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Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system
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Still under debate is the question of whether machine learning is capable of going beyond black-box modeling
for complex physical systems. We investigate the generalizing and interpretability properties of learning
algorithms. To this end, we use supervised and unsupervised learning to infer the phase boundaries of the active
Ising model, starting from an ensemble of configurations of the system. We illustrate that unsupervised learning
techniques are powerful at identifying the phase boundaries in the control parameter space, even in situations
of phase coexistence. It is demonstrated that supervised learning with neural networks is capable of learning
the characteristics of the phase diagram, such that the knowledge obtained at a limited set of control variables
can be used to determine the phase boundaries across the phase diagram. In this way, we show that properly
designed supervised learning provides predictive power to regions in the phase diagram that are not included in
the training phase of the algorithm. We stress the importance of introducing interpretability methods in order to
perform a physically relevant classification of the phases with deep learning.
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I. INTRODUCTION

Machine learning has recently shown its great potential
for addressing nontrivial problems in statistical and many-
body physics. Successful applications include the detection of
phase transitions in spin systems [1–16], mapping the ground-
state wave function of quantum many-body systems and per-
forming quantum state tomography [17–19], exploiting the
apparent similarities between neural networks and the theory
of the renormalization group [20–26], and the acceleration of
Monte Carlo simulations [27–30].

Due to its expressive power, deep learning has proven
to be a powerful tool to identify phase boundaries. Yet,
interpretability—i.e., can we understand on what the machine
learning algorithm bases its decision?—remains an issue.
Indeed, it often remains unclear how to transfer the features
identified by a neural network to comprehensible physical
properties. Thereby it cannot be excluded that the neural
network does not even learn physically relevant properties
altogether. Thus far, interpretable machine-learning methods
for physical systems have often drawn on the use of more
transparent (albeit less expressive) learning methods, such
as support vector machines [31,32]. Although promising,
relatively few studies have been devoted to deepening our
understanding of the properties of a physical system with the
aid of deep learning [4,7]. Gaining a more general insight into
whether a deep neural network’s classification can be built
on nontrivial physical features would hence be a major step
forward in the development of an interpretable deep learning
methodology for selected physics applications.

In this work, we sketch a possible road map for such an
interpretable learning methodology that is capable of inferring
the high-level features of a system in the control parameter
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space by merely starting from an ensemble of system config-
urations. We propose a two-step procedure: (i) first, we apply
unsupervised learning to identify the phase boundaries in a
slice of the phase diagram, (ii) subsequently, we use super-
vised methods to extract the relevant features of the phases
labeled in step (i). Thereby, we show how to select specific
models that can learn characteristic properties of the physical
system, and we use these to complete the phase diagram. We
show that the aptitude of the neural network to classify phases
in a physically relevant fashion can be considerably enhanced
by introducing interpretability tools that provide an improved
comprehension of the internal representation of the networks.

As a prototypical example, we apply our methodology to
configurations of the active Ising model (AIM) [33–35], a
nonequilibrium spin system with a nontrivial phase diagram.
The AIM describes the generic features of collective motion
emerging from local interactions in a lattice gas. Collective
motion has played a preeminent role in the study of active
matter, and the flocking transition has attracted widespread
attention due to its universal properties [36–38]. The nature of
this phase transition has been established to be comparable to
a liquid-gas transition. In the two-dimensional AIM, particles
with spin projections s = ±1 undergo biased diffusion along
the x-axis and diffuse freely along the y-axis. Particles hop
to the left (right) at a rate D(1 ∓ εs), where D is a diffusion
coefficient and ε is a measure for the self-propulsion. Hopping
along the y-axis is symmetric at a rate D. The number n±,i of
s = ±1 spins on a lattice site i determines the local density
ρi = n+,i + n−,i and the local magnetization mi = n+,i − n−,i.
Particles on a particular lattice site i tend to align their spin
through a ferromagnetic interaction: a spin flip occurs at a rate
exp(−sβmi/ρi ), with β = 1/T the inverse temperature. The
global density ρ0 = ∑

i ρi/L2 is fixed. The control parameter
space of the dynamic system under investigation is defined by
the variables (ρ0, T, D, ε). At a fixed ε > 0 and D > 0, the
phase diagram in the (ρ0, T )-plane has three distinct regions
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[33–35]. For low ρ0 and high T , collective motion is absent
and the system behaves like a homogeneous gas (phase “G”)
with mean magnetization per spin m ≈ 0, where

m = 1

ρ0L2

∣∣∣∣∣∣
L2∑

i=1

mi

∣∣∣∣∣∣
. (1)

At high ρ0 and low T , the system acts like a homogeneous
polar liquid (phase “L”). For intermediate values of ρ0 and
T , phase separation is observed in the form of an ordered,
high-density band moving through a disordered, dilute gas
(phase “L+G”). The critical point of this phase transition,
where the system can continuously transform between liquid
and gas, lies at (ρ0,c = ∞, Tc = 1) and no supercritical region
exists. In the following, we use D = 1 and ε = 0.9 without
any loss of generality, as these variables only affect the precise
location of the phase boundaries and not the overall qualitative
features of the phase diagram. Our results are obtained for a
fixed system size L = 81, which is large enough so that all
three phases can be observed. The focus of our work is on
comparing machine-learning results for phase classification
with more traditional approaches for systems at a specific
system size L. The extraction of the phase diagram in the
thermodynamic limit is beyond the scope of our study.

The organization of the rest of this work is as follows:
in Sec. II we show that unsupervised learning techniques
are capable of clustering AIM configurations into the various
phases, even in the presence of phase coexistence. This is done
most accurately with a recently developed technique based
on manifold learning. In Sec. III, deep learning is used to
extrapolate the inferred phase boundaries to other combina-
tions of the control parameters. In this process of completing
the phase diagram, we illustrate that the introduction of an
interpretability tool is indispensable.

II. UNSUPERVISED LEARNING

We now explore to what extent unsupervised machine
learning is capable of uncovering the nontrivial phase diagram
of the AIM. We use dimensionality reduction methods to
identify the relevant subspace of configuration space that char-
acterizes the different phases at varying temperatures T and
fixed ρ0 = 3. Using unsupervised algorithms such as principal
component analysis (PCA) [11–13] and uniform manifold
approximation and projection (UMAP) [39], we illustrate that
one can cluster the AIM configurations in groups correspond-
ing to their respective phase. To this end, we introduce the
data matrix D, containing the local magnetization values of N
configurations. D ji represents the magnetization at site i for a
configuration j. The rows of D correspond to 50 uncorrelated
configurations per temperature T ∈ [0.2, 1.0] with a tempera-
ture spacing �T = 0.01. Hence, for an L × L lattice, D is an
N × L2 matrix. The uncorrelated AIM configurations in D are
sampled using Markov chain Monte Carlo.

PCA identifies the dominant features of a data set as
the orthogonal and linearly uncorrelated variables (principal
components) by which its variance can best be explained. The
principal components are the orthonormal eigenvectors wi of
the covariance matrix of D with the largest eigenvalues λi. The
results of the PCA of the AIM configurations are displayed
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FIG. 1. The explained variance ratio λ̄i for the first 25 principal
components of the data matrix D, for L = 81 and ρ0 = 3. Inset: The
x-dependence of the first five principal components, averaged along
the y-direction. The shaded region corresponds to three standard
deviations on this average.

in Figs. 1 and 2. Figure 1 shows the explained variance ratio
λ̄i = λi/

∑L2

j=1 λ j of the first 25 principal components, where
the λi are sorted in descending order. The seven-dimensional
subspace of the L2-dimensional configuration space spanned
by w1−7 explains more than 99.9% of the variance in D. The
first principal component is given by w1 = 1

L [1, . . . , 1]L×L,
and it corresponds to the total magnetization. The next few
leading components (w2–w7) appear in pairs with equal λ̄ and
are periodic along the x-direction with a period of L, L/2, and
L/3, respectively. The pairwise occurrence of these compo-
nents is required to describe the band structures in the “L+G”
phase in the translationally invariant system. The smaller fluc-
tuations in the local magnetization along the y-direction are
represented by the higher principal components wi>7. Each
AIM configuration (i.e., row of D) can be described by a set
of projection coefficients pi, which are the components of the
AIM configuration in the lower-dimensional space spanned by
the reduced set of principal components [see Figs. 2(a)–2(c)].

We denote 〈pi〉 as the fixed-temperature average of pi. The
temperature-dependence of 〈pi〉 allows one to separate the
AIM configurations into three phases [Figs. 2(d) and 2(e)].
These phase boundaries are compared to those obtained by
evaluating the mean magnetization per particle m and the
liquid fraction

φ = 1

mlL2

∑
i

mi, (2)

where ml is the magnetization of the liquid band for the
configurations in D. From the previous discussion, it is clear
that 〈|p1|〉/(ρ0L) is equal to the order parameter m. Similarly,

as 〈
√

p2
2 + p2

3〉 is an indicator for the presence of large-scale
inhomogeneities in the magnetization, it is nonvanishing for
temperatures corresponding to the “L+G” phase. The max-

imum of 〈
√

p2
2 + p2

3〉 allows us to infer the temperature for
which the spatial liquid-gas ratio is equal to 1/2, as the
components with a period of L dominate for that temperature.

Though the subspaces identified by PCA are readily un-
derstood, the separation into the different phases from its
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FIG. 2. Classification of AIM configurations at ρ0 = 3 and various temperatures 0.2 � T � 1 with the unsupervised PCA [panels (a)–(e)]
and UMAP [panel (f)] techniques. (a), (b), and (c) Scatter plots with the projection of the 4050 AIM spin configurations on the first three
principal components. (d) Fixed-temperature average of |p1| as a function of T . The shaded region corresponds to one standard deviation. The
labels indicate the phase boundaries obtained by evaluating the mean magnetization per particle m [Eq. (1)] and the liquid fraction φ [Eq. (2)].
(e) Fixed-temperature average of

√
p2

2 + p2
3 as a function of T . (f) Clustering of the AIM configurations with the UMAP algorithm.

output turns out to be less straightforward. Additionally,
the success of PCA in identifying the phases in the active
Ising model does not imply that it leads to good results for
other models. The reason for this is that, unlike nonlinear
learning methods, it does not preserve local distances when
projecting from a high-dimensional to a low-dimensional
space. Figure 2(f) shows the result of dimensionality reduction
applied to the data set D of AIM configurations with a
state-of-the-art nonlinear technique known as UMAP [39].
The UMAP algorithm assumes a manifold on which the
original high-dimensional data are uniformly distributed, and
it uses local fuzzy simplicial set representations to construct a
topological representation of the data. It then searches for an
optimal low-dimensional representation that has a fuzzy topo-
logical representation as similar as possible to the high-
dimensional one. The algorithm is explained in more detail in
Appendix A. This dimensionality reduction is implemented
with the UMAP software package [40]. UMAP is highly ef-
ficient in uncovering the different phases of the AIM. In-
deed, as becomes clear from Fig. 2(f), in the constructed
representation with two UMAP components, UMAP-1 and
UMAP-2, the AIM configurations clearly cluster in five well-
separated groups with specific temperature ranges. One group
contains configurations with control parameter combinations
belonging to the “G” phase. As is the case for PCA, the
symmetry breaking in the “L” and “L+G” phases is uncovered
by the UMAP algorithm, since it divides the configurations
with positive and negative magnetization into a pair of clusters
with the same temperature range. Remark that in Fig. 2(f) for
both the “L” or “L+G” phases, the relative position of the two
clusters with respect to the “G” phase is equal. Unlike PCA,
UMAP is able to efficiently learn the translational invariance
of the bands in the “L+G” phase and hence requires only

two variables to classify the AIM configurations into the three
phases. By identifying the temperature ranges of the different
clusters in the UMAP subspace, we can now easily infer the
transition points between the three phases.

III. SUPERVISED LEARNING

A. Classification

The presented analysis clearly showed that unsupervised
learning can determine the temperature boundaries for the
different AIM phases at a fixed global density ρ0. In this
section, we demonstrate that supervised learning trained with
phase-labeled AIM configurations at a fixed ρ0 is capable
of predicting the phase boundaries in a wide range of ρ0

values that it did not encounter during the training procedure.
To this end, a convolutional neural network (CNN) is first
trained on a data set of AIM configurations generated at
ρ0 = 3 (see Appendix B for network architecture and training
details). This training is supervised, since the configurations
are now labeled with their respective phase, using the results
of the unsupervised UMAP approach. Given an input con-
figuration I , with a magnetization and density “channel”, the
network assigns a class score SI

c to each of the three phases
c = “L”, “G”, or “L+G”, from which the probability PI

c for
the configuration to belong to phase c can be found after a
softmax operation:

PI
c = eSI

c

/ ∑
c′

eSI
c′ . (3)

During training, the loss function L is minimized by optimiz-
ing the model’s weights w ∈ W , which connect the different
layers. For each AIM configuration I , the loss function reads
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LI (QI ;W ) = H(QI , PI (W )), where

H(QI , PI (W )) = −
∑

c

QI
c log

(
PI

c (W )
)

(4)

is the cross entropy between the predicted [PI (W )] and the
true (QI ) class probabilities. An additional L2-regularization
function with strength λ is included in the total loss function:

L = 1
N

∑
I

LI + λ
∑
w∈W

w2. (5)

The addition of the regularizing term reduces the magnitude
of the weights W . As a result, the learned features tend to
be more simple for λ > 0 as it prevents the model from
focusing its decision boundaries on highly specific features
of the individual training examples. Instead, the addition
of regularization forces the model to find the more general
features of the underlying data distribution [41].

B. Interpretability

To figure out the features that the CNN has captured, we
first feed the model with AIM configurations of unknown
phase labeling sampled at ρ0 values not included during train-
ing. Networks failing to predict the phase boundaries under
those circumstances are likely to have learned trivial features
from the ρ0 = 3 data, e.g., the local magnetizations mi cross-
ing a threshold. The phase boundary between two phases c′
and c′′ is inferred from the temperature for which the predicted
class probabilities Pc′ and Pc′′ coincide [1,2]. Networks trained
without regularization (λ = 0) can perfectly classify unseen
AIM configurations sampled at the same control parameters
(ρ0 = 3 and T ∈ [0.2, 1.0]) used during the training phase of
the CNN. Yet, they often fail in assigning the proper phase
for configurations with combinations of (ρ0, T ) that were not
included during training. In such cases, the minimum of the
loss function focuses heavily on details specific to the ρ0 = 3
configurations, and the neural network has failed to grasp the
more general features of the AIM. The addition of a small
regularizing term to the loss function in Eq. (5) limits the
model’s complexity, but it does not impact its classification
accuracy on the ρ0 = 3 data set. Remarkably, as shown in
Fig. 3, networks trained with λ > 0 are able to extrapolate
the boundaries they have learned at ρ0 = 3 to a range of
densities 0.5 � ρ0 � 8.0 extending over more than one order
of magnitude. Hence, this gives a first hint that for λ > 0, the
CNN extracts the more physically relevant characteristics, as
it gains the potential to accurately determine phase boundaries
at ρ0 far away from the training set. On top of that, its inferred
extrapolation of the phase boundaries is robust, meaning that
the results depend little on the initial weight parameters and
choices with regard to the training set.

In other words, each run of the optimization routine with
a different regularization strength results in a particular set
of weight parameters. Although these neural networks reach
a similar classification accuracy on configurations with con-
trol parameter combinations they have encountered during
training, only a selected subset succeeds in making a physi-
cally relevant classification. The latter illustrates the pitfalls
of merely using classification accuracy for model selection
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FIG. 3. The phase boundaries of the AIM for an 81 × 81 lattice
in the (ρ0, T )-plane. The circles are the phase boundaries obtained
by evaluating the mean magnetization per particle m [Eq. (1)] and
the liquid fraction φ [Eq. (2)] for a grid of (ρ0, T ) values. The
crosses are inferred with a CNN that is only trained on configurations
with ρ0 = 3 (hatched region). Inset: The CNN’s prediction of the
temperature dependence of the average probability Pc [Eq. (3)] of an
AIM configuration to belong to the “L”, “G”, and “L+G” phases for
ρ0 = 5.

without scrutinizing the learned features. Indeed, networks
performing well for configurations with control parameters
included in training may fail to capture the physics required
for a proper classification of unseen (ρ0, T )-combinations.

We now address the issue of whether the neural network
bases its decision on the phase classification on physically
relevant features, and the specific role the hyperparameters
play in this. For this purpose, we turn toward interpretability
methods developed to gain insight into “black-box” classifiers
in the context of image classification. One readily available
tool is a saliency map [42], which identifies the pixels on
which a classifier builds its decision. Given an AIM configura-
tion I of phase c, to which the network assigns a class score Sc,
we compute the quantity |∂Sc/∂I| through back propagation,
where we take the maximum value of this gradient over
the local magnetization and density input channels for each
lattice site (see also Fig. 5). As a result, we can highlight
the regions of I that heavily impact the classification. Those
regions are interpreted by the CNN as phase-characteristic
and—if captured correctly by the neural network—should be
reminiscent of the physical features. To illustrate the potential
of saliency maps in phase characterization, we first train a
network on AIM configurations for all global densities shown
in Fig. 3. For the “L” and “G” phases, the gradient |∂Sc/∂I|
attains only small values, which reflects that the model has
captured the homogeneity of these phases. The “L+G” phase
is much more challenging with regard to phase classification.
A prototypical saliency map for the “L+G” phase is shown
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FIG. 4. Saliency maps and physical properties of an 81 × 81
AIM configuration in the “L+G” phase with ρ0 = 3, T = 0.56. Top
panels: |∂Sc/∂I|, normalized between 0 and 1, for a network trained
with L2-regularization strength λ = 0 and 0.01. Bottom panels: local
magnetization and local density.

in Fig. 4 for a vanishing and nonvanishing regularization
strength λ. The magnitude of λ strongly impacts whether
the algorithm identifies physical features. Without any regu-
larization (λ = 0), the network’s decision is clearly built on
very local characteristics. Once regularization is turned on, it
succeeds in identifying global emergent properties—for the
AIM these are the diffuse edges between liquid and gas. As
illustrated in Fig. 6, this can also be observed in the filters
of the first convolutional layer. These saliency maps hence
give a clear insight into why the addition of a regularization
term to the loss function of Eq. (5) is necessary for a proper
extrapolation of the phase boundaries in Fig. 3.

IV. CONCLUSION

We have demonstrated that a sequential application of
unsupervised and supervised machine learning is a power-
ful instrument to infer and characterize the phase diagram
of a liquid-gas transition, without any a priori knowledge
of its phase boundaries. Advanced dimensionality reduction
methods, such as UMAP, clearly cluster system configurations
into the physical phases and recognize the presence of sym-
metry breaking. By feeding a convolutional neural network
with phase-labeled configurations, we demonstrated that well-
designed neural networks, trained to learn the phase bound-
aries for fixed control parameters, are capable of extrapolating
the phase boundaries to complete the phase diagram for a
wide range of control parameters. Thereby, it is of crucial

importance to properly select the network architectures and
hyperparameters. Indeed, we have demonstrated that neural
networks with a comparable classification performance can
either learn physically relevant features or meaningless prop-
erties. The addition of a regularizing term to the loss function
is an instrument to discriminate between these networks. By
employing interpretability tools, such as saliency maps, the
strength of the regularization can be connected to the locality
of the features captured by the neural network. Here, we have
illustrated that after adding saliency maps to the deep learning
procedure, we can extract the core physical features, e.g., the
phase-characteristic magnetization and density patterns.
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APPENDIX A: UMAP

The UMAP algorithm [39,40] contains two major steps:
constructing a (fuzzy) topological representation for the high-
dimensional data, followed by optimizing a low-dimensional
representation of it.

The process of finding a cover for a manifold on which the
data lie gets facilitated if the data are uniformly distributed
on the manifold. Hence, given the data, one can first define
a Riemannian metric that accomplishes this requirement. In
practice, the algorithm considers each data point with its near-
est neighbors and computes a metric locally by normalizing
the volume of the ball that includes these data points—from
now on referred to as the metric spaces. In this way, every data
point is assigned its own independent distance measure, valid
in its vicinity. Accordingly, the local metric spaces are incom-
patible and need to be merged in order to form a consistent
global structure. UMAP solves this issue by translating each
of the metric spaces to a fuzzy simplicial set and then taking
the fuzzy union over the family of these sets. In practice, the
algorithm constructs 1-simplices (edges) connecting the data
points. Each 1-simplex is assigned a weight w ∈ [0, 1], which
can be intuitively understood as the probability that an edge
exists between two points. By following these steps, a fuzzy
topological structure for the high-dimensional data is formed.
In essence, the result of this approach is a neighborhood
graph.

The construction of a neighborhood graph for the data
in the low-dimensional space follows a similar pattern. In
comparison to the high-dimensional space, it is simpler be-
cause one knows the distance metric and the manifold Rn,
with n the chosen number of dimensions for the projection.
The fuzzy topological structures of the low-dimensional and
high-dimensional representations should be as similar as pos-
sible. Given the set of possible 1-simplices and their assigned
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FIG. 5. Architecture of the CNN used for inferring the phase
boundaries in the control parameter space of the AIM.

weights Wh and Wl in the high- and low-dimensional repre-
sentation, respectively, the measure for this similarity is the
cross entropy H(Wh,Wl ). With the aid of stochastic gradient
descent, the algorithm updates the weights Wl to minimize
H(Wh,Wl ).

APPENDIX B: CNN ARCHITECTURE AND TRAINING

The convolutional neural network architecture used to
determine and characterize the phase boundaries is shown
in Fig. 5. The input layer consists of two channels: mag-
netization and density. The first two convolutional layers
(C1) each have six filters with a (5 × 5) kernel and have a
ReLU activation function. These layers are followed by a max
pooling layer, with a (3 × 3) kernel and stride 3. Pooling is
included to reduce the model complexity and to make the
observed features less orientation- and scale-dependent. The
next two convolutional layers (C2) also contain six filters with
ReLU activations, but now with a (3 × 3) kernel, and they are
followed by the same max pooling operation. The flattened
feature vector is then sent through a fully connected network,
where the first layer has 16 hidden nodes with ReLU activa-
tions. The output layer has three nodes, one for each of the

λ
=

0.
01

λ
=

0.
00

FIG. 6. Normalized kernels of the first layer of the CNN after
training. Only kernels with absolute values of the weights larger than
0.01 are shown. The top (bottom) two rows correspond to λ = 0
(λ = 0.01). The top and bottom row for each λ represent the filters
operating on the magnetization and density channel, respectively.

three different phases, and a softmax activation. The network
is defined by a total of ( 32

27 L2 + 1939) weights and biases,
which are trained using an Adam optimizer with learning rate
α = 10−3. We found that the learned classification was rather
insensitive to the value of the learning rate α. The data are
split into a training set (60% of the total data), a validation
set (20%), and a test set (20%). To avoid overfitting on the
training set, the loss function is evaluated on the validation set
after every training epoch. The model with the lowest loss on
the validation set is kept. When no decrease in validation loss
is detected for 100 consecutive training epochs, the training is
terminated (“early stopping”) and the network is evaluated on
the independent test set. The neural network and its training
are implemented using TensorFlow [43] and Keras [44].

In addition to the saliency maps, we interpret the inner
workings of the CNN by visualizing the kernels of the first
convolutional layer in Fig. 6. This clearly illustrates that the
first layer of the CNN trained with λ = 0.01 detects more
robust features (e.g., gradients in the local density values)
compared with the nonregularized network.
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