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Gyrokinetic Landau collision operator in conservative form
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A gyrokinetic linearized exact (not model) Landau collision operator is derived by transforming the symmetric
and conservative Landau form. The formulation obtains the velocity-space flux density and preserves the
operator’s conservative form as the divergence of this flux density. The operator contains both test-particle
and field-particle contributions, and finite Larmor radius effects are evaluated in either Bessel function series
or gyrophase integrals. While equivalent to the gyrokinetic Fokker–Planck form with Rosenbluth potentials [B.
Li and D. R. Ernst, Phys. Rev. Lett. 106, 195002 (2011)], the gyrokinetic conservative Landau form explicitly
preserves the symmetry between test-particle and field-particle contributions, which underlies the conservation
laws and the H theorem, and enables discretization with a finite-volume or spectral method to preserve the
conservation properties numerically, independent of resolution. The form of the exact linearized field-particle
terms differs from those of widely used model operators. We show the finite Larmor radius corrections to the
field-particle terms in the exact linearized operator involve Bessel functions of all orders, while present model
field-particle terms involve only the first two Bessel functions. This new symmetric and conservative formulation
enables the gyrokinetic exact linearized Landau operator to be implemented in gyrokinetic turbulence codes for
comparison with present model operators using similar numerical methods.
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I. INTRODUCTION

Collisions are common and fundamentally important in
laboratory and natural plasmas. They play an essential role
in the classical and neoclassical transport in magnetic fusion
confinement experiments, and irreversibly dissipate kinetic
energy into thermal energy in kinetic turbulence. Consider-
ing the statistics of small-angle Coulomb collisions within a
Debye sphere, which typically account for 90% of scattering
events, using the Boltzmann collision operator results in the
well-known Landau operator (or Fokker–Planck operator)
accurate to O(1/ ln �), with ln � the Coulomb logarithm
[1,2]. Both Landau and Fokker–Planck operators describe
the collision effect as a divergence of a velocity-space flux
density,

Cab( fa, fb) = −∇ · Jab, (1)

where fs = fs(vvv) (s = a, b) are distribution functions in the
a-b type of collisions, and ∇ = ∂/∂vvv. The flux density for the
Landau operator is written in an integral form as

Jab = �ab

∫
U ·

(
fa

mb
∇′ f ′

b − f ′
b

ma
∇ fa

)
d3v′, (2)

where ms is the particle mass, �ab = 2πe2
ae2

b ln �/ma, with
es the particle charge, f ′ = f (vvv′), ∇′ = ∂/∂vvv′, and the Lan-
dau tensor is U = S/u, with u = vvv − vvv′ the relative ve-
locity, u = |u|, and S = I − uu/u2 the orthogonal projec-
tion onto the plane perpendicular to u. Physically, vvv and
vvv′ can be understood as the particle velocities prior to the
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elastic collision in the coarse-grained model of long-range
Coulomb interactions. The flux density for the Fokker–Planck
operator can be expressed as differentiations of Rosenbluth
potentials,

Jab = �ab

(
2

mb
fa∇H − 1

ma
∇∇G · ∇ fa

)
, (3)

with the Rosenbluth potentials defined as G(vvv) = ∫
f ′
bu d3v′

and H (vvv) = ∫
f ′
b/u d3v′. These two operators are equivalent

[3]. For clarity, hereafter they are referred to as the Landau
form and the Fokker–Planck form. While the Rosenbluth po-
tentials satisfy Poisson-like equations and many analytical and
numerical methods can be used to solve them in O(N ln N )
operations [4–7], previous studies suggest that the symmetric
Landau form is useful in numerical simulations to preserve
the conservation laws and the H theorem inherent in the
operator [8–12], which are important for the physical fidelity
of numerical solutions, especially for simulations with low to
moderate velocity-space resolutions.

The Landau operator Cab( fa, fb) for unlike-species col-
lisions is bilinear in fa and fb, and Caa( fa, fa) for like-
species collisions is nonlinear in fa. In situations such as the
tokamak core, the turbulence fluctuation amplitude is much
smaller than the equilibrium background (| f − f0| � f0),
the fluctuation frequency is much less than the gyrofre-
quency (ω � �), and the gyroradius is much smaller than
the scales of the background magnetic field, density, and
temperature variations (ρ � L). In this ordering, referred
to as the standard gyrokinetic ordering, the fast-scale gy-
ration about the magnetic field can be averaged over,
and the Fokker–Planck equation for the six-dimensional
particle distribution function can be transformed to the
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gyrokinetic equation describing evolution of the perturbed
five-dimensional guiding-center distribution function [13–
16]. For cases where departures from a Maxwellian distribu-
tion are relatively small, such as microturbulence in the core
of magnetically confined fusion plasmas, a linearized colli-
sion operator is appropriate and consistent with the standard
gyrokinetic ordering described in the foregoing references.
To include finite Larmor radius (FLR) effects in the collision
operator, the linearized collision operator is gyrokinetically
transformed as follows. For convenience, the spatial coor-
dinates are transformed to a Fourier representation in wave
number k. The non-Maxwellian, nonadiabatic part of the
fluctuating guiding center distribution h is transformed to
particle coordinates via the phase factor e−ik·ρ, where ρ is
the gyroradius defined below. The collision operator then acts
on the distributions in particle coordinates, and the result is
transformed back to guiding center coordinates via the phase
factor e+ik·ρ. Finally the result is averaged over the gyrophase
[13,17,18]:

Cgk
ab (ha, hb) = 〈

eik·ρaCL
ab(hae−ik·ρa , hbe−ik·ρb )

〉
. (4)

The distribution function is expanded as fs = fs0 + fs1 +
O(ε2), where the zeroth-order distribution is assumed to
be Maxwellian, fs0 = fsM = ns(2πTs/ms)−3/2 exp[−msv

2/

(2Ts)], and the first-order distribution fs1 = −esϕ fsM/Ts + hs

consists of an adiabatic part associated with the electro-
static potential ϕ and a nonadiabatic part written in guiding-
center coordinates hs = hs(t, R, v⊥, v‖). Here R = r − ρs is
the guiding-center position, ρs = b × vvv/�s is the gyroradius
vector, b = B/B is a unit vector in the direction of the
magnetic field, �s = esB/msc is the gyro-frequency, and ε ∼
f1/ fM ∼ eϕ/T ∼ ω/Ω ∼ ρ/L is the expansion parameter in
the gyrokinetic ordering. Note that CL

ab is a linear collision
operator that acts on the particle distribution function, and
〈· · · 〉 = ∮

dφ/2π represents averaging over the gyrophase
while holding R fixed. It is understood that Eq. (4) is valid
for each Fourier component in wave number k and hs = hsk is
implied.

The Fokker–Planck form linearized about a Maxwellian
background is a natural choice for the collision operator. It
inherits the conservation properties and the H theorem of
the original nonlinear collision operator and is comprised
of test-particle contribution and field-particle contribution,
CL

ab( fa1, fb1) = CT
ab( fa1, fb0) + CF

ab( fa0, fb1) [3,19]. The test-
particle part consists of pitch-angle scattering and energy
diffusion and can be written as [20]

CT
ab( fa1, fbM ) = νab

D (v)

2

∂

∂vvv
· (v2I − vvvvvv) · ∂ fa1

∂vvv

+ 1

v2

∂

∂v

[
νab

‖ (v)

2
v4 faM

∂

∂v

(
fa1

faM

)]

+ ma

Tb

(
1 − Tb

Ta

)
1

v2

∂

∂v

[
νab

‖ (v)

2
v5 fa1

]
, (5)

with the collision frequencies for pitch-angle scattering and
energy diffusion given by

νab
D (v) ≡ 4πe2

ae2
b ln �

m2
a

dG0(v)

v3dv
= ν̂ab �(xb) − �(xb)

x3
a

(6)

and

νab
‖ (v) ≡ 4πe2

ae2
b ln �

m2
a

d2G0(v)

v2dv2
= 2ν̂ab �(xb)

x3
a

, (7)

respectively. Here G0(v) = ∫
f ′
b0u d3v′ is the Rosenbluth

potential for the background, ν̂ab ≡ 4πnbe2
ae2

b ln �/(m2
av

3
Ta)

defines a basic collision frequency, vT s = √
2Ts/ms,

�(x) ≡ 2π−1/2
∫ x

0 exp(−y2) dy is the error function, �(x) ≡
[�(x) − x�′(x)]/(2x2) is the so-called Chandrasekhar
function, and xs ≡ v/vT s. The field-particle part involves
the Rosenbluth potentials of the perturbed field-particle
distribution function and was generally considered intractable.
Significant efforts have been made to construct various model
operators to simplify the linearized operator [13,17,19,21].
Recently, Abel et al. [18] and Catto and Ernst [22] proposed
a model operator for like-species collisions, which consists
of CT

aa( fa1, faM ) and two additional terms restoring the
momentum and energy conservation. The model operator
includes both pitch-angle scattering and energy diffusion,
preferentially damps small structures, and satisfies the con-
servation laws and the H theorem. As described in Ref. [18],
the two correcting terms are the standard momentum and
energy restoring expressions for the pitch-angle scattering
and energy diffusion that had appeared in Eqs. (21) and
(22) of the seminal work by Hirshman and Sigmar [19],
and, incidentally, Abel’s operator in drift-kinetic limit (i.e.,
kρ = 0) had been used for ion–ion collisions in earlier
numerical studies of neoclassical transport [23,24]. Later this
model operator was extended to treat collisions of multiple ion
species with unequal temperatures and comparable masses
while preserving the conservation laws and the H theorem
[20].

Using Eq. (4), Li and Ernst [25] obtained the gyrokinetic
version of the exact linearized field-particle operator for the
first time. It involves a single two-dimensional velocity inte-
gral over the guiding-center distribution, and the gyrophase
integral accounting for the FLR effects can be precomputed
for a given velocity grid; thus the gyrokinetic linearized
exact operator may be computationally affordable in large
scale gyrokinetic simulations of plasma turbulence. A notable
feature of the gyrokinetic exact field-particle operator is that
the gyrophase integral is logarithmically singular at u = 0,
namely when the colliding particles have the same velocity.
In contrast, the collision frequencies νab

D (v) and νab
‖ (v) in the

test-particle operator diverge as v → 0. In fact, both types
of singularities originate from the Landau tensor, as will be
shown in Appendix B. In numerical implementations, if the
singularities are not treated similarly, so that errors due to the
singular behavior do not cancel, the conservation properties
could be affected since the integral kernel near the singularity
of the field-particle operator makes the dominant contribu-
tion. In this paper, we reformulate the operator to overcome
this obstacle. The key idea is linearizing and gyroaveraging
the Landau form instead of the Fokker–Planck form while
preserving the symmetry and the conservative structure, so
that potential numerical errors associated with the singularity
in the field-particle contribution can be canceled by the test-
particle contribution, and the conservation laws are preserved
regardless of velocity-space resolution.
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The remainder of the paper is organized as follows. In
Sec. II, properties of the linearized Landau operator such as
the conservation laws and the H theorem are demonstrated
based on the symmetry and the conservative structure inher-
ited from the nonlinear operator. The gyrokinetic version of
the linearized Landau operator as a divergence of a velocity-
space flux density is derived in Sec. III. The flux density
can be expressed as Bessel function series or equivalently
in integral form. Section IV describes numerical methods,
either finite-volume or spectral, to preserve the conservation
properties. Conclusions and a discussion of future work are
presented in Sec. V.

II. PROPERTIES OF THE LINEARIZED
LANDAU OPERATOR

To derive the gyrokinetic version of linearized Landau
collision operator, we begin by substituting fs = fs0 + fs1 +
O(ε2) into the nonlinear Landau form, Eqs. (1) and (2), to
obtain

Cab = Cab( fa0, fb0) + CL
ab( fa1, fb1) + O(ε2), (8)

where

Cab( fa0, fb0) = −�ab∇ ·
∫

U ·
(

fa0

mb
∇′ f ′

b0 − f ′
b0

ma
∇ fa0

)
d3v′

(9)

is the equilibrium operator formally at order O(ε0) and

CL
ab( fa1, fb1) = Cab( fa1, fb0) + Cab( fa0, fb1) (10)

is the linearized operator at order O(ε), with the test-particle
part and the field-particle part given by

Cab( fa1, fb0) = −�ab∇ ·
∫

U ·
(

fa1

mb
∇′ f ′

b0 − f ′
b0

ma
∇ fa1

)
d3v′

(11)

and

Cab( fa0, fb1) = −�ab∇ ·
∫

U ·
(

fa0

mb
∇′ f ′

b1 − f ′
b1

ma
∇ fa0

)
d3v′,

(12)

respectively. Note that Cab( fa0, fb0) = 0 when fa0 = faM ,
fb0 = fbM , with Ta = Tb = T . This can be seen by using the
relation

U ·
(

fa0

mb
∇′ f ′

b0 − f ′
b0

ma
∇ fa0

)
= faM f ′

bM

T
U · u = 0. (13)

When Ta �= Tb, the Cab( fa0, fb0) term pushes the plasma to-
wards an equilibrium state between different species. For
the same relation shown in Eq. (13), Cab(eaϕ faM/Ta, fbM ) =
Cab( faM, ebϕ fbM/Tb) = 0 when Ta = Tb; namely, the contri-
bution from the adiabatic part of the first-order distribution
function vanishes for the linearized operator.

The conservative structure of the Landau operator is pre-
served in the linearization. The (anti)symmetry of the Landau
operator carries through to the symmetry between the test-
particle part and field-particle part. The linearized operator
thus inherits essential physical properties of the Landau op-
erator. First, it conserves particles, momentum, and energy.

To show this, consider∫
d3v φaCab( fa1, fb0) +

∫
d3v φbCba( fb0, fa1)

= 2πe2
ae2

b ln �

∫
d3v

∫
d3v′

(∇φa

ma
− ∇′φ′

b

mb

)

·U ·
(

fa1

mb
∇′ f ′

b0 − f ′
b0

ma
∇ fa1

)
, (14)

which vanishes because (∇φa/ma − ∇′φ′
b/mb) · U = 0 for

φs = 1 (particle conservation), φs = msvvv (momentum conser-
vation), and φs = msvvv

2/2 (energy conservation). While the
particle conservation is independently satisfied by the test-
particle part and the field-particle part, the momentum (and
energy) loss via the test-particle operator of a-b collisions is
exactly canceled by the momentum (and energy) gain via the
field-particle operator of b-a collisions, and vice versa.

Second, the entropy production due to a-b collisions for the
linearized case is given by

dSa

dt
≡ − d

dt

∫
fa ln fad3v

 −
∫

CL
ab( fa1, fb1)

(
ln fa0 + f̂a1

)
d3v, (15)

where the normalized perturbed distribution function f̂s1 =
fs1/ fs0 is introduced. When fa0 and fb0 are Maxwellian
distribution functions with equal temperatures, the first term
from the mutual collisions between species a and b does
not contribute to the overall entropy production due to the
conservation laws, thus we have the H theorem based on the
contribution from the second term,∑

s=a,b

dSs

dt

= −
[∫

d3v f̂a1C
L
ab( fa1, fb1) +

∫
d3v f̂b1C

L
ba( fb1, fa1)

]

= 2πe2
ae2

b ln �

∫
d3v

∫
d3v′ fa0 f ′

b0

×
(

∇′ f̂ ′
b1

mb
− ∇ f̂a1

ma

)
· U ·

(
∇′ f̂ ′

b1

mb
− ∇ f̂a1

ma

)
� 0,

(16)

due to the Cauchy-Schwarz inequality. Note that with unequal
temperatures Ta �= Tb the dominant entropy production is from
the equilibrium operator and is closely related to the colli-
sional energy exchange between the Maxwellian distribution
functions,∑

s=a,b

dSs

dt
= −

[ ∫
Cab( fa0, fb0) ln fa0 d3v

+
∫

Cba( fb0, fa0) ln fb0 d3v

]

=
∫

Cab( fa0, fb0)
mav

2

2Ta
d3v

+
∫

Cba( fb0, fa0)
mbv

2

2Tb
d3v. (17)
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The expression for energy exchange is well known (Ref. [26],
p. 34):

∫
Cab( fa0, fb0)

mav
2

2
d3v

= 4
√

2πnanbe2
ae2

b ln �

mamb
(Tb − Ta)

(
Ta

ma
+ Tb

mb

)−3/2

. (18)

In the present context it can be calculated with the equilibrium
operator obtained from replacing fa1 with faM in Eq. (5):

Cab( fa0, fb0) = ma

Tb

(
1 − Tb

Ta

)
1

v2

∂

∂v

[
νab

‖ (v)

2
v5 faM

]
. (19)

Therefore the H theorem for the equilibrium operator is
established as

∑
s=a,b

dSs

dt
= 4

√
2πnanbe2

ae2
b ln �

mamb

×
(

Ta

ma
+ Tb

mb

)−3/2 (Tb − Ta)2

TaTb
� 0. (20)

Accordingly, the H theorem is satisfied and entropy produc-
tion is positive for collisions between two species with equal
or unequal temperatures.

III. GYROKINETIC LINEARIZED LANDAU OPERATOR
IN CONSERVATIVE LANDAU FORM

A. Bessel function series for field-particle terms

The gyrokinetic version of the linearized operator describ-
ing collision effects on the nonadiabatic guiding-center dis-
tribution can be obtained via a guiding-center transformation
and gyrophase averaging. Mathematically, this is achieved
by substituting Eqs. (10)–(12) into Eq. (4), CL

ab(ha, hb) →
Cgk

ab (ha, hb) = 〈eik·ρaCL
ab(hae−ik·ρa , hbe−ik·ρb )〉. In order to carry

out the derivation, a coordinate system in velocity space needs
to be specified. In this paper, we adopt a cylindrical coordinate
system as defined in Appendix A. For future reference, the gy-
rokinetic operator in spherical representation (speed and pitch
angle) is given in Appendix C. The spherical representation is
sometimes preferred because it diagonalizes the test-particle
operator in the Fokker–Planck form, motivating some codes
to use speed (or energy) and pitch-angle coordinates.

By using the vector relation a∇ · A = ∇ · (aA) − A · ∇a,
the gyrokinetic test-particle operator can be split into two
parts,

Cgk
ab (ha, fb0)/�ab = −

〈
∇ ·

[
eik·ρa

∫
U ·

(
ha

mb
e−ik·ρa∇′ f ′

b0 − f ′
b0

ma
∇(hae−ik·ρa )

)
d3v′

]〉

+
〈
∇ · eik·ρa

∫
U ·

(
ha

mb
e−ik·ρa∇′ f ′

b0 − f ′
b0

ma
∇(hae−ik·ρa )

)
d3v′

〉
. (21)

The first part of Eq. (21) can be written as

−
〈
∇ ·

[
eik·ρa

∫
d3v′U ·

(
ha

mb
e−ik·ρa∇′ f ′

b0 − f ′
b0

ma
∇(hae−ik·ρa )

)]〉

=− 1

v⊥

∂

∂v⊥

〈
v⊥

∫
d3v′ f ′

b0

ma

[
U⊥⊥

(
− ∂ha

∂v⊥
+ ik · ρaha

v⊥

)
+ U⊥⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥
+ U⊥‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U⊥φ

−ik · vvv⊥ha

�av⊥

]〉

− ∂

∂v‖

〈∫
d3v′ f ′

b0

ma

[
U‖⊥

(
− ∂ha

∂v⊥
+ ik · ρaha

v⊥

)
+ U‖⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥
+ U‖‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U‖φ

−ik · vvv⊥ha

�av⊥

]〉

= − 1

v⊥

∂

∂v⊥

〈
v⊥

∫
d3v′ f ′

b0

ma

[
−U⊥⊥

∂ha

∂v⊥
+ U⊥‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U⊥⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥

]〉

− ∂

∂v‖

〈∫
d3v′ f ′

b0

ma

[
−U‖⊥

∂ha

∂v⊥
+ U‖‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U‖⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥

]〉
. (22)

Here the first identity results from projecting the ∇ operator and the Landau tensor onto the cylindrical coordinate basis. The
relations in Eqs. (A3)–(A5) associated with the cylindrical coordinates are used. Uμν ≡ eμ · U · eν is the projection of the
Landau tensor, and is given explicitly in Eqs. (A7)–(A18). The 1

v⊥
∂
∂φ

term of the divergence does not survive the averaging over
gyrophase. The apparent imaginary terms vanish in the second identity of Eq. (22) because f ′

b0 is assumed to be independent of
φ′, and ∫ 2π

0
dφ

∫ 2π

0
dφ′Uμν

(
φ − φ′)g(φ) = −

∫ 2π

0
dφ g(φ)

∫ φ−2π

φ−0
dδ Uμν (δ)

=
∫ 2π

0
dφ g(φ)

∫ 2π

0
dδ Uμν (δ) = 0, (23)
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for g(φ) ∈ {sin φ, cos φ}, where the first identity is from the change of integration variable φ′ to δ = φ − φ′, and the second
identity results from the periodicity of Uμν (δ) in δ.

By using the same relations in Eqs. (A3)–(A5) and argument in Eq. (23), it is not difficult to show that the second part of the
test-particle operator in Eq. (21) accounting for FLR effects can be written as〈

(∇eik·ρa ) ·
∫

d3v′U ·
(

ha

mb
e−ik·ρa∇′ f ′

b0 − f ′
b0

ma
∇(hae−ik·ρa )

)〉

= −k2ρ2
a ha

v2
⊥

∫
d2v′ f ′

b0

ma
2π

∮
dδ

2π

[
1

2
U⊥⊥(δ) + 1

2
Uφφ (δ)

]

= −k2ρ2
a ha

v2
⊥

∫
d2v′ f ′

b0

ma
2π

∮
dδ

2π

1

2u3
[u2 + (v‖ − v′

‖)2], (24)

where k is the wave number perpendicular to the magnetic field.
A notable feature of the gyrokinetic test-particle operator is that the FLR effects are completely separable from the drift-kinetic

part. This feature is present in the Landau form, as well as the Fokker–Planck form [18,22]. In Appendix B, it is demonstrated
that the test-particle operator in the Landau form is equivalent to the gyrokinetic version of Eq. (5). Specifically the drift-kinetic
part of Eq. (22) corresponds to the drift-kinetic part of the gyrokinetic version of Eq. (5), and the FLR terms representing the
gyrodiffusion in Eq. (24) can also be written as [−νab

D (2v2
‖ + v2

⊥) − νab
‖ v2

⊥]k2ha/(4�2
a) in the Fokker–Planck form [13,18,21,22].

The gyrodiffusion increases secularly with the perpendicular wave number and thus preferentially damps the high-k modes of
turbulent fluctuations.

The gyrokinetic field-particle operator also contains two parts. By projecting the ∇ operator and the Landau tensor onto the
coordinate basis, the first part becomes

−
〈
∇ ·

[
eik·ρa

∫
d3v′U ·

(
fa0

mb
∇′(h′

be−ik·ρ′
b ) − h′

b

ma
e−ik·ρ′

b∇ fa0

)]〉

= − 1

v⊥

∂

∂v⊥

〈
v⊥

∫
d3v′eik·(ρa−ρ′

b) fa0

mb

∑
n

[
cn
⊥⊥′einδ

(
∂h′

b

∂v′
⊥

+ eiφ′ − e−iφ′

2

kρ ′
bh′

b

v′
⊥

)

− cn
⊥⊥

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

⊥‖′einδ

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

⊥φ′einδ eiφ′ + e−iφ′

2i

kρ ′
bh′

b

v′
⊥

]〉

− ∂

∂v‖

〈∫
d3v′eik·(ρa−ρ′

b) fa0

mb

∑
n

[
cn
‖⊥′einδ

(
∂h′

b

∂v′
⊥

+ eiφ′ − e−iφ′

2

kρ ′
bh′

b

v′
⊥

)

− cn
‖⊥

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

‖‖′einδ

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

‖φ′einδ eiφ′ + e−iφ′

2i

kρ ′
bh′

b

v′
⊥

]〉
, (25)

where the Landau tensor projection Uμν is periodic in δ and expanded in Fourier series, Uμν (δ) = ∑
n cn

μνeinδ , with cn
μν the

nth expansion coefficient given by Eq. (A20). Notice that Uμν is either even or odd in δ, thus cn
μν is either real or imaginary.

To represent the FLR effects, the integral representations of Bessel functions Ja
n ≡ ∮

(dφ/2π ) exp (ikρa sin φ − inφ) and Jb
n ≡∮

(dφ′/2π ) exp (ikρ ′
b sin φ′ − inφ′) can be applied and the first part of the gyrokinetic field-particle operator Eq. (25) can be

further written as

− 1

v⊥

∂

∂v⊥

{
v⊥

∫
2π d2v′ fa0

mb

∑
n

Ja
−n

[
cn
⊥⊥′

(
Jb

n

∂h′
b

∂v′
⊥

+ Jb
n−1 − Jb

n+1

2

kρ ′
bh′

b

v′
⊥

)

− cn
⊥⊥Jb

n

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

⊥‖′Jb
n

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

⊥φ′

i

Jb
n−1 + Jb

n+1

2

kρ ′
bh′

b

v′
⊥

]}

− ∂

∂v‖

{∫
2π d2v′ fa0

mb

∑
n

Ja
−n

[
cn
‖⊥′

(
Jb

n

∂h′
b

∂v′
⊥

+ Jb
n−1 − Jb

n+1

2

kρ ′
bh′

b

v′
⊥

)

− cn
‖⊥Jb

n

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

‖‖′Jb
n

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

‖φ′

i

Jb
n−1 + Jb

n+1

2

kρ ′
bh′

b

v′
⊥

]}
. (26)
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The Bessel function Ja
n is real because sin (kρa sin φ − nφ) is odd in φ. The same is true for Jb

n . It can be verified that all the
terms in Eq. (26) are real, despite some terms appearing to be imaginary.

Similarly, the second part of the field-particle operator can be expressed as〈
(∇eik·ρa ) ·

∫
d3v′U · ( fa0∇′(h′

be−ik·ρ′
b ) − h′

be−ik·ρ′
b∇ fa0)

〉

= −kρa

v⊥

∫
2π d2v′ fa0

mb

∑
n

Ja
−(n+1) − Ja

−(n−1)

2

[
cn
⊥⊥′

(
Jb

n

∂h′
b

∂v′
⊥

+ Jb
n−1 − Jb

n+1

2

kρ ′
bh′

b

v′
⊥

)

− cn
⊥⊥Jb

n

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

⊥‖′Jb
n

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

⊥φ′

i

Jb
n−1 + Jb

n+1

2

kρ ′
bh′

b

v′
⊥

]

+ kρa

v⊥

∫
2πd2v′ fa0

mb

∑
n

Ja
−(n+1) + Ja

−(n−1)

2i

[
cn
φ⊥′

(
Jb

n

∂h′
b

∂v′
⊥

+ Jb
n−1 − Jb

n+1

2

kρ ′
bh′

b

v′
⊥

)

− cn
φ⊥Jb

n

mb

ma

h′
b∂ fa0

fa0∂v⊥
+ cn

φ‖′Jb
n

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
− cn

φφ′

i

Jb
n−1 + Jb

n+1

2

kρ ′
bh′

b

v′
⊥

]
, (27)

where all the terms are real. For the field-particle operator,
the second part accounts for FLR effects since it vanishes in
the drift-kinetic limit kρ = kρ ′ = 0, and the first part also
contains FLR effects via the Bessel functions. This is in
contrast to the test-particle operator, for which the drift-kinetic
part is completely separable from the FLR terms. We note
that Eqs. (26) and (27) involve Bessel functions of all orders,
revealing a different wave-number dependence than the model
operators which involve only J0 and J1.

B. Symmetric integral form

The operator in Bessel function series requires a proper
truncation of the infinite summation for analytical analyses
and numerical implementations. Approximations can be per-
formed based on the significance of the FLR effects in the
limits of kρ � 1 and kρ � 1 (e.g., Catto and Tsang [13] and
references therein). In order to treat arbitrary wave number
and fully assess the FLR effects in numerical simulations,
here we pursue the operator in integral form [25]. Since both
the test-particle and field-particle parts of the gyrokinetic
operator are proven real, we can factor out the gyrophase av-
erage

∮
dφ/(2π ), the gyrophase integration

∮
dφ′/(2π ), and

the gyrophase-dependent part of the integrand, then combine
them into precomputable and real-valued gyrophase integrals.
The fact that the gyrophase integrals are independent of the
distribution and can be precomputed should result in signif-
icant time savings in simulations. The resultant gyrokinetic
operator involves two-dimensional velocity-space integrals
and can be written in vector form similar to Eqs. (10)–(12):

Cgk
ab (ha, hb) = −∇ · Jab + (FLR terms). (28)

Here ∇ = e⊥∂/∂v⊥ + e‖∂/∂v‖, and the flux density Jab(vvv)
in the two-dimensional velocity space is the sum of the
test-particle flux density

JT
ab = �ab

∫
2π d2v′

(
ha

mb
IT

E · ∇′ f ′
b0 − f ′

b0

ma
IT

D · ∇ha

)
(29)

and the field-particle flux density

JF
ab = �ab

∫
2π d2v′

(
fa0

mb
IF

E · ∇′h′
b − h′

b

ma
IF

D · ∇ fa0

)
,

(30)

with the 2 × 2 tensors IT
E and IT

D for the drag and diffusion
coefficients of the test-particle part given by

IT
E (vvv, vvv′) =

(
IT
⊥⊥′ IT

⊥‖
IT
‖⊥′ IT

‖‖

)
≡

∮
dφ

2π

∮
dφ′

2π

(
U⊥⊥′ U⊥‖
U‖⊥′ U‖‖

)

(31)

and

IT
D

(
vvv, vvv′) =

(
IT
⊥⊥ IT

⊥‖
IT
‖⊥ IT

‖‖

)
≡

∮
dφ

2π

∮
dφ′

2π

(
U⊥⊥ U⊥‖
U‖⊥ U‖‖

)
,

(32)

respectively, and IF
E and IF

D for field-particle drag and
diffusion coefficients given by

IF
E (vvv, vvv′) =

(
IF
⊥⊥′ IF

⊥‖
IF
‖⊥′ IF

‖‖

)
≡

∮
dφ

2π

∮
dφ′

2π

× cos(kρ ′ sin φ′ − kρ sin φ)

(
U⊥⊥′ U⊥‖
U‖⊥′ U‖‖

)

(33)

and

IF
D

(
vvv, vvv′) =

(
IF
⊥⊥ IF

⊥‖
IF
‖⊥ IF

‖‖

)
≡

∮
dφ

2π

∮
dφ′

2π

× cos
(
kρ ′ sin φ′ − kρ sin φ

)(U⊥⊥ U⊥‖
U‖⊥ U‖‖

)
.

(34)
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The FLR terms in the gyrokinetic collision operator are proportional to the perpendicular wave number and can be cast into

(FLR terms)/�ab = − k2ρ2
a ha

v2
⊥

∫
2π d2v′ f ′

b0

ma
IT
FLR + 1

v⊥

∂

∂v⊥

(
v⊥

∫
2π d2v′ fa0

mb

kρ ′
bh′

b

v′
⊥

IF,1
FLR

)
+ ∂

∂v‖

(∫
2π d2v′ fa0

mb

kρ ′
bh′

b

v′
⊥

IF,2
FLR

)

+ kρa

v⊥

∫
2π d2v′ fa0

mb

[
∂h′

b

∂v′
⊥

IF,3
FLR +

(
∂h′

b

∂v′
‖

− mb

ma

h′
b∂ fa0

fa0∂v‖

)
IF,4
FLR − mb

ma

h′
b∂ fa0

fa0∂v⊥
IF,5
FLR + kρ ′

bh′
b

v′
⊥

IF,6
FLR

]
, (35)

with the additional gyrophase integrals given by

IT
FLR =

∮
dφ

2π

∮
dφ′

2π
(sin2 φU⊥⊥ + 2 sin φ cos φU⊥φ + cos2 φUφφ ), (36)

IF,1
FLR =

∮
dφ

2π

∮
dφ′

2π
sin(kρ ′ sin φ′ − kρ sin φ)(sin φ′U⊥⊥′ + cos φ′U⊥φ′ ), (37)

IF,2
FLR =

∮
dφ

2π

∮
dφ′

2π
sin(kρ ′ sin φ′ − kρ sin φ)(sin φ′U‖⊥′ + cos φ′U‖φ′ ), (38)

IF,3
FLR =

∮
dφ

2π

∮
dφ′

2π
sin(kρ ′ sin φ′ − kρ sin φ)(sin φU⊥⊥′ + cos φUφ⊥′ ), (39)

IF,4
FLR =

∮
dφ

2π

∮
dφ′

2π
sin(kρ ′ sin φ′ − kρ sin φ)(sin φU⊥‖ + cos φUφ‖), (40)

IF,5
FLR =

∮
dφ

2π

∮
dφ′

2π
sin(kρ ′ sin φ′ − kρ sin φ)(sin φU⊥⊥ + cos φUφ⊥), (41)

IF,6
FLR =

∮
dφ

2π

∮
dφ′

2π
cos(kρ ′ sin φ′ − kρ sin φ)(sin φ sin φ′U⊥⊥′ + sin φ cos φ′U⊥φ′ + cos φ sin φ′Uφ⊥′ + cos φ cos φ′Uφφ′ ).

(42)

It is straightforward to verify that the gyrokinetic operator
in integral form is equivalent to the operator in Bessel function
series given in Eqs. (22), (24), (26), and (27). It simply
involves expanding Uμν of the gyrophase integrals in Fourier
series and rewriting the integrals as Bessel function series. As
in the Bessel function series, in integral form the FLR effects
are completely separated from the drift-kinetic part for the
test-particle operator and partially separated from the drift-
kinetic part for the field-particle operator. The test-particle
operator and the field-particle operator in integral form are
treated on an equal footing. From the definitions of gyrophase
integrals (31)–(34), we have IT

E = IF
E and IT

D = IF
D when

kρ = kρ ′ = 0. Thus the symmetry of the linearized Landau
operator in three-dimensional velocity space, Eqs. (10)–(12),
is transformed to the symmetry of the gyrokinetic operator in
two-dimensional velocity space in the drift-kinetic limit. It is
well known that the gyrophase integrals in the drift-kinetic
limit can be written in terms of complete elliptic integrals
[10,25,27]. For example, one of the gyrophase integrals is

IT
⊥⊥ = IF

⊥⊥ = 2

πλ3

E (κ )

1 − κ2

(
v‖ − v′

‖
)2

+ λ

πv2
⊥

[
(λ2 − 2v⊥v′

⊥)
K (κ )

λ2
− E (κ )

]
, (43)

where λ2 = (v⊥ + v′
⊥)2 + (v‖ − v′

‖)2, κ2 = 4v⊥v′
⊥/λ2, and K

and E are complete elliptic integrals of the first kind and
the second kind, respectively. I⊥⊥ diverges when v⊥ = v′

⊥
and v‖ = v′

‖ because K (κ ) logarithmically diverges as κ → 1.
Similar analysis can be applied to other gyrophase integrals.

Let us discuss the conservation properties of the gyroki-
netic operator. Because the particle position and velocity
coordinates are mixed in the gyrokinetic phase space via the
guiding-center transformation, the conservation laws cannot
be simply expressed as the invariance of the first three velocity
moments at fixed guiding-center positions; rather, they apply
at the particle positions. To address this, we write the FLR
effects for the collision operator in the general form Eq. (4)
as a divergence of flux density in particle position space,
so that the particle conservation laws require the first three
velocity moments to be conserved by gyrokinetic collisions in
the drift-kinetic limit [18]. Recall that the symmetry between
the test-particle operator and the field-particle operator allows
for the proof of conservation laws in Eq. (14) for the linearized
Landau operator. Since the symmetry is inherited by the gy-
rokinetic version of the linearized operator, the conservation
laws in the drift-kinetic limit can be demonstrated in a similar
fashion. Consider

−
(∫

d2v φa∇ · JT
ab +

∫
d2v φb∇ · JF

ba

)

= 2πe2
ae2

b ln �

∫
d2v

∫
2π d2v′

×
[

ha

mb

(∇φa

ma
· IT

E − ∇′φ′
b

mb
· I′F

D

)
· ∇′ f ′

b0

− f ′
b0

ma

(∇φa

ma
· IT

D − ∇′φ′
b

mb
· I′F

E

)
· ∇ha

]
, (44)
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where the primed tensors are obtained from their corre-
sponding unprimed ones by swapping vvv and vvv′. We need
to show Eq. (44) vanishes for φs = 1 (particle conserva-
tion), φs = msv‖ (parallel momentum conservation), and φs =
ms(v2

⊥ + v2
‖ )/2 (energy conservation). Particle conservation

is satisfied separately by the test-particle part and the field-
particle part. The parallel momentum conservation is guar-
anteed since in the drift-kinetic limit we have IT

E = IF
E and

IT
D = IF

D, thus

(0 1) · (
IT

E − I′F
D

) = (
IT
‖⊥′ − I ′F

‖⊥ IT
‖‖ − I ′F

‖‖
) = 0, (45)

(0 1) · (
IT

D − I′F
E

) = (
IT
‖⊥ − I ′F

‖⊥′ IT
‖‖ − I ′F

‖‖
) = 0. (46)

For energy conservation, it can be verified that

(v⊥ v‖) · IT
E − (v′

⊥ v′
‖) · I′F

D = 0, (47)

(v⊥ v‖) · IT
D − (v′

⊥ v′
‖) · I′F

E = 0, (48)

by substituting the expressions for Uμν given in Appendix A
into the gyrophase integrals.

IV. CONSERVATIVE DISCRETIZATION
OF THE LANDAU FORM

To discretize the gyrokinetic linear Landau operator such
that it obeys corresponding discrete conservation laws in the
drift-kinetic limit even for simulations with low to moderate
resolutions, it is essential to observe that the conservative
structure of the nonlinear operator is inherited by the gyroki-
netic linearized operator, and the symmetry of the nonlinear
operator leads to the symmetry between test-particle operator
and field-particle operator. The proof of the conservation
laws for the continuous case in Eq. (44) suggests a weak
formulation of the conservative form in Eq. (28) as

∂

∂t

∫
d2v φaha =

∫
d2v ∇φa · Jab, (49)

where φa are test functions depending on specific numerical
schemes and the boundary terms are dropped by using appro-
priate zero-flux boundary conditions. The key observation on
this weak formulation is that it directly measures the changes
of φa moments due to collisions. If we manage to find a
scheme such that (1) the set of monomials {1, v‖, v2}, which
measure the conservation quantities, can be represented by
test functions, and (2) the discretization of the right-hand side
of Eq. (49) respects the relations required for the continuous
conservation laws [shown in Eq. (44)] for each velocity pair
(vvv, vvv′),

∇φa

ma
· IT

E − ∇′φ′
b

mb
· I′F

D = 0, (50)

∇φa

ma
· IT

D − ∇′φ′
b

mb
· I′F

E = 0, (51)

then this scheme will obey the discrete conservation laws.
One type of scheme involves expanding the distribution

functions and the test functions with a discrete orthogonal

polynomial basis [12,28,29], namely

hs(vvv j ) =
∑

i

hsiλi(vvv j ), (52)

φs(vvv j ) =
∑

i

φsiλi(vvv j ), (53)

where the λi(vvv j ) represents the ith element of the two-
dimensional polynomial basis evaluated at the grid point vvv j .
The grid point locations are determined by the quadrature
of the basis polynomials for given boundary conditions [28].
The operator, formulated in the spherical representation in
Appendix C, is suitable for the spectral type discretization.
The tensor product of the Legendre polynomials in pitch-
angle coordinate Pl (ξ ) (ξ = v‖/v) and the Chebyshev polyno-
mials in speed coordinate Tn(v) (v =

√
v2

⊥ + v2
‖ ) can serve as

a favorable two-dimensional basis. The Legendre polynomials
are eigenfunctions of both test-particle operator and field-
particle operator. The basis in speed should have the character-
istic that, in the regions where the distribution function shows
strong variation, the next basis functions in the series are dif-
ferent enough from preceding basis functions so that few addi-
tional basis functions are needed to effectively span the space.
This will ensure rapid decay of the error with the number of
basis functions included [29]. For perturbed distributions in
turbulence, which display structure at low speeds, Chebyshev
polynomials are appropriate. To verify the conservation laws,
we note that {1, v‖, v2} are represented by the basis since
1 = P0T0, v‖ = P1T1, and v2 = (P0T0 + P0T2)/2. In addition,
the two-dimensional velocity-space integration in Eq. (49) is
evaluated with a quadrature rule, and at the quadrature points
the derivatives of {1, v‖, v2} obtained by differentiating the
basis polynomials [28] are exact. Thus Eqs. (50) and (51) are
respected at each pair of quadrature points (vvv j, vvv

′
j′ ).

Alternatively, the gyrokinetic linearized Landau operator
can be discretized with a finite-volume method as in Yoon
et al. [10] and Hager et al. [11]. This method was originally
designed for a two-dimensional nonlinear Landau operator
in the drift-kinetic limit based on a weak formulation of the
symmetric and conservative form. Because the symmetric
and conservative form is preserved in present formulation of
the gyrokinetic linearized operator, the finite-volume method
is applicable to Eq. (28) after replacing the nonlinear flux
density with the linear flux density. The scheme requires a
velocity grid (v⊥, v‖) uniformly spaced in both directions to
ensure conservation numerically. The FLR terms in Eq. (35)
containing purely FLR effects also need to be evaluated.
The conservative terms associated with IF,1

FLR and IF,2
FLR can

be incorporated into the drift-kinetic part simply by adding
corresponding terms in the definition of the flux density Jab.
The differentiations and integrations in the nonconservative
FLR terms can be carried out by centered finite-differencing
and numerical summations, respectively. The FLR terms are
proportional to the perpendicular wave number and do not
affect the conservation laws.

V. DISCUSSION AND FUTURE WORK

In this paper, the gyrokinetic exact linearized Landau
collision operator is formulated. Two key properties of
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the nonlinear Landau operator—symmetry and conservative
structure—are explicitly preserved in the linearization and
subsequent guiding-center transformation and gyrophase av-
eraging. These two mathematical properties underline the
physical properties including the conservation laws and the H
theorem. It is verified that the gyrokinetic operator in the
Landau form is equivalent to the operator in the nonconserva-
tive and nonsymmetric Fokker–Planck form [25]. The present
formulation addresses the potential numerical difficulty as-
sociated with the logarithmic singularity in the gyrophase
integral of the field-particle operator in the Fokker–Planck
form. By treating the test-particle contribution and the field-
particle contribution symmetrically, potential numerical errors
associated with the logarithmic singularity in the test-particle
operator of a-b collisions are balanced by the field-particle
operator of b-a collisions, and vice versa. Thus overall con-
servation is ensured despite numerical errors.

This work is motivated in part by previous results which
show that the inherent differences between the exact lin-
earized drift-kinetic field operator and present model opera-
tors produce different results for collisional fluxes and flows
in magnetically confined fusion plasmas. In addition to the
strong effects of electron collisions, ion collisions (subject to
FLR corrections) affect turbulence through the neoclassical
polarization and zonal flow damping [30,31], as well as neo-
classical distortions of the background distribution. The latter
can break symmetry, leading to momentum transport [32], and
neoclassical distortions are particularly relevant to steep gra-
dient regions such as the tokamak edge pedestal [33]. When
Abel’s model operator is applied to classical ion transport, the
coefficient of heat flux transport perpendicular to the magnetic
field is found to be about 50% greater than the result from the
exact linearized Fokker–Planck operator (see the paragraph
between Eqs. (21) and (22) of Ref. [22]). The exact linearized
Fokker–Planck operator, without FLR corrections, has been
used in several kinetic neoclassical codes [10,29,33–37]. The
codes of Refs. [29,33,35,37] closely agree over a wide range
of collisionality (e.g., Fig. 4 of Ref. [33], also a similar
comparison with the NEO code was performed). Neoclassical
results from the exact linearized Fokker–Planck operator dif-
fer significantly from results of model operators [37], showing
errors as large as 10–15% for the neoclassical particle fluxes
and 20–30% for the neoclassical ion energy fluxes. In the
same work, the model referred to as ad hoc Fokker–Planck
(actually a drift-kinetic generalization of the Abel operator for
multiple species) resulted in 25% larger parallel neoclassical
flows at high collisionality and 15% smaller bootstrap current
than the exact linearized Fokker–Planck operator. Before this,
it was reported [34] that the exact linearized Fokker–Planck
operator resulted in 20% differences relative to the most accu-
rate calculation of the bootstrap current at that time. Similar
differences in neoclassical fluxes, using the exact linearized
operator relative to widely accepted calculations using model
operators, were observed [35].

The gyrokinetic operator in conservative form can be
implemented with either spectral or finite-volume numerical
schemes. In continuum codes, spectral methods [29] can
achieve rapid convergence in velocity space. Particle codes
can utilize methods similar to those in Refs. [10,11] to ensure
numerical conservation. The initial implementation of the

e1=ek

e2

e '

e
e =e

e '=e ' 

'

= - '

e1×e2=e||=eb

FIG. 1. The cylindrical coordinate system for velocity of species
a, and for velocity of species b with primed subscripts, in a-b type
collisions.

gyrokinetic exact linearized Landau operator is underway in
the gyrokinetic code GENE [38,39], using the finite-volume
scheme described in Sec. IV. The δ f version of GENE can
apply a velocity grid (v⊥, v‖) that is equally distant in both
directions and has the model operators by Abel et al. [18] and
Sugama et al. [20] implemented [40]. We have utilized this
framework so far to implement the drift-kinetic Landau oper-
ator and are continuing to include FLR corrections. Progress
on the implementation, including numerical verification of
the conservation laws and comparisons of the exact operator
with model operators in physical applications, such as the
turbulence driven by microinstabilities, will be reported in
the future. Using this new formulation, it will be possible to
assess the accuracy of present model operators in gyrokinetic
turbulence simulations.
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APPENDIX A: CYLINDRICAL COORDINATES AND
ASSOCIATED USEFUL RELATIONS

Figure 1 shows the cylindrical coordinate system used
in this work. In this coordinate system, the velocity can be
decomposed as

vvv = v⊥(e1 cos φ + e2 sin φ) + v‖e‖, (A1)

and the gyroradius is

ρ = v⊥
�

eρ = v⊥
�

e‖ × e⊥ = v⊥
�

(−e1sinφ + e2cosφ). (A2)

From Eq. (A2), we have ∂ρ/∂v⊥ = ρ/v⊥, ∂ρ/∂v‖ = 0, and
∂ρ/∂φ = −vvv⊥/�. Thus

∂

∂v⊥

(
e−ik·ρg

) = e−ik·ρ
(

∂g

∂v⊥
− ik · ρg

v⊥

)
, (A3)
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∂

∂v‖
(e−ik·ρg) = e−ik·ρ ∂g

∂v‖
, (A4)

∂

∂φ
(e−ik·ρg) = e−ik·ρ ik · vvv⊥

�
g, (A5)

for a distribution function g = g(v⊥, v‖) (either fs0 or hs)
that is independent of gyrophase. Without loss of general-
ity, e1 may be chosen in the direction of the perpendicular
wave number so that k = ke1, k · ρ = −kρ sin φ, and k · vvv⊥ =
kv⊥ cos φ.

The projection of the Landau tensor is defined as

Uμν ≡ eμ · Iu2 − uu
u3

· eν (A6)

with u = vvv − vvv′, μ ∈ {⊥, ‖, φ}, and ν ∈ {⊥, ‖, φ,⊥′, ‖′, φ′}.
Here the unprimed quantities are for species a and primed
quantities are for species b in a-b collisions. By using u =
v⊥e⊥ − v′

⊥e′
⊥ + (v‖ − v′

‖)e‖ and Fig. 1, Uμv can be explicitly
written out and they are listed below for a reference:

U⊥⊥ = 1

u3
[u2 − (v⊥ − v′

⊥ cos δ)2], (A7)

U⊥‖ = U⊥‖′ = U‖⊥ = − 1

u3
(v⊥ − v′

⊥ cos δ)(v‖ − v′
‖), (A8)

U⊥φ = Uφ⊥ = − 1

u3
(v⊥ − v′

⊥ cos δ)v′
⊥ sin δ, (A9)

U⊥⊥′ = 1

u3
[u2 cos δ + (v⊥ − v′

⊥ cos δ)(v′
⊥ − v⊥ cos δ)],

(A10)

U⊥φ′ = 1

u3
[u2 sin δ − (v⊥ − v′

⊥cosδ)v⊥ sin δ], (A11)

U‖‖ = U‖‖′ = 1

u3
[u2 − (v‖ − v′

‖)2], (A12)

U‖φ = Uφ‖ = Uφ‖′ = − 1

u3
(v‖ − v′

‖)v′
⊥ sin δ, (A13)

U‖⊥′ = 1

u3
(v‖ − v′

‖)(v′
⊥ − v⊥ cos δ), (A14)

U‖φ′ = − 1

u3
(v‖ − v′

‖)v⊥ sin δ, (A15)

Uφφ = 1

u3
[u2 − (v′

⊥ sin δ)2], (A16)

Uφ⊥′ = 1

u3
[−u2 sin δ + v′

⊥ sin δ(v′
⊥ − v⊥ cos δ)], (A17)

Uφφ′ = 1

u3
(u2 cos δ − v⊥v′

⊥ sin2 δ), (A18)

with δ = φ − φ′. Uμν is periodic in δ and can be expanded in
Fourier series as

Uμν (δ) =
∑
n∈Z

cn
μνeinδ, (A19)

where the expansion coefficients

cn
μν = − 1

2π

∫ φ−2π

φ

dδUμν (δ)e−inδ = 1

2π

∫ π

−π

dδUμν (δ)e−inδ

(A20)

can be obtained by first expanding Uμν as function of φ′ and
then changing the variable from φ′ to δ. Note that Uμν is either
even or odd in δ, thus cn

μν is either real or imaginary.

APPENDIX B: PROOF OF THE EQUIVALENCE BETWEEN
GYROKINETIC LANDAU FORM AND GYROKINETIC

FOKKER–PLANCK FORM

The approach to proving the equivalence of gyrokinetic
test-particle operator in the Landau form with the Fokker–
Planck form is first writing Eq. (5) in conservative form in
cylindrical coordinates, then obtaining the gyrokinetic version
via substitution to Eq. (4) and comparing it with the Landau
form given in Eqs. (22) and (24).

Equation (5) can be written in conservative form as

CT
ab( fa1, fbM ) = ∇ · Jab, (B1)

where Jab is the sum of the pitch-angle-scattering flux density
and energy-diffusion flux density given by

JPA
ab = 1

2

(
v2I − vvvvvv

) · ∂ (νD fa1)

∂vvv
(B2)

and

JE
ab = ev

[
νab

‖
2

v4 faM
∂

∂v

(
fa1

faM

)
+ ma

Tb

(
1 − Tb

Ta

)
νab

‖
2

v5 fa1

]
,

(B3)

respectively. Notice that since νab
D (v) depends only on v,

it can be absorbed into the pitch-angle-scattering operator.
Projecting the flux density Jab onto the basis of cylindrical
coordinates, we obtain

CT
ab( fa1, fbM ) = 1

v⊥

∂

∂v⊥
(v⊥J⊥

ab) + ∂J‖
ab

∂v‖
+ 1

v⊥

∂Jφ

ab

∂φ
, (B4)

with

J⊥
ab = 1

2

(
νab

‖ (v) − νab
D (v)

)
v‖v⊥

∂ fa1

∂v‖

+ 1

2

(
νab

‖ v2
⊥ + νab

D v2
‖
)∂ fa1

∂v⊥
+ 1

2
νab

‖ v⊥v2 ma fa1

Tb
, (B5)

J‖
ab = 1

2

(
νab

‖ (v) − νab
D (v)

)
v‖v⊥

∂ fa1

∂v⊥

+ 1

2

(
νab

‖ v2
‖ + νab

D v2
⊥
)∂ fa1

∂v‖
+ 1

2
νab

‖ v‖v2 ma fa1

Tb
, (B6)

Jφ

ab = νab
D

2

v2

v⊥

∂ fa1

∂φ
. (B7)

The gyrokinetic form for the nonadiabatic part of the
guiding-center distribution function obtained by substituting
Eqs. (B4)–(B7) into Eq. (4) eliminates the gyrophase depen-
dence and contains FLR effects:

Cgk
ab (ha, fbM ) = 1

v⊥

∂

∂v⊥

(
v⊥J⊥,gk

ab

) + ∂J‖,gk
ab

∂v‖

+ k2ha

4�2
a

[−νab
D (2v2

‖ + v2
⊥) − νab

‖ v2
⊥
]
, (B8)
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with the gyrokinetic flux densities given by

J⊥,gk
ab = 1

2

(
νab

‖ (v) − νab
D (v)

)
v‖v⊥

∂ha

∂v‖

+ 1

2

(
νab

‖ v2
⊥ + νab

D v2
‖
) ∂ha

∂v⊥
+ 1

2
νab

‖ v⊥v2 maha

Tb
, (B9)

J‖,gk
ab = 1

2

(
νab

‖ (v) − νab
D (v)

)
v‖v⊥

∂ha

∂v⊥

+ 1

2

(
νab

‖ v2
‖ + νab

D v2
⊥
)∂ha

∂v‖
+ 1

2
νab

‖ v‖v2 maha

Tb
. (B10)

1. Equivalence in the drift-kinetic limit

By using the periodicity of Uμν in δ, we can evaluate the
gyroaverage in Eq. (22) and obtain the flux densities of the
test-particle operator,

J⊥,gk
ab = −�ab

ma

∫
d3v′ f ′

b0

[
−U⊥⊥

∂ha

∂v⊥

+U⊥‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U⊥⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥

]
,

(B11)

J‖,gk
ab = −�ab

ma

∫
d3v′ f ′

b0

[
−U‖⊥

∂ha

∂v⊥

+U‖‖

(
ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
− ∂ha

∂v‖

)
+ U‖⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥

]
.

(B12)

To prove the equivalence of the drift-kinetic part of the
test-particle operator, we only need to show that the flux
densities defined in Eqs. (B11) and (B12) are equivalent to
Eqs. (B9) and (B10), respectively. The two expressions consist
of five pairs of one-to-one correspondence. The proof uses the
identity U = ∂2u/∂vvv∂vvv and the definitions of νab

D and νab
‖ in

terms of the Rosenbluth potentials given in Eqs. (6) and (7).
First, for the perpendicular diffusion coefficient we have

�ab

ma

∫
d3v′ f ′

b0U⊥⊥ = �ab

ma

∫
d3v′ f ′

b0
∂2u

∂vvv∂vvv
:e⊥e⊥

= �ab

ma

∫
d3v′ f ′

b0
∂2u

∂2v⊥
= �ab

ma

∂2G0

∂v⊥∂v⊥

= �ab

ma

(
v2

⊥
v2

d2G0

dv2
+ v2

‖
v3

dG0

dv

)

= 1

2

(
νab

‖ v2
⊥ + νab

D v2
‖
)
. (B13)

Similarly, the equivalence of the parallel and cross diffusion
coefficients,

�ab

ma

∫
d3v′ f ′

b0U‖‖ = 1

2

(
νab

‖ v2
‖ + νab

D v2
⊥
)
, (B14)

�ab

ma

∫
d3v′ f ′

b0U‖⊥ = 1

2

(
νab

‖ − νab
D

)
v‖v⊥, (B15)

can be demonstrated. Second, for the perpendicular drag
coefficient we have

− �ab

ma

∫
d3v′ f ′

b0

(
U⊥‖

ma

mb

∂ f ′
b0

f ′
b0∂v′

‖
+ U⊥⊥′

ma

mb

∂ f ′
b0

f ′
b0∂v′

⊥

)

= �ab

Tb

∫
d3v′ f ′

b0

(
U⊥‖′v′

‖ + U⊥⊥′v′
⊥
)

= �ab

Tb

∫
d3v′ f ′

b0

(
U⊥‖v‖ + U⊥⊥v⊥

)

= �ab

Tb

∫
d3v′ f ′

b0

(
∂2u

∂v⊥∂v‖
v‖ + ∂2u

∂2v⊥
v⊥

)

= �ab

Tb

(
∂2G0

∂v⊥∂v‖
v‖ + ∂2G0

∂2v⊥
v⊥

)

= �ab

Tb

d2G0

dv2
v⊥ = 1

2
νab

‖ v⊥v2 ma

Tb
, (B16)

where the identity U · (vvv − vvv′) = U · u = 0 is used. The
equivalence of the parallel drag coefficient,

−�ab

ma

∫
d3v′ f ′

b0

(
U‖‖

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

‖
+ U‖⊥′

ma

mb

ha∂ f ′
b0

f ′
b0∂v′

⊥

)

= 1

2
νab

‖ v‖v2 ma

Tb
, (B17)

can be proved analogously to Eq. (B16). This proof demon-
strates that the apparent singularity in νab

D and νab
‖ as v → 0

originates from the Landau tensor.

2. Equivalence of the gyrodiffusion terms

The gyrodiffusion equivalence can be proved in a similar
fashion. Starting with the gyrodiffusion in Landau form given
in Eq. (24), we have

− �ab

2ma

k2ha

�2
a

∫
d3v′ f ′

b0

(
U⊥⊥ + Uφφ

)

= − �ab

2ma

k2ha

�2
a

∫
d3v′ f ′

b0

(
∂2u

∂vvv∂vvv
: e⊥e⊥ + ∂2u

∂vvv∂vvv
: eφeφ

)

= − �ab

2ma

k2ha

�2
a

{
∂2G0

∂v2
⊥

+ 1

v⊥

[
∂

∂φ

(
1

v⊥

∂G0(v)

∂φ

)
+ ∂G0

∂v⊥

]}

= − �ab

2ma

k2ha

�2
a

(
∂2G0

∂v2
⊥

+ 1

v⊥

∂G0

∂v⊥

)

= k2ha

4�2
a

[−νab
D (2v2

‖ + v2
⊥) − νab

‖ v2
⊥
]
. (B18)

APPENDIX C: GYROKINETIC LINEARIZED LANDAU
OPERATOR IN SPHERICAL REPRESENTATION

The derivation approach and conclusions of this paper are
independent of the coordinate systems, and the operator can
be reformulated straightforwardly in different representations.
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Here we present the operator in spherical representation with-
out detail derivation. The basis of the spherical coordinate
system is (ev, eξ , eφ ) with v = |vvv|, ξ = ev · e‖ = cos θ the

pitch-angle coordinate, and φ the gyrophase. Analogous to
Eqs. (28)–(42), the gyrokinetic Landau operator can be cast
into conservative form as

Cgk
ab (ha, hb) = −∇ · (

JT
ab + JF

ab

) + (FLR terms), (C1)

where

JT
ab = �ab

∫
2πd2v′

(
ha

mb
IT

E · ∇′ f ′
b0 − f ′

b0

ma
IT

D · ∇ha

)
, (C2)

JF
ab = �ab

∫
2πd2v′

(
fa0

mb
IF

E · ∇′h′
b − h′

b

ma
IF

D · ∇ fa0

)
. (C3)

The 2 × 2 tensors for the test-particle part are given by

IT
E =

(
IT
vv′ IT

vξ ′

IT
ξv′ IT

ξξ ′

)
≡

∮
dφ

2π

∮
dφ′

2π

(
Uvv′ Uvξ ′

Uξv′ Uξξ ′

)
, (C4)

IT
D =

(
IT
vv IT

vξ

IT
ξv IT

ξξ

)
≡

∮
dφ

2π

∮
dφ′

2π

(
Uvv Uvξ

Uξv Uξξ

)
, (C5)

and for field-particle part they are defined as

IF
E =

(
IF
vv′ IF

vξ ′

IF
ξv′ IF

ξξ ′

)
≡

∮
dφ

2π

∮
dφ′

2π
cos(kρ ′ sin φ′ − kρ sin φ)

(
Uvv′ Uvξ ′

Uξv′ Uξξ ′

)
, (C6)

IF
D =

(
IF
vv IF

vξ

IF
ξv IF

ξξ

)
≡

∮
dφ

2π

∮
dφ′

2π
cos(kρ ′ sin φ′ − kρ sin φ)

(
Uvv Uvξ

Uξv Uξξ

)
. (C7)

The FLR terms can be written as

(FLR terms)/�ab = −k2ρ2
a ha

v2

∫
2πd2v′ f ′

b0

ma
IT
FLR − 1

v2

∂

∂v

(
v2

∫
2πd2v′ fa0

mb

kρ ′
bh′

b

v′ IF,1
FLR

)

− ∂

v∂ξ

[√
1 − ξ 2

∫
2πd2v′ fa0

mb

kρ ′
bh′

b

v′ IF,2
FLR

]
+ kρa

v

∫
2πd2v′ fa0

mb

(
∂h′

b

∂v′ IF,3
FLR +

√
1 − ξ ′2

v′
∂h′

b

∂ξ ′ IF,4
FLR

−mb

ma

h′
b∂ fa0

fa0∂v
IF,5
FLR −

√
1 − ξ 2

v

mb

ma

h′
b∂ fa0

fa0∂ξ
IF,6
FLR + kρ ′

bh′
b

v′ IF,7
FLR

)
, (C8)

with the additional gyrophase integrals given by

IT
FLR =

∮
dφ

2π

∮
dφ′

2π

[
sin φ

(
sin φUvv − ξ√

1 − ξ 2
sin φUvξ + cos φUvφ√

1 − ξ 2

)

− ξ sin φ√
1 − ξ 2

(
sin φUξv − ξ√

1 − ξ 2
sin φUξξ + cos φUξφ√

1 − ξ 2

)
+ cos φ√

1 − ξ 2

(
sin φUφv − ξ√

1 − ξ 2
sin φUφξ + cos φUξφ√

1 − ξ 2

)]
,

(C9)

IF,1
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(ξ ′ sin φ′Uvξ ′√
1 − ξ ′2 − sin φ′Uvv′ − cos φ′Uvφ′√

1 − ξ ′2

)
, (C10)

IF,2
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(ξ ′ sin φ′Uξξ ′√
1 − ξ ′2 − sin φ′Uξv′ − cos φ′Uξφ′√

1 − ξ ′2

)
, (C11)

IF,3
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(
sin φUvv′ − ξ√

1 − ξ 2
sin φUξv′ + cos φUφv′√

1 − ξ 2

)
, (C12)

IF,4
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(
sin φUvξ ′ − ξ√

1 − ξ 2
sin φUξξ ′ + cos φUφξ ′√

1 − ξ 2

)
, (C13)
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IF,5
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(
sin φUvv − ξ√

1 − ξ 2
sin φUξv + cos φUφv√

1 − ξ 2

)
, (C14)

IF,6
FLR =

∮
dφ

2π

∮
dφ′

2π
sin

(
kρ ′ sin φ′ − kρ sin φ

)(
sin φUvξ − ξ√

1 − ξ 2
sin φUξξ + cos φUφξ√

1 − ξ 2

)
, (C15)

IF,7
FLR =

∮
dφ

2π

∮
dφ′

2π
cos

(
kρ ′ sin φ′ − kρ sin φ

)

×
[

sin φ

(
sin φ′Uvv′ − ξ ′√

1 − ξ ′2 sin φ′Uvξ ′ + cos φ′Uvφ′√
1 − ξ ′2

)

− ξ sin φ√
1 − ξ 2

(
sin φ′Uξv′ − ξ ′√

1 − ξ ′2 sin φ′Uξξ ′ + cos φ′Uξφ′√
1 − ξ ′2

)

+ cos φ√
1 − ξ 2

(
sin φ′Uφv′ − ξ ′√

1 − ξ ′2 sin φ′Uφξ ′ + cos φ′Uφφ′√
1 − ξ ′2

)]
. (C16)

The projection of the Landau tensor Uμν ≡ eμ · U · eν with μ ∈ (v, ξ , φ) and ν ∈ (v, ξ , φ, v′, ξ ′, φ′) can be calculated by using
u = vev − v′ev′ , ev = ξe‖ +

√
1 − ξ 2e⊥, eξ =

√
1 − ξ 2e‖ − ξe⊥, and relations shown in Fig. 1.
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