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Strategy for solving difficulties in spin-glass simulations
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A spin-glass transition has been investigated for a long time but we have not reached a conclusion yet due to
difficulties in the simulation studies. They are slow dynamics, strong finite-size effects, and sample-to-sample
dependencies. We found that a size of the spin-glass order reaches a lattice boundary within a very short Monte
Carlo step. A competition between the spin-glass order and a boundary condition causes these difficulties.
Once the boundary effect was removed, physical quantities exhibited quite normal behaviors. They became
self-averaging in a limit of large replica numbers. These findings suggest that the nonequilibrium relaxation
method is a good choice for solving the difficulties if a lattice size and a replica number are set sufficiently large.
A dynamic scaling analysis on nonequilibrium relaxation functions gave a result that the spin-glass transition
and the chiral-glass transition occurs at the same temperature in the Heisenberg model in three dimensions. The
estimated critical exponent ν agrees with the experimental result.
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I. INTRODUCTION

A spin glass (SG) [1–5] is a random magnet consisting of
ferromagnetic interactions and antiferromagnetic interactions
distributed randomly. It shares common interest and diffi-
culties with other random systems. A spin-glass study has
been a challenging field of developing an efficient numerical
algorithm. One successful achievement is the temperature-
exchange method [6]. It is now a standard algorithm in
SG simulations and applied to various complex systems.
A quantum-annealing algorithm [7] was also developed to
obtain the ground state of the SG system. It is considered
as a practical solution for various nonconvex optimization
problems.

In this paper, we focus on a problem whether the SG tran-
sition in the Heisenberg model is driven by the spin degrees of
freedom or the chirality degrees of freedom. The Heisenberg
SG model is the first approximation for the canonical SG
materials. An origin of the debate on this model dates back
to a work by Olive, Young, and Sherrington [8], where the
SG transition was not observed by the Monte Carlo (MC)
simulations. The simulations were performed up to a linear
lattice size L = 32. Kawamura [5,9] introduced the chirality
scenario, wherein the SG transition observed in real mate-
rials was considered as an outcome of the chiral-glass (CG)
transition without the SG transition. A finite spin anisotropy
was considered to mix the SG order and the CG order. Its
counterargument is an existence of a simultaneous SG and CG
transition, which was observed by MC simulations [10–20].
However, the results supporting the chirality scenario were
also reported at the same time [21–23]. Two studies [24–26]
in both sides drew two opposite conclusions even though the
authors performed similar amounts of simulations, but treated
the finite-size effects differently. The linear sizes were L =
8–48 [24] and L = 6–32 [25,26]. A strong finite-size effect
hopelessly prevented us to reach a conclusion. This situation
motivated this paper.

Previous simulation studies mostly applied the equilibrium
MC method and the finite-size scaling analysis. The simula-
tions suffer from severe slow dynamics: it takes a very long
time to equilibrate the system. We also need to take averages
of physical quantities over different realizations of random
bond configurations. A sufficient sample number increases
when there are strong sample-to-sample dependencies. Then,
a more computational time is needed, and we can simulate
only small-lattice systems. The obtained data include strong
finite-size effects. A finite-size scaling analysis encounters
large finite-size corrections. Then, a disagreement mentioned
above may occur even though acceleration algorithms were
developed and used. These are common difficulties in random
systems.

In order to solve the difficulties in SG simulations, we
need to reexamine this strategy. In this paper, we clarified that
an origin of the difficulties is a boundary effect. A strategy
based on the nonequilibrium relaxation method [27–29] was
shown to be very efficient. This method studies a phase
transition through relaxation functions of physical quantities.
We run a simulation on a very large system and stop the
simulation before the finite-size effect appears. The obtained
relaxation functions are free from the finite-size effect. We
can determine the critical temperature and critical exponents
by the dynamic scaling analysis on the relaxation func-
tions. Therefore, this method has been successfully applied
[13,20,30–39] to spin glasses and other systems with frustra-
tion and randomness. Other successful dynamical approaches
to the spin-glass transition were also reported [40,41].

This paper is organized as follows. Section II describes the
model we treat in this paper. We also give expressions for
observed physical quantities. In Sec. III, we clarify an origin
of the simulation difficulties. In Sec. IV, we introduce our
strategy. In Sec. V, numerical results are presented. Section VI
is devoted to summary and discussions.
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II. MODEL AND OBSERVABLES

A Hamiltonian of the present model is written as follows:

H = −
∑
〈i j〉

Ji jSi · S j . (1)

The sum runs over all the nearest-neighbor spin pairs 〈i j〉.
The interactions Ji j take Gaussian variables with a zero mean
and a standard deviation J . The temperature T is scaled by J .
Linear lattice size is denoted by L. A total number of spins is
N = L × (L − 1)2, and skewed periodic boundary conditions
are imposed.

We calculated in our simulations the SG and the CG
susceptibility χSG and χCG, and the SG and the CG correlation
functions fSG and fCG, from which we estimated the SG and
the CG correlation lengths ξSG and ξCG. We evaluated these
quantities at MC steps t , with a same interval in a logarithmic
scale, namely, at t = 100.05i with an integer i.

The SG susceptibility is defined by the following expres-
sion:

χSG ≡ 1

N

⎡
⎣∑

i, j

〈Si · S j〉2

⎤
⎦

c

. (2)

The thermal average is denoted by 〈. . . 〉, and the random-bond
configurational average is denoted by [. . . ]c. The thermal av-
erage is replaced by an average over independent real replicas
that consist of different thermal ensembles:

〈Si · S j〉 = 1

m

m∑
A=1

S(A)
i · S(A)

j . (3)

The superscript A is a replica index. A replica number is
denoted by m. We prepare m real replicas for each random-
bond configuration with a different initial spin state. Each
replica is updated using a different random number sequence.
A replica number controls an accuracy of the thermal average.

An overlap between two replicas A and B is defined by

qAB
μν ≡ 1

N

∑
i

S(A)
iμ S(B)

iν . (4)

Here, subscripts μ and ν represent three components of
Heisenberg spins: x, y, and z. The SG susceptibility is rewrit-
ten using this overlap as

χSG = N

Cm

⎡
⎣ ∑

A>B,μ,ν

(
qAB

μν

)2

⎤
⎦

c

. (5)

Here, Cm = m(m − 1)/2 is a combination number of choosing
two replicas out of m replicas. Similarly, the CG susceptibility
is defined by

χCG ≡ 3N

Cm

[∑
A>B

(
qAB

κ

)2

]
c

, (6)

where

qAB
κ ≡ 1

3N

∑
i,μ

κ
(A)
i,μ κ

(B)
i,μ , (7)

κ
(A)
i,μ ≡ S(A)

i+êμ
· (

S(A)
i × S(A)

i−êμ

)
. (8)

This κ
(A)
i,μ is a local scalar chirality, where êμ denotes a unit

lattice vector along the μ axis.
An SG correlation function is defined by the following

expressions:

fSG(r) ≡
[

1

N

N∑
i

〈Si · Si+r〉2

]
c

(9)

=
⎡
⎣ 1

NCm

∑
A>B,i,μ,ν

qAB
μν (i)qAB

μν (i + r)

⎤
⎦

c

(10)

=
⎡
⎣ 1

N

N∑
i

(
1

m

m∑
A=1

S(A)
i · S(A)

i+r

)2
⎤
⎦

c

. (11)

Here, remind that a thermal average is replaced by an average
over m real replicas as shown in Eq. (3). We did not exclude
out terms of the same replica in the square of Eq. (11) in
order to follow its definition (9). When a replica number is
two, it is equivalent to the four-point correlation function as
shown in Eq. (10). Since we will use a large replica number
up to 72 in this study, it is very time consuming to take
an average over Cm different overlap functions. Therefore,
we took another expression (11). For a given distance r, we
calculated a spin correlation function at a site i for each
replica A, and store it in an array memory of i. Then, a
replica average is taken and the value is squared. We can
obtain the correlation function fSG(r) by taking an average
of the squared value over lattice sites i. Changing a value
of r with the same procedure, we finally evaluated all the
correlation functions. A total calculation time is reduced by
this procedure because the maximum value of r = L/2 − 2 is
much smaller than Cm. Here, we considered the correlations
for three directions, (1,0,0), (0,1,0), and (0,0,1), and took an
average over them. We obtained a CG correlation function in a
same manner replacing the local spin variables with the local
chirality variables:

fCG(r) =
⎡
⎣ 1

3N

N∑
i,μ

(
1

m

m∑
A

κ
(A)
i,μ κ

(A)
i+r,μ

)2
⎤
⎦

c

. (12)

A unit of three neighboring spins in a same direction is
considered and values for three directions are averaged.

In most simulation studies, a correlation length has
been estimated using the second-moment method [42] ξ =√

χ0/χk − 1/k, where χ0 denotes the susceptibility and χk

denotes the Fourier transform of the susceptibility with the
smallest wave number k. As a system size increases, χk

approaches χ0 and k approaches zero. Then, an estimated
value of ξ includes a large statistical error by a situation of
0/0. On the other hand, the value includes a systematic error,
which is on the order of ξ/L, when a lattice size is small.

In this paper, we estimated the correlation length by the
Bayesian inference [43] using the data of correlation func-
tions. The Bayesian theorem exchanges a prior probability
and a posterior probability. For example, let us suppose that
a correct correlation length ξ (t ) was obtained at each MC step
t . Because of the critical scaling hypothesis, the correlation
function behaves as r−d+2−η, where, d is a dimension and
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FIG. 1. (a) SG- and CG-correlation functions at time steps ranging from 50 to 10 000 when T = 0.15 and L = 256. Data within the dotted
lines are used to estimate the correlation length. (b) A scaling plot of the correlation functions. Effective exponents are ηeff = 0.221 for SG and
ηeff = 0.593 for CG. (c) Symbols with error bars depict estimated data of the correlation length. We also plotted with lines results obtained by
the second-moment method.

d = 3 here. If we scale r by the correlation length ξ (t ),
a correlation function at each step f (r, t ) is rescaled by
ξ−1−η(t ). Therefore, the correlation function data should be
scaled by plotting f (r, t )/ξ−1−η(t ) versus r/ξ (t ). The scaled
function exhibits a single-exponential decay exp[−(r/ξ )] in
a long-distance limit. Now, we use the Bayesian theorem and
exchange the argument. Proper ξ (t ) and ηeff can be obtained
as scaling parameters such that the scaling plot became the
best under a condition that the scaled function exhibits a
single-exponential decay as exp[−(r/ξ )] in a long-distance
limit. This inference procedure is performed by the kernel
method [44,45]. This is a machine learning algorithm, which
automatically finds the parameters. We do not assume any
form of the scaling function but just need to define an x
coordinate and a y coordinate of plotted data. As for another
approach for estimating the correlation length reducing the
instability, Belletti et al. [46] proposed to obtain it by a ratio
of integrals Ik = ∫

rk f (r)dr.
Figure 1(a) shows data of the correlation functions. Each

correlation function exhibits a single-exponential decay in
a long-distance limit. In an inference procedure, we dis-
carded data of short MC steps(t < 50), data of short-range
correlation (r < 15 for SG, and r < 6 for CG), data near
the boundary (r > L/3), and data of small f (r, t ) values
[ f (r, t ) < 2 × 10−5 for SG and f (r, t ) < 1 × 10−7 for CG].
A result of the scaling is shown in Fig. 1(b). All the data
ride on a single line: the correlation function mainly exhibits
a single-exponential decay with its slope one. Each scaled
function of fSG deviated downward when it became below
10−4 suggesting a faster decay in a long-distance limit. This
faster decay issue was discussed recently by Fernandez et al.

[47]. The estimated correlation-length data are plotted with
symbols in Fig. 1(c). Error bars are negligible. We also plotted
with lines results obtained by the second-moment method.
The data fluctuate much and we cannot study the behavior of
relaxation functions with them.

III. DIFFICULTIES IN SPIN-GLASS SIMULATIONS

A. Finite-size effects

We first check finite-size effects of χSG and χCG. Figure 2
shows the relaxation functions for lattice sizes from L = 20
to 256 at T = 0.15 and at T = 0.17. Both temperatures are
located in the paramagnetic phase. Relaxation functions of
lattice sizes larger than 40 at T = 0.17 exhibit size inde-
pendence and realize at the final step an equilibrium state
in the thermodynamic limit. When a size effect appeared,
a relaxation function of χSG deviated to a lower side, and
that of χCG deviated to an upper side. For example, this
finite-size crossover of χSG occurred at t � 10 when L = 40 at
T = 0.15. However, it took 104 steps to reach the equilibrium
state. Most of the time steps required for equilibration were
spent after this size effect appeared. We also found that the
equilibration time steps of χSG are always equal to those of
χCG even though the finite-size crossover times are different.
The SG order is waiting for the CG order to be equilibrated.

The finite-size effects of χSG and χCG are better understood
by observing their profiles. A profile of the susceptibility is a
correlation function f (r) multiplied by 4πr2 plotted against
r. An integration of this value with respect to r gives the
susceptibility: χ = ∫ L/2

0 4πr2 f (r)dr, when L is large enough.
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FIG. 2. Relaxation functions of χSG and χCG for various lattice sizes for (a) T = 0.15 and (b) T = 0.17. Data of χCG are multiplied by 200.

We find by this plot how each correlation function contributes
to the susceptibility, and how large the ordered cluster is.

Figure 3(a) shows a profile of χSG at t = 10, 103, and 104

for various lattice sizes when T = 0.15. They correspond to
relaxation functions of χSG in Fig. 2(a). A distance r at which
the profile line reaches zero is regarded as a radius of the
ordered cluster. Its diameter, 2r, is a size of the cluster. The
profiles exhibit a size-independent shape as long as a cluster
size did not exceed a lattice size. The cluster size reached 60
even when t = 10. We checked that this short-time behavior
is independent of the temperature. The finite-size crossover of
χSG for L = 40 at T = 0.15 is explained by this profile. After
the SG cluster size reached the boundary, the SG correlation
connects with each other beyond the periodic boundary. The
profile line is lifted due to this self-correlation. Finally, in
the equilibrium state of small lattices, the profiles just exhibit
monotonic increasing behaviors. On the other hand, a profile
of a larger lattice exhibits a long tail converging slowly to
zero. Therefore, the SG susceptibility is always very much
underestimated when a lattice size is small. Figure 3(b) shows
profiles of χCG in the same conditions as Fig. 3(a). A tail of
profile drops rapidly even when a lattice size is large. There
is an additional strong peak at r = 1. A strong finite-size
enhancement causes a finite-size effect of χCG appearing as
overestimating.

Figure 4 shows the scaled profiles at a time step when the
correlation length reached each value ranging from 5 to 13 for
SG and that ranging from 2 to 5 for CG. Since χSG ∼ ξ

2−η

SG , a
profile of χSG is scaled by ξ

1−η

SG if plotted against r/ξSG. Here,
η is an effective exponent obtained by the correlation-function

scaling when we estimated the correlation length. We checked
that a shape of the scaled profiles remains the same at each
temperature if the cluster size is smaller than the lattice size
no matter whether the system is in the nonequilibrium state or
in the equilibrium state.

We found in these figures that the SG and CG profiles
always reach zero when r/ξ > 10. We can guarantee that the
finite-size effects do not appear if we set L > 2r = 20 ξSG.
This is a criterion of choosing lattice size and the simulation
time range in this paper.

B. Sample dependencies

We must take averages of physical quantities over different
random samples in SG simulations. Collected data are con-
sidered to depend on each sample. Before taking this sample
average, we must take the thermal average. Then, there arises
a question. Which number should be set large first, a replica
number m or a sample number ns?

Figure 5 shows the answer. We estimated a relative stan-
dard deviation of χSG, and plotted it against 1/

√
m(m − 1)/2.

We changed a replica number from 2 to 72, and a sample
number from 3 to 8. We also compared data free from the
boundary effects and those affected by them. Figure 5(a)
shows results at T = 0.15. Data free from the boundary
effects were taken in the nonequilibrium process before the
SG cluster size reached the lattice boundary. They rode on a
straight line as a replica number increases, and converged to
zero in a limit of m → ∞. We also found that the relative
errors are proportional to 1/

√
m(m − 1)/2 not to 1/

√
m. This
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FIG. 3. Profiles of χSG(a) and χCG(b) at T = 0.15.
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reached the denoted value ranging from 5 to 13. The effective
exponents are ηeff = −0.030 for T = 0.11, ηeff = −0.0087 for T =
0.13, and ηeff = 0.22 for T = 0.15. Inset is a same plot for χCG.
The effective exponents are ηeff = 0.15 for T = 0.11, ηeff = 0.19
for T = 0.13, and ηeff = 0.59 for T = 0.15. The linear lattice size
is 256.

suggests that each replica overlap is independent, not that
each replica is independent. Data affected by the boundary
effects were taken in the nonequilibrium process after the SG
cluster size reached the lattice boundary. They converged to a
finite value.

Figure 5(b) shows data that were estimated after the equi-
librium states were realized at T = 0.17. An equilibrium clus-
ter size was roughly 200. Data of L > 200 are free from the
boundary effect, and converged linearly to zero. Those of L <

200 converged to finite values, which decrease as L increases.
Figure 5(c) shows data below the critical temperature. The SG

cluster size did not exceed the lattice size within the simulated
time steps. They also converged linearly to zero. These data
exhibit the same tendency. Therefore, data of each random
sample are considered to be independent and equivalent in a
limit of m → ∞, if the profiles are free from the boundary
effect no matter whether it is in the equilibrium state or
in the nonequilibrium state, and also no matter whether the
temperature is above or below the critical temperature.

Since the computational cost is proportional to L3mns, it
is better to increase m first in order to reduce the numerical
errors within a restricted computational time. In this paper,
we set m to 64 or 72, and set ns mostly to 4–8 when L = 256.
We increased ns up to 10 according to the sample fluctuations
particularly near the critical temperature. A choice of a replica
number larger than two has been applied in nonequilibrium
relaxation analyses on the SG transition [13,30,34,36,37]. A
reduction of statistical errors by increasing replica numbers
was reported in Ref. [37] and recently analyzed in Ref. [48].

IV. OUR STRATEGY

Difficulties in SG simulations are strong finite-size effects,
strong sample dependencies, and the slow dynamics. In the
previous section, we found that a competition between the SG
order and the boundary condition is the main origin of these
difficulties. Therefore, we adopted the nonequilibrium relax-
ation method [27–29]. We do not need to solve a difficulty
of slow dynamics, but we rather utilize it by analyzing the
relaxation functions of physical quantities before the finite-
size effects appeared. We remove the size effects by keeping
a lattice size L > 20 ξSG and solve the sample dependence by
increasing a replica number first.
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FIG. 5. Relative standard deviations of χSG are plotted against 1/
√

m(m − 1)/2 for various lattice sizes and sample numbers for (a) T =
0.15, (b) T = 0.17, and (c) T = 0.118. (F) stands for the data taken when the χSG profile was (F)ree from the boundary. (B) stands for the data
taken after the χSG profile reached the (B)oundary.
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We investigated the critical phenomena using the dynamic
correlation-length scaling analysis [30]. This is a direct appli-
cation of the scaling hypothesis,

χ ∼ ξ 2−η, ξ ∼ |T − Tc|−ν, (13)

to the nonequilibrium relaxation data. The critical temperature
is denoted by Tc in this expression. We replace ξ by its
relaxation data ξ (ti, Ti ), and replace χ by its relaxation data
χ (ti, Ti ) in Eq. (13). Here, i denotes an index of data. We plot
data with their coordinates (xi, yi ) defined as

xi = ξ (ti, Ti )/|Ti − Tc|−ν, yi = χ (ti, Ti )/ξ
2−η(ti, Ti ). (14)

Then, we estimate Tc, ν, and 2 − η so that all the data fall on a
single curve. We can use data of temperatures both below and
above the critical temperature because xi is defined with an
absolute value of the temperature difference. The parameter
estimations were performed using the kernel method proposed
by Harada [45]. It realizes unbiased and precise estimations of
critical parameters without supposing any form of the scaling
function.

Let us briefly explain the kernel method. We define a
Gaussian kernel function K (xi, x j ) for xi 
= x j as

K (xi, x j ) = θ2
1 exp

[
− (xi − x j )2

2θ2
2

]
+ θ2

3 , (15)

where θ1, θ2, and θ3 are hyperparameters. A generalized
covariance matrix 	 is defined as

	i j = [
(yi )]
2δi j + K (xi, x j ), (16)

where 
(yi ) denotes an error of yi. Then, we define the fol-
lowing log-likelihood function, which should be maximized
in regard to the scaling parameters and hyperparameters

ln(�) = − ln |	| − yi	
−1
i j y j, (17)

where summations over i and j are taken. This log-likelihood
function is defined independently for both above and below
the critical temperature. Both estimates are divided by a
number of data, and are taken average.

One advantage of the dynamic correlation-length scaling
analysis is that both finite time t and finite size L do not
appear explicitly in the scaling expression. We only deal with
the physical quantities χ and ξ . Usually, a finite size and a
finite time produce nontrivial effects in the SG system. Scaling
analyses replacing ξ by size or time may need special attention
to the scaling form we treat. Additional correction-to-scaling
terms are sometimes necessary. Such nontrivial effects be-
come hidden in the present correlation-length scaling analysis
by plotting χ (t ) against ξ (t ).

Let us summarize our simulation conditions here. MC
simulations are performed by the single-spin-flip algorithm.
One MC step consists of one heat-bath update, 124 over-
relaxation updates, and 1/20 Metropolis update (once every
20 steps). We start simulations with random spin configura-
tions. The temperature is quenched to a finite value at the
first Monte Carlo step. The linear lattice size was fixed to
256. The temperature ranges from T = 0.02 to 0.18 at 73
different temperature points. Random bond configurations are
generated independently at each temperature. The sample
numbers are mostly 6, but we increased it up to 10 when

the data fluctuations were large. Total sample number for all
the temperatures is 432. A replica number is mostly 72. We
increased it to 88 at some temperatures in order to check if
there are systematic dependencies on a replica number. In the
scaling analysis, we discarded data at very low temperatures
T < 0.10 because the scaled data separate from the data of
T � 0.10. A typical initial step is 50, and a typical final
step is 10 000. We increased it at most up to 31 623 at low
temperatures. Only data with ξSG(t ) < L/20 = 12.8 are used
in the scaling analysis.

V. RESULTS

Figure 6(a) shows relaxation functions of χSG and χCG at
typical temperatures. A slope of this figure corresponds to
a ratio of critical exponents (2 − η)/z = γ /zν. It decreases
with the temperature decreasing because of an increase of the
dynamic exponent in the low-temperature phase. Figure 6(b)
shows the corresponding relaxation functions of correlation
lengths. A slope of this figure is an inverse of the dynamic
exponent: 1/z. We plotted χ (t ) against ξ (t ) in Fig. 6(c). We
found that there is no bending anomaly from the nonequilib-
rium relaxation process to the equilibrium relaxation process.
This plot tells us that both processes smoothly connect with
each other if we plot χ (t ) against ξ (t ).

We obtained the critical temperature and the critical ex-
ponents by the dynamic correlation-length scaling analysis.
There were 2816 data points of (ξ, χ ) for different time steps
and temperatures. We randomly selected 1400 data points
out of them and applied the kernel method. We checked the
obtained results by a cross validation method. Namely, we
randomly reselected 1400 data points again and tested the ob-
tained parameters by estimating a log-likelihood function. We
tried this check for 10 times by changing the selected data and
took an average of − ln(�) over them. Then, one estimated
set of (Tc, ν, 2 − η) and − ln(�) are obtained. We repeated
this trial for 100 times and took averages over results whose
− ln(�) values only differ within the standard deviation from
the best value. We put error bars by this standard deviation
among these results.

Results of the trial are shown in Fig. 7. Figures 7(a)–
7(c) show the − ln(�) plotted against the estimated critical
temperature, the estimated ν, and the estimated γ ( = ν ×
(2 − η)), respectively. An estimate is better if − ln(�) is
lower. A rectangle shows the estimated error bar. Figure 7(d)
shows relations between the estimated 2 − η and the estimated
critical temperature. We also plotted with lines the effective
2 − ηeff obtained in the ξ estimation. It is expected to coincide
with 2 − η at T = Tc. However, there are small differences
between them.

Figure 8 shows the scaling plot using the estimated critical
parameters

TSG = 0.140 ± 0.002 (0.1395), (18)

νSG = 1.41 ± 0.10 (1.401), (19)

2 − ηSG = 1.96 ± 0.02 (1.967), (20)

γSG = 2.76 ± 0.22 (2.755), (21)
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FIG. 6. (a) Relaxation functions of χSG and χCG. Data of χCG are multiplied by 100 in order to fit in a same window. (b) Relaxation
functions of ξSG and ξCG. Data of ξSG are multiplied by 2 in order to separate them from the ξCG data. (c) A cross plot of the susceptibility
against the correlation length.

and

TCG = 0.140 ± 0.002 (0.1382), (22)

νCG = 1.61 ± 0.09 (1.693), (23)

2 − ηCG = 1.60 ± 0.04 (1.637), (24)

γCG = 2.59 ± 0.20 (2.771). (25)

A value in parentheses denotes the estimate that gave the best
likelihood function. The SG critical temperature coincided
with the CG one. This value disagrees with the one estimated
by Fernandez et al. [24], who reported TSG = TCG = 0.120. It
also disagrees with the one estimated by Viet and Kawamura
[25], who reported TSG = 0.125, but their value TCG = 0.143
is close to our estimate. Some of their data before the size
extrapolation are consistent with our result. The size extrap-
olation depends on the way how the correction-to-scaling
terms are treated. There is no finite-size correction in the
present analysis. A finite-time correction may exist and it

can be controlled using a standard finite-size scaling theory
once if the time is connected with the length by the dynamic
correlation-length data ξ (t ) [40,41]. We did not treat it in this
paper but just discarded short-step data such that the scaling
plot becomes excellent. A correlation length mostly ranges
from 5 to 13 in our analyses. If a true critical phenomena
was observed only beyond this length scale, the present results
should be modified.

Let us study a behavior of the dynamic exponent z. Since
ξ (t ) ∼ t1/z in the critical region, we can define an effective
dynamic exponent zeff by an inverse of a slope of Fig. 6(b)
in the nonequilibrium process before the finite-size crossover
occurred. We estimated the value by the least-square method.
As shown in Fig. 9(a), the effective dynamic exponent of SG
is always larger than that of CG. Our estimate at the transition
temperature is zSG = 7.3(3) for SG and zCG = 6.4(2) for
CG. A divergence of ξSG is slower than that of ξCG. On
the other hand, a coupled exponent zν took the same value
as zSGνSG = zCGνCG = 10.3. This agreement means that a
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FIG. 7. (a)–(c) Likelihood functions plotted against the estimated parameters for each scaling trial. (d) Relation between the estimated
(2 − η) and the critical temperature. Effective 2 − η obtained in the ξ estimation is also plotted with line.
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correlation time of SG diverges with the same speed as that of
CG because a correlation time τ ∼ |T − Tc|−zν . The effective
dynamic exponent rapidly increased below the critical temper-
ature faster than a behavior of 1/z ∝ T , which was reported
[49–53] previously. There is no anomaly down to the lowest
temperature we simulated. This smooth behavior is consistent
with the one reported [49] in the Ising SG model.

We also studied a temperature dependence of a coupled ex-
ponent (2 − η)/z, which is a slope of Fig. 6(a). The results are
plotted in Fig. 9(b). This coupled exponent of SG and that of
CG behave in a same manner down to the lowest temperature.
The values at the critical temperature were 0.266(10) for SG
and 0.257(16) for CG. This agreement means that dynamics
of χSG is equivalent to that of χCG because χ (t ) ∼ t (2−η)/z.

VI. SUMMARY AND DISCUSSION

We found that the finite-size effect is a main origin of the
difficulties in SG simulations. As was observed in the SG pro-
file, the cluster size is very large even at a considerably short
step. It reached 60 lattice spacings only at t = 10 as shown
in Fig. 3(a). This initial relaxation behavior was temperature
independent. We may easily encounter this finite-size effect in
SG simulations.

A relaxation process after the finite-size effect appeared
is much longer than the one before it. The equilibrium sim-
ulation must overcome this long relaxation process but the
nonequilibrium simulation does not need to. This is the reason
for an advantage of the nonequilibrium relaxation method.

A sample deviation of the SG susceptibility also vanished
linearly with 1/m → 0 when the finite-size effect did not
appear. We observed these evidences regardless of whether
they are nonequilibrium ones or equilibrium ones, and re-
gardless of whether the temperature is above or below the
critical temperature. Therefore, an elimination of the finite-
size effect was the first approach to solve the difficulties in
SG simulation.

The boundary-affected equilibrium state that hit the bound-
ary within the initial relaxation process may not include a
relevant information. Therefore, we sometimes encounter a
size crossover only above which the data should be used to
study the critical phenomena. This size crossover was first
observed by Hukushima and Campbell [54] who reported it in
the Ising SG model. The correlation-length ratio changed its
trend from increasing to decreasing at a crossover size L = 24.

We confirmed that the SG transition and the CG transition
occur at the same temperature within the error bars. A critical
exponent γ took a common value, but other critical exponents
ν, 2 − η, and z were different between them. However, if we
coupled exponents as zν and (2 − η)/z, they took common
values between SG and CG. It suggests that critical phenom-
ena of spin glasses are better understood by these coupled
exponents. We compared our results with the previous works
in Table I. A value of νSG is common between the Gaussian
model and the ±J model. It is also consistent with a value of
νCG. Even if a spin anisotropy effect mixes the spin degrees of
freedom and the chirality degrees of freedom, a value of ν may
not change much. Therefore, our estimate was also consistent
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TABLE I. Comparison of present results with the previous works. (G) stands for the Gaussian bond distribution model, (J) stands for the
±J bond distribution model, and (Ex) stands for experimental results.

Works TSG TCG νSG νCG ηSG ηCG

Present (G) 0.140(2) 0.140(2) 1.4(1) 1.6(1) 0.04(2) 0.40(4)
Ref. [24] (G) 0.120(6) 0.120(6) 1.5 1.4(1) −0.15(5) −0.75(15)
Ref. [25] (G) 0.125(6) 0.143(3) 1.4(2) 0.6(2)
Ref. [23] (J) 0 0.19(1) 1.3(2) 0.8(2)
Ref. [43] (J) 0.203(1) 0.201(1) 1.49(3) 1.53(3) 0.28(1) 0.66(1)
Ref. [55] (Ex) 1.3–1.4 0.4–0.5

with the experimental result [55]. On the other hand, a value
of η depends much on the distribution and on each analysis.
The SG values and the CG value also differ much. We cannot
conclude which one can explain the experimental result.
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