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Lattice Boltzmann model with self-tuning equation of state for multiphase flows
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A lattice Boltzmann (LB) model for multiphase flows is developed that complies with the thermodynamic
foundations of kinetic theory. By directly devising the collision term for the LB equation at the discrete level, a
self-tuning equation of state is achieved, which can be interpreted as the incorporation of short-range molecular
interaction. A pairwise interaction force is introduced to mimic the long-range molecular interaction, which is
responsible for interfacial dynamics. The derived pressure tensor is naturally consistent with thermodynamic
theory, and surface tension and interface thickness can be independently prescribed. Numerical tests, including
static and dynamic cases, are carried out to validate the present model and good results are obtained. As a
further application, head-on collision of equal-sized droplets is simulated and the elusive “bouncing” regime is
successfully reproduced.
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I. INTRODUCTION

The lattice Boltzmann (LB) method, first introduced in
1988 [1], uses a set of distribution functions with discrete ve-
locities to depict complex fluid flows. Due to its kinetic nature,
the LB method shows potential for considering microscopic
and mesoscopic interactions. It is therefore believed that this
method is particularly suitable for multiphase flows, which are
complex at the macroscopic level but are much simpler from
the microscopic viewpoint. The applications of the LB method
to multiphase flows emerged in the early 1990s [2] and have
significantly increased in the past decade [3].

Although various LB models for multiphase flows exist
[4–6], criticisms have been raised for a long time [7,8]. In
the pseudopotential LB model [4,9], a pairwise interaction
force is used to mimic the microscopic interaction, which
can recover nonideal-gas effects and interfacial dynamics at
the same time. However, such simultaneous recoveries make
this model suffer from thermodynamic inconsistency, though
significant progress has been made in approximating the coex-
istence densities close to the thermodynamic results [10–12].
In the free-energy LB model [5,13], the thermodynamically
consistent pressure tensor is directly incorporated to produce
the dynamics of multiphase flows. Thus, the annoying eval-
uations of (high-order) derivatives are unavoidable, though
improvements have been made to remedy the violation of
Galilean invariance in this model [14–17]. Different from the
pseudopotential and free-energy models, the multiphase LB
model has also been developed from kinetic theory via sys-
tematic discretization procedures [6,8]. Complicated equiv-
alent force terms exist in this model and severe numerical
instability is encountered. Improved models were formulated
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[18,19] at the price of sacrificing the underlying physics and
computational simplicity.

In this work, we develop an LB model for multiphase flows
complying with the thermodynamic foundations of kinetic
theory analyzed by He and Doolen [8]. The underlying molec-
ular interaction responsible for multiphase flows is divided
into short-range and long-range parts, which are incorporated
by constructing an LB model with self-tuning equation of
state (EOS) and introducing a pairwise interaction force,
respectively. The present LB model has the advantages of the
popular pseudopotential and free-energy LB models and is
free of the aforementioned drawbacks. The remainder of this
paper is organized as follows. In Sec. II, an LB model with
self-tuning EOS is developed, and in Sec. III, the application
of this model to multiphase flows is analyzed and discussed.
Numerical tests are then carried out in Sec. IV to validate the
present LB model for multiphase flows, and a brief conclusion
is drawn in Sec. V.

II. LB MODEL WITH SELF-TUNING EOS

With the presence of a discrete force term Fv,i , the LB
equation for the density distribution function fi can be gen-
erally expressed as [20,21]

fi (x + eiδt , t + δt )

= fi + δtFv,i − Λik

(
fk − f

eq
k + δt

2
Fv,k

)

−Γij

(
δjk − Λjk

2

)(
fk − f

eq
k + δt

2
Fv,k

)

− δx�i · ∇ρ − δx

c2
�i · ∇pLBE, (1)

where ei is the discrete velocity, Λik is the collision matrix in
discrete velocity space, and the right-hand side (RHS), termed
the collision process, is computed at position x and time t .
On the RHS of Eq. (1), the last three correction terms are
introduced to eliminate the additional cubic terms of velocity
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in the recovered macroscopic equation at the Navier-Stokes level [20], where pLBE denotes the EOS directly recovered by the LB
equation. Owing to the explicit physical significance of the moments of distribution function, it is more convenient to construct
the collision term in moment space than in discrete velocity space. Orthogonal moments without weights are adopted [22], and
the RHS of Eq. (1) is transformed into moment space:

m̄ = m + δtFm − S
(

m − meq + δt

2
Fm

)
− R

(
I − S

2

)(
m − meq + δt

2
Fm

)
− δxT · ∇ρ − δx

c2
X · ∇pLBE, (2)

where m = M(fi )T is the rescaled moment with M being the dimensionless transformation matrix [22], and m̄ denotes the
post-collision moment. For the sake of simplicity, the two-dimensional nine-velocity (D2Q9) lattice is considered here [23], and
the extension to three-dimensional lattice is straightforward though tedious. The equilibrium moment function meq = M(f eq

i )T

is devised as

meq = [
ρ, 2α1ρ + 2β1η + 3ρ|û|2, α2ρ + β2η − 3ρ|û|2 + 9ρû2

xû
2
y,

ρûx, −ρûx + 3ρûxû
2
y, ρûy, −ρûy + 3ρûyû

2
x, ρ

(
û2

x − û2
y

)
, ρûxûy

]T
, (3)

where û = u/c with lattice speed c = δx/δt , η is introduced to achieve the self-tuning EOS, and α1,2 and β1,2 are coefficients
that will be determined later [see Eq. (25)]. The corresponding discrete force term in moment space Fm = M(Fv,i )T is set as
follows:

Fm = [
0, 6F̂ · û, −6F̂ · û + 9�F̂ûûû�xxyy, F̂x, −F̂x + 3�F̂ûû�xyy,

F̂y, −F̂y + 3�F̂ûû�xxy, 2(F̂x ûx − F̂y ûy ), F̂xûy + F̂y ûx

]T
, (4)

where F̂ = F/c, �· · ·� denotes permutation (e.g., �F̂ûû� = F̂ûû + ûF̂û + ûûF̂) and the subscripts denote tensor indices. In
Eqs. (3) and (4), the high-order terms of velocity correspond to the third- and fourth-order Hermite terms in f

eq
i and Fv,i ,

which are necessary to eliminate the additional cubic terms of velocity [20,24]. The macroscopic density ρ and velocity u are
defined as

ρ =
∑

i

fi, ρu =
∑

i

eifi + δt

2
F. (5)

Once the equilibrium distribution function in the LB equation is changed to achieve a self-tuning EOS, Newtonian viscous
stress cannot be recovered correctly and Galilean invariance will be lost (as recognized previously [13,25]). From the Enskog
equation for dense gases in kinetic theory, we note that an extra velocity-dependent term emerges in the collision term [7,8,26].
Inspired by this fact, some velocity-dependent nondiagonal elements are introduced in the collision matrix S:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 0 0 0 0 0 0 0 0
0 se ksεωe 0 hûxsqωe 0 hûysqωe 0 0
0 0 sε 0 0 0 0 0 0
0 0 0 sj 0 0 0 0 0
0 0 0 0 sq 0 0 0 0
0 0 0 0 0 sj 0 0 0
0 0 0 0 0 0 sq 0 0
0 0 0 0 2bûxsqωp 0 −2bûysqωp sp 0
0 0 0 0 bûysqωp 0 bûxsqωp 0 sp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where ωe,p = se,p/2 − 1, and k, h, and b are coefficients that will be determined via the second-order Chapman-Enskog (CE)
analysis [see Eq. (25)]. Note that this improved collision matrix is still invertible, and the inverse matrix S−1 is given in
Appendix A.

To entirely eliminate the additional cubic terms of velocity in the recovered macroscopic equation at the Navier-Stokes level,
the correction matrices R, T, and X are set in the following forms [20]:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 R11 0 0 0 0 0 R17 R18
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 R71 0 0 0 0 0 R77 R78
0 R81 0 0 0 0 0 R87 R88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7a)

T = [0, T1, 0, 0, 0, 0, 0, T7, T8]T, (7b)

X = [0, X1, 0, 0, 0, 0, 0, X7, X8]T, (7c)
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where the nonzero elements can be uniquely and locally deter-
mined via the second-order CE analysis. In Eqs. (7b) and (7c),
T1,7,8 and X1,7,8 are vectors, which mean that the dimensions
of T and X are 9 × 2. Note that R, T, and X are of order
Ma2, Ma3, and Ma3, respectively, with Ma denoting the lattice
Mach number, and thus the corresponding correction terms in
LB equation have negligible effects on the numerical stability.

A. Second-order analysis

To determine the coefficients in meq and S, as well as
the nonzero elements in R, T, and X, the second-order CE
analysis of the above LB model is carried out in this part.
For the LB equation [i.e., Eq. (1)], performing Taylor series
expansion of fi (x + eiδt , t + δt ) centered at (x, t ), and then
transforming the result into moment space, we can obtain

(I∂t + D)m + δt

2
(I∂t + D)2m

+δ2
t

6
(I∂t + D)3m − Fm + O

(
δ3
t

)

= −
[

S
δt

+ R
δt

(
I − S

2

)](
m − meq + δt

2
Fm

)

−δxT
δt

· ∇ρ − δxX
c2δt

· ∇pLBE, (8)

where D = M[diag(ei · ∇)]M−1. In this work, the following
classical CE expansions are adopted [26]:

∂t =
+∞∑
n=1

εn∂tn, ∇ = ε1∇1,

fi =
+∞∑
n=0

εnf
(n)
i , F = ε1F(1), (9a)

which indicate

D = ε1D1, m =
+∞∑
n=0

εnm(n), Fm = ε1F(1)
m . (9b)

Here, ε is the small expansion parameter. Substituting the
above expansions into Eq. (8), we can rewrite Eq. (8) in the
consecutive orders of ε as follows:

ε0 : − S
δt

(m(0) − meq) − R
δt

(
I − S

2

)
(m(0) − meq) = 0,

(10a)

ε1 : (I∂t1 + D1)m(0) − F(1)
m = − S

δt

G(1) + 2

δt

(G̃(1) − Ĝ(1) ),

(10b)

ε2 : ∂t2m(0) + (I∂t1 + D1)G̃(1) = − S
δt

m(2) − R
δt

(
I − S

2

)
m(2),

(10c)

where G(1) = m(1) + δt/2 F(1)
m , Ĝ(1) = (I − S/2)G(1), and

G̃(1) = (I − R/2)Ĝ(1) − δxT/2 · ∇1ρ − δxX/(2c2) · ∇1pLBE

are introduced to simplify the descriptions.
Based on the ε0-order equation [i.e., Eq. (10a)], we have

ε0 : m(0) = meq, (11)

which further indicates that⎧⎪⎨
⎪⎩

G̃
(1)
0 = Ĝ

(1)
0 = G

(1)
0 = 0, m

(n)
0 = 0 (∀n � 2),

G̃
(1)
3 = Ĝ

(1)
3 = G

(1)
3 = 0, m

(n)
3 = 0 (∀n � 2),

G̃
(1)
5 = Ĝ

(1)
5 = G

(1)
5 = 0, m

(n)
5 = 0 (∀n � 2),

(12)

by considering Eq. (5). Extracting the ε1-order equations for
the conserved moments m0, m3, and m5 from Eq. (10b) and
considering Eqs. (11) and (12), the following macroscopic
equation can be obtained:

ε1 :

{
∂t1ρ + ∇1 · (ρu) = 0,

∂t1(ρu) + ∇1 · (ρuu) = −∇1pLBE + F(1),
(13)

where the directly recovered EOS pLBE is

pLBE = c2
s [(2 + α1)ρ + β1η], (14)

and cs = c/
√

3 is the lattice sound speed. Similarly, extracting
the ε2-order equations for m0, m3, and m5 from Eq. (10c) and
considering Eqs. (11) and (12), we have

ε2 :

{
∂t2ρ = 0,

∂t2(ρu) = ∇1 · �(1),
(15)

where the viscous stress tensor �(1) is generally expressed as

�(1) = −c2

[
1
2 G̃

(1)
7 G̃

(1)
8

G̃
(1)
8 − 1

2 G̃
(1)
7

]
− c2

[
1
6G̃

(1)
1 0

0 1
6G̃

(1)
1

]
.

(16)
1. Newtonian viscous stress

To calculate the viscous stress tensor given by Eq. (16),
the equations for the related moments (m1, m7, and m8) at the
order of ε1 are extracted from Eq. (10b) as follows:

− 1

δt

(
seG

(1)
1 + ksεωeG

(1)
2 + hûxsqωeG

(1)
4 + hûysqωeG

(1)
6

) + 2

δt

(
G̃

(1)
1 − Ĝ

(1)
1

)
= ∂t1m

(0)
1 + c∂x1

(
m

(0)
3 + m

(0)
4

) + c∂y1
(
m

(0)
5 + m

(0)
6

) − F
(1)
m,1, (17a)

− 1

δt

(
spG

(1)
7 + 2bûxsqωpG

(1)
4 − 2bûysqωpG

(1)
6

) + 2

δt

(
G̃

(1)
7 − Ĝ

(1)
7

)

= ∂t1m
(0)
7 + c∂x1

(
1

3
m

(0)
3 − 1

3
m

(0)
4

)
− c∂y1

(
1

3
m

(0)
5 − 1

3
m

(0)
6

)
− F

(1)
m,7, (17b)
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− 1

δt

(
spG

(1)
8 + bûysqωpG

(1)
4 + bûxsqωpG

(1)
6

) + 2

δt

(
G̃

(1)
8 − Ĝ

(1)
8

)
= ∂t1m

(0)
8 + c∂x1

(
2

3
m

(0)
5 + 1

3
m

(0)
6

)
+ c∂y1

(
2

3
m

(0)
3 + 1

3
m

(0)
4

)
− F

(1)
m,8, (17c)

where the involved ε1-order terms G
(1)
2 , G

(1)
4 , and G

(1)
6 can also be obtained from Eq. (10b)

− 1

δt

sεG
(1)
2 = ∂t1m

(0)
2 + c∂x1m

(0)
4 + c∂y1m

(0)
6 − F

(1)
m,2, (18a)

− 1

δt

sqG
(1)
4 = ∂t1m

(0)
4 + c∂x1

(
1

3
m

(0)
1 + 1

3
m

(0)
2 − m

(0)
7

)
+ c∂y1m

(0)
8 − F

(1)
m,4, (18b)

− 1

δt

sqG
(1)
6 = ∂t1m

(0)
6 + c∂x1m

(0)
8 + c∂y1

(
1

3
m

(0)
1 + 1

3
m

(0)
2 + m

(0)
7

)
− F

(1)
m,6. (18c)

Multiplying Eqs. (18a), (18b), and (18c) by k, hûx , and hûy , respectively, and then adding the results to Eq. (17a), the
following relation can be obtained after lengthy algebra:

− 1

δt

2se

2 − se

Ĝ
(1)
1 + 2

δt

(
G̃

(1)
1 − Ĝ

(1)
1

)

= −(2α1 + kα2 + k)∇1 · (ρu) + h[(α2 − 4)β1 − (α1 + 2)β2]

3β1
u · ∇1ρ + h(3β1 + β2) − 6β1(1 − k)

β1
u · ∇1p̂LBE + (2β1 + kβ2)∂t1η

− c
{
9(2k + h)ûx û

2
y∂x1p̂LBE + 9(2k + h)û2

xûy∂y1p̂LBE

}
− c

{
3
[
(1 − k)û3

x − (2k + h)ûx û
2
y

]
∂x1ρ + 3

[
(1 − k)û3

y − (2k + h)û2
xûy

]
∂y1ρ

}
− c

{[
9(1 − k)û2

x − 2(3k + h)û2
y

]
ρ∂x1ûx + [

9(1 − k)û2
y − 2(3k + h)û2

x

]
ρ∂y1ûy − 4(3k + h)ûx ûyρ(∂x1ûy + ∂y1ûx )

}
− c

{
9k∇1 · (

ρûû2
xû

2
y

) + 3hûy∂x1
(
ρû3

xûy

) + 3hûx∂y1
(
ρûxû

3
y

)}
, (19)

where p̂LBE = pLBE/c
2. To correctly recover the Newtonian viscous stress, one should have

⎧⎪⎨
⎪⎩

2α1 + kα2 + k = h[(α2−4)β1−(α1+2)β2]
3β1

≡ −2
,
h(3β1+β2 )−6β1(1−k)

β1
= 0,

2β1 + kβ2 = 0.

(20)

Here, a crucial parameter 
 is further introduced, and it is worth emphasizing that 
 cannot be simply set to 1 following the
classical LB model with ideal-gas EOS. Otherwise, a singularity will be encountered [see Eq. (25)] and the present model should
degenerate into the classical LB model. Moreover, there exist some third- and fifth-order additional terms of velocity in Eq. (19),
which can be simply ignored under the low Mach number condition. As a better choice, eliminating the third-order terms (i.e.,
cubic terms) will be discussed later.

Multiplying Eqs. (18b) and (18c) by 2bûx and −2bûy , respectively, and then adding the results to Eq. (17b), the following
relation can be finally obtained:

− 1

δt

2sp

2 − sp

Ĝ
(1)
7 + 2

δt

(
G̃

(1)
7 − Ĝ

(1)
7

)

= 2

3
[∂x1(ρux )−∂y1(ρuy )]+2

3

b[(α2−4)β1−(α1+2)β2]

β1
(ux∂x1ρ−uy∂y1ρ)+ (6b−2)β1+2bβ2

β1
(ux∂x1p̂LBE−uy∂y1p̂LBE)

+ c
{
6bûxû

2
y∂x1p̂LBE − 6bû2

xûy∂y1p̂LBE

} − c
{(

û3
x + 2bûxû

2
y

)
∂x1ρ − (

û3
y + 2bû2

xûy

)
∂y1ρ

}
− c

{(
3û2

x + 4bû2
y

)
ρ∂x1ûx − (

3û2
y + 4bû2

x

)
ρ∂y1ûy

} + c
{
6bûy∂x1

(
ρû3

xûy

) − 6bûx∂y1
(
ρûxû

3
y

)}
. (21)

To correctly recover the Newtonian viscous stress, one should have

{ b[(α2−4)β1−(α1+2)β2]
β1

= −1,

(6b−2)β1+2bβ2

β1
= 0.

(22)
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Multiplying Eqs. (18b) and (18c) by bûy and bûx , respectively, and then adding the results to Eq. (17c), the following relation
can be obtained:

− 1

δt

2sp

2 − sp

Ĝ
(1)
8 + 2

δt

(
G̃

(1)
8 − Ĝ

(1)
8

)

= 1

3
[∂x1(ρuy ) + ∂y1(ρux )] + 1

3

b[(α2 − 4)β1 − (α1 + 2)β2]

β1
(uy∂x1ρ + ux∂y1ρ) + (3b−1)β1 + bβ2

β1
(uy∂x1p̂LBE + ux∂y1p̂LBE)

− c
{
3b

(
û3

y + 2û2
xûy

)
∂x1p̂LBE + 3b

(
û3

x + 2ûx û
2
y

)
∂y1p̂LBE

} + c
{
b
(
û3

y + 2û2
xûy

)
∂x1ρ + b

(
û3

x + 2ûx û
2
y

)
∂y1ρ

}
+ c

{
2bûxûyρ∂x1ûx + 2bûxûyρ∂y1ûy + 2b

(
û2

x + û2
y

)
ρ(∂x1ûy + ∂y1ûx )

} − c
{
3bûx∂x1

(
ρû3

xûy

) + 3bûy∂y1
(
ρûxû

3
y

)}
. (23)

Similarly, to correctly recover the Newtonian viscous stress, one should have{ b[(α2−4)β1−(α1+2)β2]
β1

= −1,

(3b−1)β1+bβ2

β1
= 0.

(24)

Here, we note that Eq. (24) is actually the same as Eq. (22), which indicates that the diagonal and non-diagonal elements in the
traceless part of viscous stress tensor can be correctly recovered, or not, at the same time.

Equations (20), (22), and (24) give the constraints on the coefficients in meq and S required for the correct recovery of
Newtonian viscous stress. Considering that the classical LB model can be viewed as a special case of the present LB model,
Eqs. (20), (22), and (24) must be compatible with each other. Solving these equations, we have

α2 = −2α1 + 
 + 1

1 − 

, β2 = − 2β1

1 − 

, k = 1 − 
, h = 6
 (1 − 
 )

1 − 3

, b = 1 − 


1 − 3

. (25)

In practical applications, α1 is set to −1 according to the ordinary equilibrium moment function derived from the Maxwell-
Boltzmann distribution, and β1 is set to 1 as usual. Therefore, all the coefficients α2, β2, k, h, and b are uniquely determined
by 
 .

2. Cubic terms of velocity

From Eqs. (19), (21), and (23), and considering R ∼ O(Ma2), T ∼ O(Ma3), and X ∼ O(Ma3), we have Ĝ
(1)
1 ∼ O(Ma),

Ĝ
(1)
7 ∼ O(Ma), and Ĝ

(1)
8 ∼ O(Ma). Thus, the leading-order terms of Eqs. (19), (21), and (23) can be given as⎧⎪⎪⎨

⎪⎪⎩
− 1

δt

2se

2−se
Ĝ

(1)
1 = 2
ρ(∂x1ux + ∂y1uy ) + O(Ma3),

− 1
δt

2sp

2−sp
Ĝ

(1)
7 = 2

3ρ(∂x1ux − ∂y1uy ) + O(Ma3),

− 1
δt

2sp

2−sp
Ĝ

(1)
8 = 1

3ρ(∂x1uy + ∂y1ux ) + O(Ma3).

(26)

Based on Eq. (19) and G̃
(1)
1 = Ĝ

(1)
1 − 1

2 (R11Ĝ
(1)
1 + R17Ĝ

(1)
7 + R18Ĝ

(1)
8 + δxT1 · ∇1ρ + δxX1 · ∇1p̂LBE), we have

− 1

δt

2se

2 − se

G̃
(1)
1 = 2
ρ(∂x1ux + ∂y1uy ) + 1

δt

2

2 − se

(
R11Ĝ

(1)
1 + R17Ĝ

(1)
7 + R18Ĝ

(1)
8 + δxT1 · ∇1ρ + δxX1 · ∇1p̂LBE

)
− c

{
9(2k + h)ûx û

2
y∂x1p̂LBE + 9(2k + h)û2

xûy∂y1p̂LBE

}
−c

{
3
[
(1 − k)û3

x − (2k + h)ûx û
2
y

]
∂x1ρ + 3

[
(1 − k)û3

y − (2k + h)û2
xûy

]
∂y1ρ

}
− c

{[
9(1 − k)û2

x − 2(3k + h)û2
y

]
ρ∂x1ûx + [

9(1 − k)û2
y − 2(3k + h)û2

x

]
ρ∂y1ûy

−4(3k + h)ûx ûyρ(∂x1ûy + ∂y1ûx )

}

− c
{
9k∇1 · (

ρûû2
xû

2
y

) + 3hûy∂x1
(
ρû3

xûy

) + 3hûx∂y1
(
ρûxû

3
y

)}
. (27)

To eliminate the additional cubic terms of velocity in Eq. (27) and with the consideration of Eq. (26), we can set

R11 = − (9 − 15k − 2h)se

4


(
û2

x + û2
y

)
, R17 = −3(9 − 3k + 2h)sp(2 − se )

4(2 − sp )

(
û2

x − û2
y

)
, R18 = 12(3k + h)sp(2 − se )

2 − sp

ûxûy,

T1 = 3(2 − se )

2

[
(1 − k)û3

x − (2k + h)ûx û
2
y

(1 − k)û3
y − (2k + h)û2

xûy

]
, X1 = 9(2k + h)(2 − se )

2

[
ûx û

2
y

û2
xûy

]
. (28)

Thus, Eq. (27) can be finally simplified as

− 1

δt

2se

2 − se

G̃
(1)
1 = 2
ρ(∂x1ux + ∂y1uy ) + O(Ma5). (29)
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From Eq. (21), and considering G̃
(1)
7 = Ĝ

(1)
7 − 1

2 (R71Ĝ
(1)
1 + R77Ĝ

(1)
7 + R78Ĝ

(1)
8 + δxT7 · ∇1ρ + δxX7 · ∇1p̂LBE), we have

− 1

δt

2sp

2 − sp

G̃
(1)
7 = 2

3
ρ(∂x1ux − ∂y1uy ) + 1

δt

2

2 − sp

(
R71Ĝ

(1)
1 + R77Ĝ

(1)
7 + R78Ĝ

(1)
8 + δxT7 · ∇1ρ + δxX7 · ∇1p̂LBE

)
+ c

{
6bûxû

2
y∂x1p̂LBE − 6bû2

xûy∂y1p̂LBE

} − c
{(

û3
x + 2bûxû

2
y

)
∂x1ρ − (

û3
y + 2bû2

xûy

)
∂y1ρ

}
− c

{(
3û2

x + 4bû2
y

)
ρ∂x1ûx − (

3û2
y + 4bû2

x

)
ρ∂y1ûy

} + c
{
6bûy∂x1

(
ρû3

xûy

) − 6bûx∂y1
(
ρûxû

3
y

)}
. (30)

To eliminate the additional cubic terms of velocity in Eq. (30) and with the consideration of Eq. (26), we can set

R71 = − (3 − 4b)se(2 − sp )

4
 (2 − se )

(
û2

x − û2
y

)
, R77 = −3(3 + 4b)sp

4

(
û2

x + û2
y

)
, R78 = 0,

T7 = 2 − sp

2

[
û3

x + 2bûxû
2
y

−û3
y − 2bû2

xûy

]
, X7 = −3b(2 − sp )

[
ûx û

2
y

−û2
xûy

]
. (31)

Thus, Eq. (30) is finally simplified as

− 1

δt

2sp

2 − sp

G̃
(1)
7 = 2

3
ρ(∂x1ux − ∂y1uy ) + O(Ma5). (32)

Based on Eq. (23), and considering G̃
(1)
8 = Ĝ

(1)
8 − 1

2 (R81Ĝ
(1)
1 + R87Ĝ

(1)
7 + R88Ĝ

(1)
8 + δxT8 · ∇1ρ + δxX8 · ∇1p̂LBE), we have

− 1

δt

2sp

2 − sp

G̃
(1)
8 = 1

3
ρ(∂x1uy + ∂y1ux ) + 1

δt

2

2 − sp

(
R81Ĝ

(1)
1 + R87Ĝ

(1)
7 + R88Ĝ

(1)
8 + δxT8 · ∇1ρ + δxX8 · ∇1p̂LBE

)
− c

{
3b

(
û3

y + 2û2
xûy

)
∂x1p̂LBE + 3b

(
û3

x + 2ûx û
2
y

)
∂y1p̂LBE

}
+ c

{
b
(
û3

y + 2û2
xûy

)
∂x1ρ + b

(
û3

x + 2ûx û
2
y

)
∂y1ρ

}
+ c

{
2bûxûyρ∂x1ûx + 2bûxûyρ∂y1ûy + 2b

(
û2

x + û2
y

)
ρ(∂x1ûy + ∂y1ûx )

}
− c

{
3bûx∂x1

(
ρû3

xûy

) + 3bûy∂y1
(
ρûxû

3
y

)}
. (33)

Similarly, to eliminate the additional cubic terms of velocity, we can set

R81 = bse(2 − sp )


 (2 − se )
ûx ûy, R87 = 0, R88 = 6bsp

(
û2

x + û2
y

)
,

T8 = −b(2 − sp )

2

[
û3

y + 2û2
xûy

û3
x + 2ûx û

2
y

]
, X8 = 3b(2 − sp )

2

[
û3

y + 2û2
xûy

û3
x + 2ûx û

2
y

]
, (34)

and then Eq. (33) is simplified as

− 1

δt

2sp

2 − sp

G̃
(1)
8 = 1

3
ρ(∂x1uy + ∂y1ux ) + O(Ma5). (35)

As given by Eqs. (28), (31), and (34), the nonzero elements in R, T, and X can be uniquely and locally determined, and
the results are also consistent with the aforementioned conditions R ∼ O(Ma2), T ∼ O(Ma3), and X ∼ O(Ma3). Based on
Eqs. (29), (32), and (35), the viscous stress tensor given by Eq. (16) can be simplified as

�(1) = ρν[∇1u + u∇1 − (∇1 · u)I] + ρς (∇1 · u)I + O(Ma5), (36)

where the kinematic viscosity ν and bulk viscosity ς are given as

ν = c2
s

(
s−1
p − 1/2

)
δt , ς = 
c2

s

(
s−1
e − 1/2

)
δt . (37)

3. Macroscopic equation

Combining Eqs. (13) and (15), and utilizing Eq. (36), the macroscopic equation at the Navier-Stokes level can be finally
recovered as follows:{

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρuu) = −∇pLBE + F + ∇ · {ρν[∇u + u∇ − (∇ · u)I] + ρς (∇ · u)I} + O(Ma5).
(38)

Obviously, the Newtonian viscous stress is correctly recovered and thus the Galilean invariance can be satisfied. In addition, the
EOS pLBE directly recovered by the LB equation can be self-tuned via the built-in η [see Eq. (14)]. From the above second-order
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analysis, it can also be seen that the force term F can be
recovered with no discrete lattice effect at the ε2 order.

Before proceeding further, some discussion on the present
LB model with self-tuning EOS is useful. For the coefficients
α1,2 and β1,2, α1 = −1 and β1 = 1 are set as usual, and
one has α2 = 1. Therefore, meq given by Eq. (3) can be
decomposed into the ordinary one derived from the Hermite
expansion of the Maxwell-Boltzmann distribution and the
extra one related to η. The coefficient 
 plays an important
role here. When 
 = 1, one has β2 → ∞, k = 0, h = 0,
and b = 0. Thus, η should be set to 0 to avoid a singu-
larity, implying that the present model degenerates into the
classical LB model with ideal-gas EOS. When 
 = 1/3,
one has β2 = −3, k = 2/3, h → ∞, and b → ∞. Thus, the
velocity-dependent terms in S should be removed to avoid a
singularity, which means that Newtonian viscous stress cannot
be recovered and Galilean invariance is lost. Compared with
previous LB models derived from the Enskog equation via
systematic discretization procedures [6–8], the present model
is directly constructed at the discrete level in moment space
and thus is free of complicated derivative terms, which trigger
numerical instability and restrict real applications of previous
models [18,19].

III. APPLICATION TO MULTIPHASE FLOWS

As analyzed by He and Doolen [8], a thermodynamically
consistent kinetic model for multiphase flows can be es-
tablished by combining Enskog theory for dense gases and
mean-field theory for long-range molecular interaction. In the
Enskog equation, short-range molecular interaction (i.e., the
effect of molecular volume) is considered by the collision
term, and consequently, a nonideal-gas EOS is recovered [26].
From this viewpoint, the present LB model with self-tuning
EOS can be interpreted as the incorporation of short-range
molecular interaction, and thus the long-range molecular in-
teraction remains to be included to construct a valid model for
multiphase flows. Following the idea of the pseudopotential
LB model [4,9], a pairwise interaction force is introduced to
mimic the long-range molecular interaction. Here, nearest-
neighbor interaction is considered, and the interaction force
is given as

F(x) = G2ρ(x)
∑

i

ω(|eiδt |2)ρ(x + eiδt )eiδt , (39)

where G2 is used to control the interaction strength, and
the weights ω(δ2

x ) = 1/3 and ω(2δ2
x ) = 1/12 maximize the

isotropy degree of F. Note that Eq. (39) implies that the
long-range molecular interaction is attractive.

The interaction force given by Eq. (39) is incorporated into
the LB equation via the discrete force term. Based on our
previous analysis [27], some ε3-order terms will be caused
by the discrete lattice effect on the force term, which should

be considered for multiphase flows. To cancel such effects,
a consistent scheme for the ε3-order additional term can be
employed. The collision process described by Eq. (2) is then
improved as

m̄ = m + δtFm − S
(

m − meq + δt

2
Fm

)
+ SQm

− R
(

I − S
2

)(
m − meq + δt

2
Fm

)

− δxT · ∇ρ − δx

c2
X · ∇pLBE, (40)

where the discrete additional term Qm is set as

Qm =
[

0,
|F̃|2

2
, −|F̃|2

2
, 0, 0, 0, 0,

F̃ 2
x − F̃ 2

y

12
,

F̃xF̃y

12

]T

,

(41)

and F̃ = F/(Gρc). In the CE analysis, F is of order ε1,
and thus Qm is of order ε2 (i.e., Qm = ε2Q(2)

m ). Considering
Qm,0 = Qm,3 = Qm,5 = 0, the term SQm introduced here for
multiphase flows makes no difference to the previous second-
order CE analysis.

A. Third-order analysis

Since the ε3-order terms should be seriously considered
for multiphase flows [27], the third-order CE analysis of
the present LB model with the collision process given by
Eq. (40) is carried out in this part. Note that the target of
the present third-order analysis is to identify the leading-
order terms at the ε3 order. These leading-order terms are
mainly related to the density gradient in the interfacial region
caused by the pairwise interaction force, which means that
such terms are irrelevant to time and velocity. Therefore, a
steady and stationary situation can be considered, which is
simple but effective and can also avoid leading to the Burnett
level equation that is unnecessary and undesirable. Similarly
to the second-order analysis, the ε0-, ε1-, ε2-, and ε3-order
equations can be obtained from Eq. (8) by using the classical
CE expansions and adding the term SQm/δt to the RHS of
Eq. (8). In a steady and stationary situation, these ε0-, ε1-, ε2-,
and ε3-order equations can be simplified as

ε0 : m(0) = meq, (42a)

ε1 : ∂t1m(0) + D1m(0) − F(1)
m = − S

δt

(
m(1) + δt

2
F(1)

m

)
,

(42b)

ε2 : ∂t2m(0) − δtD1

(
S−1 − I

2

)(
D1m(0) − F(1)

m

) = − S
δt

m(2) + S
δt

Q(2)
m , (42c)

ε3 : ∂t3m(0) + δ2
t

[
D1

(
S−1 − I

2

)
D1

(
S−1 − I

2

)(
D1m(0) − F(1)

m

) − 1

12
D3

1m(0)

]
+ D1Q(2)

m = − S
δt

m(3), (42d)
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where the terms ∂t1m(0), ∂t2m(0), and ∂t3m(0) are reserved as
a gauge for the equations at different orders.

Similarly to the second-order analysis, the equations for
the conserved moments m0, m3, and m5 are extracted from
Eq. (42) to deduce the macroscopic conservation equation.
The equations for m0, m3, and m5 in the ε1-order equation
[i.e., Eq. (42b)] can be simplified as

ε1 :

⎧⎪⎨
⎪⎩

∂t1ρ = 0,

∂t1(ρux ) = −∂x1pLBE + F (1)
x ,

∂t1(ρuy ) = −∂y1pLBE + F (1)
y ,

(43)

where pLBE is also given by Eq. (14). Similarly, the equations
for m0, m3, and m5 in the ε2-order equation [i.e., Eq. (42c)]
can be simplified as

ε2 :

⎧⎨
⎩

∂t2ρ = 0,

∂t2(ρux ) = 0,

∂t2(ρuy ) = 0.

(44)

After some lengthy algebra, the equations for m0, m3, and
m5 in the ε3-order equation [i.e., Eq. (42d)] can be finally
simplified as

ε3 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t3ρ = 0,

∂t3(ρux ) = 1
12δ2

x∇1 · ∇1F
(1)
x − 1

24c2[2∇1 · (
F̃(1)F̃ (1)

x

) + ∂x1(F̃(1) · F̃(1) )
]

− 1
6δ2

x[(k + 1)τeτq − τpτq]∇1 · ∇1∂x1p̄ − 1
12δ2

x (12τpτq − 1)∂2
y1∂x1p̄,

∂t3(ρuy ) = 1
12δ2

x∇1 · ∇1F
(1)
y − 1

24c2
[
2∇1 · (

F̃(1)F̃ (1)
y

) + ∂y1(F̃(1) · F̃(1) )
]

− 1
6δ2

x[(k + 1)τeτq − τpτq]∇1 · ∇1∂y1p̄ − 1
12δ2

x (12τpτq − 1)∂2
x1∂y1p̄,

(45)

where τe,p,q = s−1
e,p,q − 1/2 and p̄ = (3 + β2)c2

s η. Combining
the ε1-, ε2-, and ε3-order equations [i.e., Eqs. (43)–(45)], the
macroscopic equation in steady and stationary situation at the
ε3-order can be recovered as follows:{
∂tρ = 0,

∂t (ρu) = −∇pLBE + F + Riso + Radd + R̄iso + R̄aniso,
(46)

where Riso = 1
12δ2

x∇ · ∇F is the isotropic term caused by the
discrete lattice effect, Radd = − 1

24c2∇ · [2F̃F̃ + (F̃ · F̃)I] is
the additional term introduced by SQm to cancel the effect of
Riso, R̄iso = − 1

6δ2
x[(k + 1)τeτq − τpτq]∇ · ∇∇p̄ and R̄aniso =

− 1
12δ2

x (12τpτq − 1)
[
∂2
y ∂xp̄, ∂2

x ∂yp̄
]T

are the isotropic and
anisotropic terms caused by achieving self-tuning EOS, re-
spectively. Note that Riso, Radd, R̄iso, and R̄aniso are all recov-
ered at the ε3 order and thus disappear from the macroscopic
equation at the Navier-Stokes level.

B. Thermodynamic consistency

For multiphase flows, R̄iso and R̄aniso should be eliminated
by setting

τpτq = (k + 1)τeτq = 1/12, (47)

and Riso and Radd can be absorbed into the pressure tensor.
Therefore, the pressure tensor recovered by the present LB
model for multiphase flows is defined as

∇ · P = ∇pLBE − F − Riso − Radd. (48)

Performing Taylor series expansion of ρ(x + eiδt ) centered at
x, the interaction force F given by Eq. (39) can be expressed
as

F = G2δ2
xρ∇ρ + G2δ4

x

6
ρ∇∇ · ∇ρ + O

(
∂5
x,y

)
. (49)

Therefore, F + Riso + Radd in Eq. (48) can be simplified as

F + Riso + Radd = G2δ2
xρ∇ρ + G2δ4

x

4
ρ∇∇ · ∇ρ + O

(
∂5
x,y

)
.

(50)

Based on Eq. (50), the pressure tensor defined by Eq. (48) can
be finally derived as follows:

P =
(

pEOS − κρ∇ · ∇ρ − κ

2
∇ρ · ∇ρ

)
I + κ∇ρ∇ρ, (51)

where κ = G2δ4
x/4 and the EOS for multiphase flows is

pEOS = pLBE − G2δ2
x

2
ρ2, (52)

in which the self-tuning term pLBE is interpreted as the incor-
poration of short-range molecular interaction and the second
term −G2δ2

xρ
2/2 is due to the consideration of long-range

molecular interaction. Obviously, P given by Eq. (51) is
naturally consistent with thermodynamic theory [28], where
the free energy Ψ is defined as

Ψ =
∫

V

(
ψb + κ

2
|∇ρ|2

)
dx. (53)

Here, ψb is the bulk free-energy density related to EOS
pEOS = ρ∂ρψb − ψb, and κ

2 |∇ρ|2 is the interfacial free-energy
density. Based on Eq. (51), the Maxwell construction can be
derived.

In this work, the Carnahan-Starling EOS [29] is taken as
an example:

pEOS = KEOS

[
ρRT

1 + ϑ + ϑ2 − ϑ3

(1 − ϑ )3
− aρ2

]
, (54)

where R is the gas constant, T is the temperature, ϑ = bρ/4,
a = 0.496388R2T 2

c /pc, and b = 0.187295RTc/pc, with Tc

and pc denoting the critical temperature and pressure, re-
spectively. The scaling factor KEOS [30] is introduced here to
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adjust the magnitude of bulk free-energy density ψb. In the
Carnahan-Starling EOS, the first and second terms describe
the effects of short-range (repulsive) and long-range (attrac-
tive) molecular interactions, respectively [29]. Therefore, in
addition to the aforementioned thermodynamic consistency
about the pressure tensor, a thermodynamic consistency be-
tween the recovered EOS [i.e., Eq. (52)] and the prescribed
EOS [i.e., Eq. (54)] can also be established for the present LB
model, and accordingly, the interaction strength is set as

G = KINT

√
2KEOSa/δ2

x, (55)

where the scaling factor KINT is introduced to adjust the
interfacial free-energy density κ

2 |∇ρ|2, and the lattice sound
speed is chosen as

cs = KINT

√
∂ρ (pEOS + KEOSaρ2)

∣∣∣
ρ=ρl

, (56)

which can also achieve better numerical stability with respect
to the reduced temperature Tr (Tr = T/Tc). With this configu-
ration, it is known from thermodynamic theory that the surface
tension σ and interface thickness W satisfy

σ ∝ KEOSKINT, W ∝ KINT, (57)

where the proportionality constants can be analytically deter-
mined by the pressure tensor. Thus, in real applications of the
present LB model, the surface tension and interface thickness
can be independently prescribed.

IV. NUMERICAL VALIDATIONS

In this section, numerical tests, including static and dy-
namic cases, are carried out to validate the present LB model
with self-tuning EOS for multiphase flows. The basic simula-
tion parameters are chosen as 
 = 1/6, a = 1, b = 4, R = 1,
and δx = 1, and a detailed implementation of the collision
process [i.e., Eq. (40)] is given in Appendix B.

A. Static cases

First, a one-dimensional flat interface is simulated on a
1024δx × 4δx domain to validate the relation W ∝ KINT. Here-
after, the interface thickness W is defined from ρ = 0.95ρg +
0.05ρl to ρ = 0.05ρg + 0.95ρl , with ρg and ρl denoting the
gas and liquid densities, respectively. Note that the present
definition of W is different from the previous definition
where W is obtained by fitting the density profile across
interface with ρ = 0.5(ρl + ρg ) + 0.5(ρl − ρg ) tanh(2x/W )
[19,31,32]. According to the phase-field method for mul-
tiphase flows [3,33], the present definition of W is more
reasonable and the value of W is hence larger. Figure 1 shows
the variation of W with KINT when the reduced temperature Tr

is chosen as 0.9, 0.8, 0.7, 0.6, and 0.5, respectively, and the
scaling factor KEOS is fixed at 1. Good proportionality between
W and KINT can be clearly seen. Note that when Tr is relatively
small, KINT should be increased to widen the interfacial region
for numerical stability. Figure 2 shows the density profiles
across interface for KEOS = 10−2, 10−1, 100, 101, and 102,
respectively, when Tr = 0.8 and KINT = 2.2949 (i.e., W =
10). As one can see, the density profiles for different KEOS are
identical, which indicates that both the coexistence densities

0 2 4 6 8
0

20

40

60

W

INTK

0.5rT
0.6rT
0.7rT
0.8rT
0.9rT

FIG. 1. Variation of the interface thickness W with the scaling
factor KINT. The scaling factor KEOS is fixed at 1, and the dashed lines
are the corresponding linear fits to the symbols.

and the interface thickness are not affected by KEOS. From
Fig. 2, it can also be seen that the density profile obtained
by the simulation is in excellent agreement with the ana-
lytical one predicted by the pressure tensor, which validates
the present LB model for multiphase flows. The coexistence
curve, as a function of Tr , is then computed by slowly varying
Tr , as shown in Fig. 3. Here, KEOS is fixed at 1 and KINT is
computed by prescribing W = 20. It can be seen from Fig. 3
that the numerical result agrees well with the thermodynamic
result by Maxwell construction. When Tr < 0.6, there exists
a slight deviation in the gas branch, which is caused by the
spatial discretization error in the interfacial region and can be
reduced by increasing the interface thickness.

To validate the relation σ ∝ KEOSKINT, a two-dimensional
circular droplet is simulated on a 1024δx × 1024δx domain
with the initial diameter being 512δx . Accordingly, the sur-
face tension is calculated via Laplace’s law, i.e., σ = (pin −
pout)D/2, with pin and pout denoting the pressure inside
and outside the droplet, respectively, and D being the final

-10 -5 0 5 10
0

0.1

0.2

0.3

10.00

x

analytical

2
EOS 10K

1
EOS 10K

0
EOS 10K

1
EOS 10K

2
EOS 10K

FIG. 2. Density profiles across interface obtained with various
KEOS. The reduced temperature Tr and the scaling factor KINT are
chosen as 0.8 and 2.2949, respectively.
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10-3 10-2 10-1
0.5

0.6

0.7

0.8

0.9

1
Maxwell construction
numerical

rT

FIG. 3. Coexistence curves obtained by the simulation of a flat
interface and predicted by the Maxwell construction. The scaling
factor KEOS is fixed at 1, and the scaling factor KINT is computed by
prescribing W = 20.

diameter of the droplet measured at ρ = (ρg + ρl )/2. Figure 4
shows the variation of σ with KINT when Tr = 0.9, 0.8, 0.7,
0.6, and 0.5, respectively, and KEOS = 1. As one can see, σ

is indeed proportional to KINT. Here, it is noteworthy that, as
compared with the simulation of flat interface, KINT required
for numerical stability significantly increases when Tr = 0.5.
Figure 5 shows the variation of σ with KEOS for various Tr

when KINT is computed by prescribing W = 20 for Tr � 0.6
and W = 30 for Tr = 0.5. The results in Fig. 5 demonstrate
the perfect proportionality between σ and KEOS and also
suggest that σ can be adjusted in a wide range via KEOS. Due
to the excellent proportionalities observed in Figs. 1, 2, 4,
and 5, the proportionality constants in Eq. (57) can then be
measured by simulating a circular droplet with various KEOS

and KINT, and the results are shown in Fig. 6. In addition,
considering σ and W are physical properties that should be

0 4 8 12
0

0.16

0.32

0.48

0.5rT
0.6rT
0.7rT
0.8rT
0.9rT

INTK

FIG. 4. Variation of the surface tension σ with the scaling factor
KINT. The scaling factor KEOS is fixed at 1, and the dashed lines are
the corresponding linear fits to the symbols.

10-2 10-1 100 101 102

10-4

10-2

100

102

0.5rT
0.6rT
0.7rT
0.8rT
0.9rT

EOSK

FIG. 5. Variation of the surface tension σ with the scaling factor
KEOS. The scaling factor KINT is computed by prescribing W = 20
for Tr � 0.6 and W = 30 for Tr = 0.5, and the dashed lines are the
corresponding linear fits to the symbols.

independent of the geometric configuration of the interface,
σ and W predicted by the pressure tensor P with KEOS =
KINT = 1 for a flat interface are also plotted in Fig. 6. As one
can see, the numerically measured proportionality constants in
Eq. (57) are in very good agreement with σ and W analytically
predicted by P.

B. Dynamic cases

To further validate the present LB model for multiphase
flows, dynamic cases are simulated in this part. First, oscilla-
tion of an elliptic droplet is simulated on a 512δx × 512δx do-
main with Tr = 0.6, σ = 0.01, and W = 10, which indicates
that the scaling factors are KEOS = 0.1063 and KINT = 3.4632.
To avoid the effect of initialization, the initial semimajor and
semiminor axes are set to 96.0δx and 42.7δx , respectively, and
the oscillation period Tosi is measured after a long time, when
the oscillation becomes weak enough. The numerical results

0.4 0.6 0.8 1
0

0.02

0.04

0.06

2

4

6

8
analytical,
analytical,W
numerical,
numerical,W

W

rT

FIG. 6. Proportionality constants in Eq. (57) obtained by the
simulation of a circular droplet with various KEOS and KINT and
predicted by the pressure tensor with KEOS = KINT = 1 for a flat
interface.
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TABLE I. Surface tension σ , interface thickness W , and oscilla-
tion period Tosi/δt obtained by the simulation of an elliptic droplet.

σ W Tosi/δt

Numerical 0.0101105 9.96448 18346
Analytical 0.01 10 18628.0
Relative error 1.105% −0.355% −1.514%

are listed in Table I, where the numerical results of σ and
W are measured when the oscillation finally stops and the
analytical solution of Tosi is calculated via 2π [6σ/(ρlR

3
0 )]−1/2

[34], in which the liquid density ρl and the equilibrium radius
R0 are numerically measured when the oscillation stops. As
it can be seen from Table I, the present numerical results
are in good agreement with the analytical solutions, which
validate the present LB model and reaffirm that σ and W can
be prescribed in real applications.

As a further application, head-on collision of equal-sized
droplets is simulated with Tr = 0.7, σ = 0.01, and W = 10,
which indicates that the scaling factors are KEOS = 0.2013 and
KINT = 2.9050. The computational domain is set as 1024δx ×
1024δx , and the initial droplet diameter is 128δx . The head-on
collision outcome is mainly controlled by the Weber number
We = ρlU

2D/σ and the Reynolds number Re = UD/ν, with
U and D denoting the relative velocity and droplet diameter,
respectively. All four regimes for head-on collision, experi-
mentally observed by Qian and Law in the three-dimensional
situation [35], are successfully reproduced here in the two-
dimensional situation, as shown in Fig. 7. For We = 0.01
and Re = 1, the droplets approach each other and then merge
with small deformation. As We increases to 0.1, the droplets
bounce back without merging. Here, it is worth pointing out
that this “bouncing” regime is quite elusive and has not been
observed in previous two- and three-dimensional simulations
by the pseudopotential and free-energy LB models [36–38].
For We = 1 and Re = 2, and We = 20 and Re = 100, merg-
ing happens again, probably accompanied with large deforma-
tion in this regime. For We = 60 and Re = 200, the outward
motion caused by strong impact splits the merged mass into
three parts, with two main droplets separating from both sides
and a satellite droplet residing at the center, as shown in
Fig. 7(e).

V. CONCLUSION

In summary, we have developed an LB model for multi-
phase flows, which complies with the thermodynamic foun-
dations of kinetic theory and thus is naturally consistent
with thermodynamic theory. The underlying short-range and
long-range molecular interactions are separately incorporated
by constructing an LB model with self-tuning EOS and in-
troducing a pairwise interaction force. The present model
combines the advantages of the popular pseudopotential and
free-energy LB models. Most computations can be carried out
locally, and the surface tension and interface thickness can
be independently prescribed in real applications. Numerical
simulations of static cases validate the theoretical analysis of
the present model for multiphase flows. As dynamic cases,

(a)

(b)

0t∗ = 0.9760 0.9834 1.0325

0t∗ = 0.9329 1.5549 3.1097

(d)

0t∗ = 1.0994 3.8481 7.6961

(e)

15.23411.4260t∗ = 1.904 3.809 7.427 9.521

0t∗ = 0.5654 0.6884 1.3767

(c)

FIG. 7. Head-on collision processes of equal-sized droplets at
different dimensionless time t∗ = t U/D with (a) We = 0.01 and
Re = 1, (b) We = 0.1 and Re = 1, (c) We = 1 and Re = 2, (d)
We = 20 and Re = 100, and (e) We = 60 and Re = 200.

oscillation of an elliptic droplet and head-on collision of
equal-sized droplets are then simulated. The numerical results
for oscillation are in good agreement with the analytical
solutions, and all four regimes for head-on collision, including
the elusive “bouncing” regime, are successfully reproduced.

It should be pointed out that the density ratio achieved
by the present LB model for multiphase flows is relatively
moderate. However, as an LB model with many theoretical
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advantages, the present model can serve as a good frame-
work for further developing LB models for large-density-ratio
multiphase flows, which is underway and will be reported
elsewhere. In addition, the present LB model with self-tuning
EOS can also be applied to coupled thermo-hydrodynamic
flows beyond both the Boussinesq approximation and the
ideal-gas limitation, which can be found in Ref. [39].
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APPENDIX A: INVERSE MATRIX

The inverse matrix of the present collision matrix S is

S−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s−1
0 0 0 0 0 0 0 0 0

0 s−1
e k

(
s−1
e − 1

2

)
0 hûx

(
s−1
e − 1

2

)
0 hûy

(
s−1
e − 1

2

)
0 0

0 0 s−1
ε 0 0 0 0 0 0

0 0 0 s−1
j 0 0 0 0 0

0 0 0 0 s−1
q 0 0 0 0

0 0 0 0 0 s−1
j 0 0 0

0 0 0 0 0 0 s−1
q 0 0

0 0 0 0 2bûx

(
s−1
p − 1

2

)
0 −2bûy

(
s−1
p − 1

2

)
s−1
p 0

0 0 0 0 bûy

(
s−1
p − 1

2

)
0 bûx

(
s−1
p − 1

2

)
0 s−1

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

APPENDIX B: IMPLEMENTATION

At first glance, the present collision process with both the cubic terms of velocity and the ε3-order additional term considered
[i.e., Eq. (40)] seems difficult to implement. However, in real applications, it can be executed in the following sequence:

(1)

⎧⎪⎪⎨
⎪⎪⎩

m̄ ← m,

m ← m − meq,

m̄ ← m̄ − 2m,

m ← m + δt

2 Fm;

(2)

⎧⎪⎨
⎪⎩

m1 ← m1 + 1
2ksεm2 + 1

2hsq (ûxm4 + ûym6),
m7 ← m7 + bsq (ûxm4 − ûym6),

m8 ← m8 + 1
2bsq (ûym4 + ûxm6);

(3)
{
m ← [

I − 1
2 diag(S)

]
m;

(4)

⎧⎪⎨
⎪⎩

m̄1 ← m̄1 − R11m1 − R17m7 − R18m8 − δxT1 · ∇ρ − δx

c2 X1 · ∇pLBE,

m̄7 ← m̄7 − R71m1 − R77m7 − R78m8 − δxT7 · ∇ρ − δx

c2 X7 · ∇pLBE,

m̄8 ← m̄8 − R81m1 − R87m7 − R88m8 − δxT8 · ∇ρ − δx

c2 X8 · ∇pLBE;

(5)
{
m̄ ← m̄ + 2m;

(6)

⎧⎪⎪⎨
⎪⎪⎩

m̄1 ← m̄1 + seQm,1 + k
(

1
2 se − 1

)
sεQm,2,

m̄2 ← m̄2 + sεQm,2,

m̄7 ← m̄7 + spQm,7,

m̄8 ← m̄8 + spQm,8;

where “←” indicates assignment, and diag(S) denotes the
diagonal part of the present collision matrix S. Here, steps (1),
(3), and (5) are the same as those for the classical multiple-
relaxation-time (MRT) collision process, step (2) corresponds
to the improvement of the collision matrix, step (4) cor-
responds to the elimination of the cubic terms of velocity,
and step (6) corresponds to the introduction of the ε3-order

additional term. In step (4), ∇ρ and ∇pLBE can be locally
evaluated resorting to the interaction force [i.e., Eq. (39)] as
follows:

∇ρ = F
G2δ2

xρ
, ∇pLBE =

(
dpEOS

dρ
+ G2δ2

xρ

)
F

G2δ2
xρ

. (B1)
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From the above discussion, it can be seen that the present
collision process is actually easy to implement, and all the
involved computations can be locally performed except for the
simple interaction force. Therefore, compared with the pseu-
dopotential LB model known as the simplest multiphase LB

model, no additional computational complexity is introduced
in the present LB model. Based on our numerical test, the
computational cost of the present model is only 1.178 times
as much as that of a pseudopotential MRT LB model by Li
et al. [34].
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