).
The results obtained by the present method are in accordance
with those in Tytell et al.’s work [50], who pointed out that
for a given muscle activation pattern, there are different
optimal stiffness values for the fish’s steady swimming speed.
Meanwhile, it should be pointed out that in nature the motions
of the fish are far more complicated than the straight-line
swimming case simulated in this simulation. However, all
these results to some extent reflect the mechanism of the
fishlike swimming and clearly demonstrate the efficiency of
the present method handling problems with strong FSI and
large solid deformation. It is believed that the present method
is still valid if suitable active control model is introduced
to describe the fish swimming problem with more complex
motions [48,49].

FIG. 21. Vorticity contours at four typical time stages.
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FIG. 23. Swimming speed vx against fish stiffness Es with dif-
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In summary, the superiority of the present method is
illustrated by several numerical tests. Compared with the
original IB-LBM coupling S-PIM scheme [27], the nonslip
boundary condition is much better enforced owing to the force
correction technique employed in the present method, and the
viscosity dependence is dramatically reduced by employing
the MRT-based LB model. In addition, the present method is
able to model realistic solids with large deformation rather
than the fiber-like structure in the original force-correction-
based IB-LB scheme [19]. Moreover, the robustness of the
present method is much improved by adopting the time-
average technique.

IV. CONCLUSIONS

In this paper, an immersed-boundary lattice Boltzmann
method is proposed for large deformable solid involved FSI
problems. The improvements that have been made in the
method are clearly presented. And the efficiency of the

method compared with previous ones is analyzed and vali-
dated by several numerical tests, including a simple FSI prob-
lem with analytical solution, a static state problem involving
large solid deformation, and complex ones with unsteady
state or strong fluid-solid interaction and large solid defor-
mation combined. Some main conclusions can be drawn as
follows:

(1) By modeling the solid domain based on the nonlinear
constitutive law using the S-PIM, the present IB-LBM can
deal with realistic solid deformation. In addition, the time-
average technique is introduced which can reduce the artificial
interface energy and enhance the robustness of the present
scheme.

(2) The nonslip boundary conditions at the immersed
boundaries can be much better enforced owing to the force
correction technique adopted in the present IB-LBM. More-
over, the viscosity dependence is dramatically reduced by
employing the MRT-based LB model.

(3) According to the numerical results, the efficiency of the
present method is verified in terms of the boundary condition
enforcement accuracy, the computational cost, the coupling
robustness, and the capacity for complex problems. It is shown
that the present method can handle the FSI problems with a
wide range of solid stiffness and solid/fluid density ratio.

However, the numerical tests are limited to the two-
dimensional case and the active control of the fish body
motion is not considered in the present solid model, which
are the objectives of future research.
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