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Shock-wave structure according to a linear irreversible thermodynamic model
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In this work we present a phenomenological model to look for a better understanding of the shock-wave
structure in dilute monatomic gases. The model is based on the principles of linear irreversible thermodynamics,
where we have been aware of the flow anisotropy caused by the shock-wave propagation. Then a new coupling
appears between the stress tensor and the heat flux. The comparisons with the experimental data available for
argon as well as the direct simulation Monte Carlo method calculations are done and shown to support our
proposal.
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I. INTRODUCTION

The description and understanding of the shock-wave pro-
file has been a strong challenge for any set of continuum
fluid mechanics equations. The main problem is the presence
of a highly nonequilibrium flow where the usual variables
have very deep changes in a short distance. Even though
the flow is stationary, there are two dimensionless numbers
which become essential in the characterization of the problem.
The first one is the Mach number (M ), which is the ratio
between the wave speed and the sound speed in the fluid.
The other one is the Knudsen number (Kn), defined as the
quotient between the mean free path and the problem typical
length; it measures the rarefaction of the system. The Mach
number is greater than 1 and the Knudsen number value is
in the so-called transition-continuum region, in such a way
that the flow behavior is somewhat difficult to be treated with
the usual tools in hydrodynamics. First, the Mach number
value makes the flow a compressible one and, second, in the
transition-continuum region the rarefaction in the system must
be taken into account. In the understanding of the shock-wave
structure, the comments we have made about the dimension-
less numbers in this problem have given place to a numerous
approaches. All of them drive to different schemes going
from the kinetic to the phenomenological descriptions [1].
Most kinetic approaches begin with the Boltzmann equation
and its methods of solution. A first example of the followed
way is the Chapman-Enskog method, which corresponds to
an expansion in powers of the Knudsen number. It gives
us in the zeroth order, the Euler’s equations giving a step
solution when they are considered under the conditions for
a shock wave. The first order in Knudsen number repro-
duces the Navier-Newton stress tensor and the Fourier law
concerning the heat flux [2]. The second- and third-order
solutions produce the Burnett [3,4] and super-Burnett [5]; all
of them have been applied to study the shock-wave structure
[6]. Also, Grad’s method [7,8] with different numbers of
momenta [9,10] and their modifications have been studied,
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for example, in Refs. [11,12]. The Mott-Smith formulation
[13–15] is based on a bimodal distribution function where
the subsonic properties are different from the supersonic
ones. Also longitudinal and transversal temperatures have
been taken in consideration according to a kinetic treatment
[16–19]. All of them offered an alternative to understand some
peculiarities in the problem; however, the predicted results
do not agree completely with direct simulation Monte Carlo
(DSMC) calculations [15] or some of the experimental data
available [20–22].

On the other hand, the phenomenological approaches start
with the steady fluxes of mass, momentum, and energy
equations along the shock wave. They contain the equations
of state and caloric and constitutive equations, where all
of them must be given according to the fluid properties.
Such constitutive equations can be the usual Navier-Newton
and Fourier laws [21,23,24], the Cattaneo [25–27], and the
Burnett [28,29]. Some modifications of them come from a
different definition in the hydrodynamic velocity [30–33], the
extended irreversible thermodynamics treatment [34–36], or
generalized hydrodynamic studies [37–39]; even the moments
methods allow the calculation of constitutive equations to
obtain the closure needed to find the shock-wave profiles
[9]. From the phenomenological point of view, the idea
about longitudinal and transversal temperatures came to the
fore through the Holian’s conjecture [40]. In such a paper
the molecular dynamics (MD) calculations indicated that for
a strong shock, the Navier-Stokes-Fourier set of equations
(NSF) give a better fit for density profiles obtained with
MD calculations if the longitudinal temperature instead of
the average one is taken to calculate the viscosity in the
fluid. Then, a modification of NSF equations with the hard-
sphere temperature dependence in the viscosity was con-
sidered taking Holian’s conjecture [41]. A modification of
the heat flux constitutive equation together with longitudinal
temperature was assumed for strong shocks [42], obtaining
some improvements. Some other papers have taken similar
ideas with different constitutive constitutive equations, such
as Cattaneo’s relaxation and Burnett nonlinear contributions
[25,43] among others.
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In this paper we will be concerned deeply with the phe-
nomenological approach for a dilute monatomic gas where
the local equilibrium hypothesis is taken to write the pressure
in terms of the density and temperature, and the energy is
given by the local equipartition law consistently with ideal
gas behavior. In contrast, the constitutive equations for the
dissipative contributions such as the heat flux and the viscous
tensor will be constructed following the lines of the principles
of linear irreversible thermodynamics (LIT) and the flow
anisotropy produced by shock-wave propagation. The moti-
vation to undertake such a task comes from the enhancement
in the viscosity coefficient observed in the NSF model which
was complemented with a temperature dependence typical of
the soft-sphere interaction between particles reported recently
[1]. In such a paper we found that the NSF equations are
capable of reproducing the normalized density profiles for
several values of the Mach number by means of an index
in the viscosity producing its enhancement. However, the
performance of the results when compared with DSMC cal-
culations and experimental data available was not so good for
some other characteristics, like the orbit and the normalized
temperature profile.

The main goal of this work will be the treatment of a
set of equations obtained from the methods in LIT, with
transport coefficients representing the crossed effects between
fluxes and thermodynamic forces. It means that we will start
with the balance equations for local variables, and then their
closure will be written with linear relations and we will take
into account all possible couplings, even the ones which are
not usually taken for a simple fluid. The unusual transport
coefficients will be proposed according to a dimensional
analysis, the Onsager reciprocity principle, and the positive-
ness condition imposed on the entropy production. In Sec.
II, the balance equations and the closure with constitutive
relations are discussed. Section III is devoted to the Onsager
symmetry between transport coefficients and in Sec. IV we
calculate the entropy production in several particular cases.
In Sec. V the set of equations to be solved is shown and
some earlier results are synthesized. Section VI is devoted
to the selection of parameter values according to the DSMC
calculations and in Sec. VII all the LIT model results are given
with the comparisons with experimental data and DSMC
calculations. Last, in Sec. VIII we give some concluding
remarks.

II. THE LINEAR IRREVERSIBLE
THERMODYNAMIC APPROACH

In this section we will set the model to study the shock-
wave structure, taking as a starting point the LIT approach
[44]. This task will be done for a traveling wave which propa-
gates with constant speed along one direction. In this case the
variables describing the flow do not depend on the position
coordinate ξ and time t separately; instead, they depend on
the scaling variable x = ξ − ct , the quantity c is the constant
traveling speed, and then the flow is self-similar in such a
variable. It means that we can describe the flow in a reference
frame which travels with constant speed along the propagation
direction. From this point of view all variables in the flow
seem to be frozen and in this reference frame the motion is

steady and occurs between two equilibrium states [45,46]. In
between, we can observe the shock-wave structure where all
local variables depend on the scaling variable x, and then the
speed u(x), or density, as well as the temperature T (x) change
according to a steady one-directional motion. To start with the
treatment, let us consider the balance equations for a simple
fluid in a steady compressible flow regime characterized by
the Mach number M, which is defined as the velocity of the
shock wave at the part with lower temperature (the cold part
of the shock) divided by the sound speed at this temperature.
The mass balance across the shock wave implies that the mass
flux is a fixed constant,

ρ(x)u(x) = C1, (1)

where ρ(x) is the local mass density. In a similar way, the
momentum balance drives us to write the momentum flux as
a constant,

Pxx(x) + ρ(x)u(x)2 = C2, Pxx(x) = p(x) + σxx(x), (2)

where Pxx(x) represents the pressure tensor which contains the
local hydrostatic pressure p(x) and σxx(x) gives a measure
of the corresponding viscous tensor. Also, the total energy
balance plays a role by means of the energy flux which also
remains constant, namely

ρ(x)u(x)

[
e(x) + Pxx(x)

ρ(x)
+ u(x)2

2

]
+ q(x) = C3. (3)

where e(x), q(x) are the specific internal energy and the heat
flux, respectively.

In this case, the local equilibrium hypothesis will be taken
for granted and this means that the hydrostatic pressure and
the specific energy are written as functions of the independent
variables which can be the density ρ(x) and temperature
T (x); then p(x) = p(ρ(x), T (x)), and e(x) = e(ρ(x), T (x))
are taken from the local equation of state and the correspond-
ing caloric equation. In this work we will consider a dilute
monatomic ideal gas where the equation of state corresponds
to the law of ideal gases and the internal energy is given in
terms of energy equipartition for the three degrees of freedom
in the gas, then

p(x) = ρ(x)
kBT (x)

m
, e(x) = 3

2

kBT (x)

m
, (4)

where kB is the Boltzmann constant and m the mass of
particles.

The equilibrium points are obtained from Eqs. (1)–(3)
when there are no dissipative fluxes in the system. It means
that σxx(x) = 0, q(x) = 0 and all local quantities become
constant. If we take the coordinates at up-flow (the cold part
of the shock) to construct dimensionless variables as

v(x) = u(x)

u0
, τ (x) = kBT (x)

mu2
0

, (5)

where u0 is the shock wave speed at up-flow where the ve-
locity is supersonic, the Rankine-Hugoniot jump conditions,
Eqs.(1)–(3), can be easily solved giving the two equilibrium
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points coordinates:

P0 =
(

1,
3

5M2

)
= (1, τ0),

P1 =
[

3 + M2

4M2
,

3(−3 + 14M2 + 5M4)

80M4

]

=
(

1 + 5τ0

4
,

3

16
+ 7

8
τ0 − 5

16
τ 2

0

)
, (6)

which correspond to the up-flow and down-flow equilibrium
points, respectively. Notice that the Mach number M is de-
fined as the ratio between the shock speed (u0) and the adia-
batic speed of sound c0 = (

√
5 kB T0/3 m), both calculated at

up-flow.
To lead with this problem we will take the LIT approach

to nonequilibrium problems in dilute gases [44,47], which
has allowed us an approximate view of the gas behavior
undergoing dissipative processes near equilibrium. This point
of view gives a systematic way to consider a great variety
of applications where linear constitutive equations are valid.
We should note that the expression “near equilibrium” is a
qualitatively assertion which has been extended to problems
where the local equilibrium is far from been guaranteed.
In particular, the shock-wave problem in dilute gases has
been a challenge for a long time, mainly due to its intrinsic
nature. Let us recall that the LIT scheme corresponds to a
continuum description of phenomena and, in contrast, the
shock wave represents almost a discontinuity in the flow (or
at least very big changes of the relevant variables occurring
in a narrow region). In this context, the usual NSF set of
equations has been taken as a starting point to study the
shock-wave structure. In a recent paper [1] we have taken the
shear viscosity in a simple fluid as a power of the temperature
with an index which enhances its effect. Moreover, such an
index depends on the Mach number and it was adjusted with
the normalized density profiles. No matter the success of
this approach, we asked ourselves several questions about
the physical mechanisms underlying the enhancement. In this
section we will set a possible mechanism to achieve such
an enhancement, starting with the phenomenological relation
between the fluxes and the gradients. According to LIT, the
dissipative fluxes follow linear relations with the position
derivatives of the local variables (u(x), T (x), ρ(x)) through
the transport coefficients which can be measured. It should
be noted that we have taken the density as an independent
variable, to be consistent with the physical view of a simple
fluid in which there are usually two thermodynamic variables
and the speed. This fact allows us to construct the fluxes
(σxx(x), q(x)) in terms of the gradients of the local variables
chosen, then

σxx = Pxx − p = b∗
1

du

dx
+ b∗

2
dT

dx
+ b∗

3
dρ

dx
, (7)

q = b∗
4

du

dx
+ b∗

5
dT

dx
+ b∗

6
dρ

dx
, (8)

where the coefficients (b∗
1, b∗

2, . . . , b∗
6) measure the intensity

of the couplings between the gradients. It should be noted
that the shock-wave mass conservation equation (1) tells us
that the density and the speed are not independent; as a

consequence, the density gradients in Eqs. (7) can be written
in proportion to the speed derivative and it is not necessary
to keep both. Actually, the term containing b∗

3 gives rise to a
gradient in the velocity that “renormalizes” the coefficient b∗

1,
and a simliar argument can be given for the term containing
b�

6, so that the enhancement of the viscosity used in a previous
work can heuristically be understood in these terms. However,
an atomistic approach is needed to support the enhancement
and, as we will see, there are other mechanisms that can
explain the experimental normalized density profiles without
invoking the renormalization of the viscosity.

To follow the LIT structure we will take the Gibbs equation
relating the changes in the specific entropy s(x) with the heat
transfer and the work done on the system. In fact, it assumes
that the Gibbs T ds equation is the same in terms of the local
variables as it is in thermodynamic equilibrium. In our case
we have

∂ρs

∂t
+ ∂

∂x

(
ρsu + 1

T
qx

)
= qx

∂T

∂x
− 1

T
σxx

∂u

∂x
, (9)

where the right-hand side is identified with the specific en-
tropy production

�s(x) = qx(x)
∂

∂x

[
1

T (x)

]
− 1

T (x)
σxx(x)

∂u(x)

∂x
. (10)

Hence, we will define the usual fluxes and thermodynamic
forces as follows:

Jσ,q = [σxx, qx], Xσ,q =
[
− 1

T

du

dx
,

d

dx

(
1

T

)]
, (11)

and the linear relation between fluxes and thermodynamic
forces is then written in the following way:

σxx(x) = Lσσ Xσ (x) + LσqXq(x), (12)

q(x) = Lqσ Xσ (x) + LqqXq(x), (13)

where the transport coefficients Li j , which in fact are related
with the b∗s written in Eq. (7), can be some functions of the
position coordinates through the variables in the system.

A direct dimensional analysis in terms of (η, T ) allows us
to write

Lσσ = −a1ηT, Lσq = −a2ηT

√
kBT

m
, (14)

Lqσ = −a3ηT

√
kBT

m
, Lqq = −a4η

kBT 2

m
, (15)

where η is the viscosity and the quantities (a1, a2, a3, a4) are
dimensionless functions of all combinations of dimensionless
variables and parameters in the problem. Their values will be
chosen and discussed below.

III. THE ONSAGER SYMMETRY

Up to this point the LIT scheme has been followed in a
direct way. However, we have considered the crossed effects
between the viscous tensor and the heat flux with both ther-
modynamic forces present in the system. In the usual LIT
scheme, the Curie principle is taken for granted with the
idea of full isotropy in fluxes and forces, as is usual near
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equilibrium processes in a monatomic gas. As we stated, we
think that the shock-wave problem is somewhat special due
to the fact that there are very large changes in the relevant
variables (speed, temperature, and density) and those changes
occur in a very narrow region. Moreover, such a steep change
occurs in the shock-wave propagation direction, provoking an
anisotropic situation along such a direction and its transversal
plane. This fact indicates that the usual isotropic hypothesis
basic for the Curie’s principle to be applied may be not
completely valid. In particular, the constitutive equations give
us the opportunity to prove other schemes based on such lack
of isotropy. In this sense we are assuming that the crossed
effects are present in the shock-wave structure.

In fact, there are some indications about this lack of
isotropy as noticed by Hoover, Holian, and some other authors
[41,48,49], where they introduced explicitly the longitudinal
temperature in a one-directional shock wave that is clearly
defined, and it is different from the transversal one, as will
be shown in Sec. VII. Also, it is important to recall that the
thermal transpiration effect is present in a rarefied gas when
there are large changes in the temperature and a wall is present
and then a motion appears. In our model, the motion produced
by a temperature gradient is measured with the Lσq coefficient.
On the other hand, the coefficient Lqσ becomes its conjugate,
producing a heat flow as a consequence of the speed gradient.

The problem we face now is the selection of values for
these coefficients going beyond the dimensional analysis, as
we have stated above. At first glance, we will ask them
to satisfy the Onsager symmetry relation, though it is not
necessary, as argued by Coleman-Truesdell [50].

Even then, we will assume the Onsager symmetry is valid
and write the relation between crossed coefficients following
the rules given in the literature [44]. To do such a task we
note that the concerned variables, temperature and speed, have
different properties when time inversion is done [47]. This
means that the Onsager symmetry must take into account this
fact, and then

Li j = εiε jL ji, (16)

where εi, ε j become (± 1) according to the parity properties.
This means that

Lσq = −Lqσ . (17)

Going back to Eqs. (14) this condition means that the dimen-
sionless quantities (a2, a3) must satisfy the condition a3 =
−a2. Finally, the proposed constitutive equations are written
as

σxx = a1η
du

dx
+ a2

η

T

√
kBT

m

dT

dx
, (18)

qx = −a2η

√
kBT

m

du

dx
+ a4η

kB

m

dT

dx
. (19)

The selection for the set of quantites (a′s) will generate
different models which follow the LIT scheme, and then the
comparison of numerical results coming from the LIT model
with the experimental data will play a crucial role.

Last, the shear viscosity is given as follows:

η = η0

( τ

τ0

)σ

. (20)

IV. THE ENTROPY PRODUCTION

The usual framework in LIT tells us that the entropy
production (�s) is given as a product of the fluxes and
their corresponding thermodynamic forces; in our case the
identification is given in Eq. (11), so

�s(x) =
∑

i

JiXi, (21)

where the sum is done over all pair flux-force in the process.
Now the entropy production is immediately constructed,

�s(x) = Lσσ X 2
σ + LqqX 2

q + (Lσq + Lqσ )Xσ Xq, (22)

which is a bilinear form in the thermodynamic forces.
Then, with the direct substitution of Eqs. (18) in the

entropy production, we obtain that

�s = −a1ηT X 2
σ − a4η

kBT 2

m
X 2

q + (a2 + a3)ηT

√
kBT

m
Xσ Xq,

(23)

where we must ask that the quadratic form be positive definite,
a condition which impose a limitation to the coefficients
values, namely

a1 � 0, (24)

a4 � 0, (25)

a1a4 − (a2 + a3)2

4

mu(x)2

kBT (x)
� 0. (26)

It should be recalled that, in the general case, the a coefficients
are undetermined functions of the Mach number M and the
dimensionless variables we are dealing with. Now it is inter-
esting to consider some particular cases and begin the model
analysis.

A. The Navier-Stokes-Fourier regime

The usual NSF equations can be obtained with the selection
for the a coefficients: (a1 = −4/3, a4 = −15/4, a2 = a3 =
0), then the entropy production is written as

�NS = 4η

3

[
du(x)

dx

]2

+ 15ηkB

4m

[
dT (x)

dx

]2

, (27)

where it is clear that �NS � 0, as asked in LIT, when the
viscosity is positive, see Eq. (20). Here the ratio between the
coefficients drives us to the the usual relation for the viscosity
and the thermal conductivity in a dilute monatomic gas, no
matter the temperature or the Mach number dependence in
the viscosity, as was considered recently [1].
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B. The LIT model

The generalization proposed in this paper corresponds to
the coupling between the viscous tensor and the heat flux
through the coefficients a2, a3. In such a case the coupling
between fluxes and forces is responsible for a new term in
the entropy production, as shown in Eq. (23). However, when
the Onsager relations are taken into account (see Sec. III), the
entropy production simplifies,

�s = −a1ηX 2
σ − a4η

kBT 2

m
X 2

q , (28)

an expression with the same structure as in the NSF case.
However, it is really important to keep in mind that the
variables v, τ satisfy a different set of equations as will be
set explicitly in the next section. Then the functions (v, τ ) are
not the same as in the NSF model.

V. THE SHOCK-WAVE STRUCTURE IN THE LIT MODEL

To go further, let us write the set of equations based on the
thermodynamic approach; the proposed constitutive relations
are written as follows:

σxx = η u0

λ

(
a1

dv

ds
+ a2τ

1/2 dτ

ds

)
, (29)

qx = η u2
0

λ

(
a3τ

1/2 dv

ds
+ a4

dτ

ds

)
, (30)

where s is the reduced distance,

s = x

λ
. (31)

Several elections for λ are used in the literature. In the
experiments the value used for λ is Alsmeyer’s mean free path
(λA) defined as,

λA ≡ 16

5

√
5

6π

η0

ρ0a0
, (32)

where a0 = √
5kBT0/3m is the argon speed of sound at up-

flow. In this work we use this Alsmeyer’s mean free path and

λ2 ≡ 4

3

η0

ρ0 u0
(33)

to reduce the distance as in a previous work [1]. The results
of solving the differential equations that appear below—see
Eqs. (36)—using for λ the values λA and λ2 were done inde-
pendently and the numerical outputs of both were compared
as a test for accuracy. In this work we report our results in
terms of Alsmeyer’s reduced distance sA defined by

sA = x

λA
, (34)

where x is the distance along the shock, the origin is taken as
the point at which the normalized density profile has the value
1/2 and λA is Alsmeyer’s mean free path given by Eq. (32).

Moreover, we have assumed a soft-sphere temperature
dependence in the shear viscosity, hence

η = η0

[
τ (s)

τ0

]σ

, (35)

and the σ index will be taken with a fixed value for each
Mach number; however, it will not be the only quantity to be
adjusted in the model, as we reported in Ref. [1].

The direct substitution of Eqs. (29) and (30) in the con-
servation equations (1), (2), and (3) expressed in terms of the
dimensionless variables drives us to

a1
dv

ds
+ a2τ (s)1/2 dτ

ds
= ρ0u0λ

η

(
1 + τ0 − τ

v
− v

)
, (36a)

(a1v + a3τ
1/2)

dv

ds
+ (a4 + a2vτ 1/2)

dτ

ds

= ρ0u0λ

2η
(5τ0 + 1 − 5τ − v2). (36b)

Notice that in

ρ0u0λA

η0
= 16

5

√
5

6π
M and

ρ0u0λ2

η0
= 4

3
, (37)

all quantities with subscript “0” are calculated at up-flow. In
this work we will choose the simplest selection for the values
in the as; in particular σ (M ), a1 = −4/3, a4 = −15/4 in
the NSF case and a2(M ) = −a3(M ) to satisfy the Onsager
relation. Then, we have at most two adjustable parameters for
each Mach number, namely (σ, a2). From Eqs. (36) we can
solve for the derivatives with the result that

dv

ds
= ρ0 u0 λ

2 η

[3 τ − v2 + 2 v(τ0 + 1) − (1 + 5 τ0)](v
√

τ a2) + 2 [− v2 + v(τ0 + 1) − τ ] a4

(a1 a4 − τ a2 a3)v
, (38a)

dτ

ds
= ρ0 u0 λ

2 η

[3 τ − v2 + 2 v(τ0 + 1) − (1 + 5 τ0)](−v a1) + 2 [− v2 + v(τ0 + 1) − τ ](−√
τ a3)

(a1 a4 − τ a2 a3)v
. (38b)

It should be pointed out that in going from the implicit set of
equations of the derivatives to the explicit ones, singularities
can appear since  ≡ a1 a4 − τ a2 a3 can be zero. If a1 and a4

are negative, then the reciprocity condition a3 = −a2 implies
that  is always positive because τ is always non-negative
and, consequently, there are no singularities for the deriva-
tives. For a study of the implications of the existence of
singularities for the Maxwell-Cattaneo model, see Ref. [27].

The NSF hydrodynamic model is obtained by using a1 =
−4/3, a2 = −a3 = 0, and a4 = −15/4 in Eqs. (38).

Now let us set the different alternatives. The first step was
done through the study of the NSF model as reported recently
[1]. In this case we have found the following:

(1) The orbit in the plane (v, τ ) determined by the model
equations does not depend on the viscosity index proposed.
Its agreement with DSMC calculations is good for M = 1.2,
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but it is far from reasonable for M = 8.0, even in a qualitative
comparison, as shown in Ref. [1] (see Fig. 3).

(2) The normalized density profile can be adjusted with
a viscosity index σ (M ), giving a remarkable result when the
model is compared with DSMC calculations or experimental
data [20]. However, it is important to notice that such an
index has a value larger than the one reported by some
authors to reproduce the measurements of the viscosity [32].
But, as we will see, for DSMC the values of σ that better
fit the experimental normalized density profiles are higher
than those recommended in the literature [51,52]; in other
words, an enhancement of the viscosity is needed to fit the
experimental density profiles for the NSF model [1] and
DSMC.

(3) The normalized temperature profile does not show
good results when compared with DSMC.

(4) The reciprocal shock thickness as well as the asymme-
try factor agree qualitatively with reported results.

It is important to recall that the main conclusion in the NSF
model is the need of an enhancement in the viscosity, as
represented by the index σ (M ), to give a good agreement
with the normalized density profiles. In such a context we ask
ourselves if there are some other alternatives to reproduce the
normalized dentiy profiles; in fact, this was our motivation
to undertake this work. The LIT model we have constructed
offers us the opportunity to achieve such a task. Now we will
study some consequences of the new hypotheses.

First, we must be aware of the fact that the orbit equation
in the LIT model does not depend on the viscosity or λ as
it is shown by calculating dτ/dv from Eqs. (38). It means
that the NSF as well as the LIT model are independent of the
interaction potential between particles.

To go further in the orbit calculation, we must give the
possible values for a2(M ) and, to calculate the density and
temperature profiles, both parameters [a2(M ), σ (M )] must
be chosen. This means that we need a criterion to choose

FIG. 1. Normalized density and temperature profiles for argon at M = 1.55. (a) Normalized density profiles vs Almeyer’s reduced distance,
ρn vs sA . Solid circles: Experiments by Alsmeyer [20]; open circles: Bird’s DSMC for σ = 1.2 and α−1 = 0.6525; solid line: DSMC by
Sharipov and Dias [55] at M = 1.5. (b) Normalized density profiles vs Almeyer’s reduced distance, ρn vs sA . Solid circles: Experiments by
Alsmeyer [20]; open circles: Bird’s DSMC for σ = 1.2 and α−1 = 0.6525; asterisks: Bird’s DSMC for σ = 1.2 and α = 1; diamonds: Bird’s
DSMC for σ = 1.0 and α−1 = 0.6525; boxes: Bird’s DSMC for σ = 1.0 and α−1 = 0.6525; solid line: DSMC by Sharipov and Dias [55]
at M = 1.5. (c) Normalized density profiles vs Almeyer’s reduced distance, ρn vs sA . Legend as in (b). (d) Normalized temperature profiles
vs Almeyer’s reduced distance, τn vs sA . Boxes: Bird’s DSMC for σ = 1.0 and α−1 = 0.6525; solid line: DSMC by Sharipov and Dias [55]
at M = 1.5. (e) Normalized temperature profiles vs Almeyer’s reduced distance, τn vs sA . Open circles: Bird’s DSMC for σ = 1.2; asterisks:
Bird’s DSMC for σ = 1.2 and α = 1; diamonds: Bird’s DSMC for for σ = 1.0 and α−1 = 0.6525; boxes: Bird’s DSMC for σ = 1.0 and
α−1 = 0.6525; solid line: DSMC by Sharipov and Dias [55] at M = 1.5. (f) Normalized temperature profiles vs Almeyer’s reduced distance,
τn vs sA . Legend as in (e).
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them even in the simplest case when we consider that they
only depend on the Mach number M. Such a criterion will be
done by the best fit with the experimental normalized density
profiles and the orbits given by the DSMC method as we
discuss below.

We summarize the models that will be considered in this
work as follows:

(i) The NSF model, studied previously [1], consists of
using the NSF constitutive equations to solve the shock-wave
problem. The viscosity-temperature index σ is adjusted to
reproduce the normalized density profiles for each Mach
number. This is a one-parameter model.

(ii) The one-parameter LIT model, LIT1, consists of tak-
ing a1 = −4/3, a2 = −a3, and a4 = −15/4. The viscosity-
temperature index σ is chosen to reproduce the experimental
values for the viscosity and a2 is adjusted to reproduce the
experimental values of the normalized density profiles for
each Mach number. Hence, there is no enhancement of the

viscosity and the experimental normalized density profiles are
fit by adjusting a2.

(iii) A two-parameter LIT model, LIT2, is obtained by
taking a1 = −4/3, a2 = −a3, and a4 = −15/4. The index
σ as well as a2 are adjusted to reproduce the experimental
normalized density profiles and the orbits predicted by DSMC
for each Mach number.

VI. THE DIRECT SIMULATION MONTE CARLO METHOD

Experimental information on shock waves is scarce but,
fortunately, with the advent of the computer, more data can be
obtained through simulations. The Monte Carlo method [53],
MD [48], and the DSMC method [51,52] are some examples.
For dilute gases the well-established Boltzmann equation
provides a sound atomistic theory from which several results
can be obtained, sometimes with a lot of effort, when model
or realistic interaction potentials are given [2].

FIG. 2. Normalized density and temperature profiles for argon at M = 9. (a) Normalized density profiles vs Almeyer’s reduced distance,
ρn vs sA . Solid circles: Experiments by Alsmeyer [20]; open circles: Bird’s DSMC for σ = 0.72 and α−1 = 0.6015; solid line: DSMC by
Sharipov and Dias [55] for M = 10. (b) Normalized density profiles vs Almeyer’s reduced distance, ρn vs sA . Solid circles: Experiments by
Alsmeyer [20]; open circles: Bird’s DSMC for σ = 0.72 and α−1 = 0.6015; asterisks: Bird’s DSMC for σ = 0.72 and α = 1; diamonds: Bird’s
DSMC for σ = 0.68 and α−1 = 0.6525; boxes: Bird’s DSMC for σ = 0.81 and α−1 = 0.6525; solid line: DSMC by Sharipov and Dias [55]
for M = 10. (c) Normalized density profiles vs Almeyer’s reduced distance, ρn vs sA . Legend as in (b). (d) Normalized temperature profiles vs
Almeyer’s reduced distance, τn vs sA . Open circles: Bird’s DSMC for σ = 0.72 and α−1 = 0.6015; solid line: DSMC by Sharipov and Dias
[55] for M = 10. (e) Normalized temperature profiles vs Almeyer’s reduced distance, τn vs sA . Open circles: Bird’s DSMC for σ = 0.72 and
α−1 = 0.6015; asterisks: Bird’s DSMC for σ = 0.72 and α−1 = 1.0; diamonds: Bird’s DSMC for σ = 0.68 and α−1 = 0.6525; boxes: Bird’s
DSMC for σ = 0.81 and α−1 = 0.6525; solid line: DSMC by Sharipov and Dias [55] for M = 10. (f) Normalized temperature profiles vs
Almeyer’s reduced distance, τn vs sA . Legend as in (e).
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In 1992 Wagner [54] was able to show that Bird’s imple-
mentation of the DSMC method can actually be regarded as
a probabilistic solution to the Boltzmann equation. Nowdays,
this method is the one that is usually used by researches for
dilute gases, although MD, the method of choice for dense
gases, liquids, or solids, has also been used and comparisons
with DSMC are available [49].

A point that must be addressed is the following: What is
interatomic interaction potential? Usually the methods that
are more appealing are those based on first principles, called
ab initio, although model potentials will be used in this work.
Therefore, we first compare results coming from ab initio
interatomic potentials and model potentials and determine the
model potentials that better fit the experimental data.

The model potentials that we will consider are those men-
tioned by Bird [51,52], the variable hard-sphere (VHS) and
the variable soft-sphere (VSS) models. The first one (VHS)
was introduced by Bird in 1981 [51] in order to obtain a finite
total cross section using a diameter d that is a function of the
relative velocity, cr , in a binary collision,

d ∝ c−ϑ
r , (39)

where ϑ = σ − 1/2 and σ is such that the model gives a
viscosity proportional to T σ , where T is the temperature. We
will refer to σ as the temperature–viscosity index. For this
model the deflection angle is given by

χ = 2 cos−1(b/d ), (40)

where b is the impact parameter. Bird pointed out [52] that
the VHS model does not provide a correct Schmidt number—
it is defined as the shear viscosity divided by the product
of the density and the self-diffusion coefficient— for flows
dominated by diffusion so that in order to fix this point it
is better to introduce the VSS model in which, instead of
Eq. (40), one has

χ = 2 cos−1[(b/d )1/α], (41)

where α is chosen to match the Schmidt number. Most of
our DSMC computations use the VSS model. For argon Bird
recommends the values σ = 0.81 and α = 1.4 [51]; we will
consider σ as an adjustable parameter and take, in most cases,
α = 1.53, where the value of α does not affect the shock-wave
profiles in a sensible way.

Recently, Sharipov and Dias [55] used ab initio data to
calculate planar shock-wave profiles for helium, neon, and
argon using the DSMC method. They commented that the
computations times are about the same as the model potentials
discussed above and that their computations are free from the
adjustable parameters of such model potentials, σ , for exam-
ple. As they pointed out, the ab initio information is usually
provided in tables and it is necessary to find an interpolating
formula for such data; for example, in the method of classical
trajectories the relevant cross sections needed to calculate the
transport coefficients, among other physical quantities, are
obtained using an interpolating formula to fit the ab initio in-
formation in order to obtain the interaction potential. Leaving
aside that there can be several interpolating forms, it should
be pointed out that their interpolating function for argon
has 14 interpolating coefficients that have to be determined.
Another important point is access, not to mention simplicity;
we do not know where their program can be obtained, but

Bird’s program for shock waves is accessible [51]. Previously,
Sharipov and Strapasson [56] considered the Lennard-Jones
potential and claimed that their scheme dispenses the model
potentials mentioned above. Bird’s comment on this was as
follows [52]: A model with a greater degree of physical realism
does not necessarily lead to a more accurate result. For a
detailed discussion on this point, see Sec. 3.1 in Ref. [52].
Further comments on the DSMC method are given in
Appendix.

We now proceed to make a comparison of the DSMC
method using model and ab initio potentials, but first we note
that Sharipov and Dias reduced the position with their “mean
free path” that is given by

λS ≡
√

2 kB T

m

η

p
, (42)

while Bird’s mean free path is

λB ≡ 4 α (5 − 2 σ ) (7 − 2 σ )

5 π2 (α + 1) (α + 2)

√
m

2 kB T

η

ρ
. (43)

Furthermore, the experimental data for the normalized density
are expressed in terms of the reduced distance by Alsmeyer’s
“mean free path” defined by Eq. (32),

λA ≡ 16

5

√
γ

2 π

η

ρ a
, (44)

where γ is the specific heat ratio and a is the velocity of sound.

TABLE I. Results for the asymmetry factor and the reciprocal
width for several Mach numbers. The quantities with an E su-
periscript come from the experimental data.

Model M σ a2 α−1 Qρ Q
E
ρ [20] λA/δ λA/δE [20]

NSF 1.55 1.6 0.0 NA 1.00 0.92 0.13 0.12
DSMC 1.55 1.2 NA 0.6525 0.96 0.92 0.15 0.12
LIT1 1.55 0.72 −1.75 NA 1.12 0.92 0.14 0.12
LIT2 1.55 1.5 −0.25 NA 1.03 0.92 0.13 0.12

NSF 2.05 1.3 0 NA 1.08 0.96 0.20 0.21
DSMC 2.00 0.81 NA 0.6525 0.99 0.96 0.20 0.21
LIT1 2.05 0.72 −2.5 NA 1.16 0.96 0.20 0.21

LIT2 2.05 0.9 −1 NA 1.19 0.96 0.22 0.21

NSF 3.38 1.05 0.0 NA 1.18 1.02 0.28 0.28
DSMC 3.38 0.75 NA 0.6525 1.10 1.02 0.28 0.28
LIT1 3.38 0.72 −2.5 NA 1.29 1.02 0.29 0.28
LIT2 3.38 0.9 −1.0 NA 1.28 1.02 0.29 0.28

NSF 6.5 1.05 0.0 NA 1.20 1.12 0.20 0.25
DSMC 6.5 0.72 NA 0.6015 1.13 1.12 0.26 0.25
LIT1 6.5 0.76 −2.5 NA 1.35 1.12 0.26 0.25
LIT2 6.5 0.82 −1.5 NA 1.36 1.12 0.27 0.25

NSF 8.0 0.9 0.0 NA 1.28 1.13 0.26 0.24
DSMC 8.0 0.68 NA 0.6015 1.14 1.13 0.26 0.24
LIT1 8.0 0.76 −2.0 NA 1.38 1.13 0.27 0.24
LIT2 8.0 0.80 −1.5 NA 1.37 1.13 0.27 0.24

NSF 9.0 0.9 0.0 NA 1.26 1.14 0.24 0.23
DSMC 9.0 0.72 NA 0.6015 1.15 1.14 0.23 0.23
LIT1 9.0 0.76 −2.0 NA 1.38 1.14 0.26 0.23
LIT2 9.0 0.8 −1.5 NA 1.37 1.14 0.25 0.23
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From the previous equations it follows that for a
monatomic gas we have

λS = 5

8

√
π λA and λA = 4 (α + 1) (α + 2)

α (2 σ − 7) (2 σ − 5)
λB , (45)

and such relations are used to relate the different results from
experiments and the two DSMC computations. The mean free
paths are evaluated at the cold part of the shock.

The normalized density and temperature profiles, see
Eq. (46) for their definition, for argon are given in Fig. 1
for M = 1.55. The normalized density profiles are shown in
Fig. 1(a), and good agreement with the experimental values
by Alsmeyer [20] is apparent for both Bird’s DSMC for
σ = 1.2 and α−1 = 0.6525 and the DSMC ab initio com-
putations by Sharipov and Dias [55]. In Figs. 1(b) and 1(c),
a closer look at the comparison is shown and in addition
three other computations for Bird’s DSMC for different model
potentials are also given. We notice that Sharipov and Dias’s

computations are closer to the experimental values by
Alsmeyer for sA < 0 than Bird’s DSMC, for σ = 1.2 and
α−1 = 0.6525, but the opposite holds for sA > 0. Also, we
conclude that the VSS model potential that best represents
the values by Sharipov and Dias corresponds to σ = 1.0
(Maxwell model) and α−1 = 0.6525 and the VSS model that
gives better agreement with the experimental data corresponds
to σ = 1.2 and α−1 = 0.6525. Notice that the VHS model
(α = 1) for σ = 1.2 gives practically the same values as the
VSS model with the same value of σ . Finally, computations
with the value for the VHS potential recommended by Bird
[51] for argon (σ = 0.81) is also considered. Based on the
agreement with the experimental data we will use the VSS
model potential with σ = 1.2 and α−1 = 0.6525 to make
further comparisons such as the normalized temperature den-
sity profiles that are shown in Figs. 1(d)–1(f). Actually, such
way of proceeding, adjusting the value of σ for the DSMC
computations to fit the experimental data, was suggested in

FIG. 3. Reduced temperature vs reduced velocity; τ vs v for argon for different Mach numbers. (a) τ vs v for argon at M = 1.55. open
circles: Bird’s DSMC for σ = 1.2 and α−1 = 0.6525; diamonds: Bird’s DSMC for σ = 1.0 and α−1 = 0.6525; boxes: Bird’s DSMC for
σ = 1.0 and α−1 = 0.6525; solid line: NSF hydrodynamic model [1]. (b) τ vs v for argon at M = 9. open circles: Bird’s DSMC for σ = 0.72
and α−1 = 0.6015; diamonds: Bird’s DSMC for σ = 0.68 and α−1 = 0.6525; boxes: Bird’s DSMC for σ = 0.81 and α−1 = 0.6525; solid line:
NSF hydrodynamic model [1]. (c) τ vs v for argon at M = 1.55. open circles: Bird’s DSMC for σ = 1.2 and α−1 = 0.6525; diamonds: Bird’s
DSMC for σ = 1.0 and α−1 = 0.6525; Solid circle: Down-flow (hot part of the shock wave); solid line: NSF hydrodynamic model [1]. (d) τ vs
v for argon at M = 9. Open circles: Bird’s DSMC for σ = 0.72 and α−1 = 0.6015; diamonds: Bird’s DSMC for σ = 0.68 and α−1 = 0.6525;
boxes: Bird’s DSMC for σ = 0.81 and α−1 = 0.6525; solid line: NSF hydrodynamic model [1].
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FIG. 4. Normalized density profiles, ρn vs sA, for M = 1.55 in two different regions [(a) and (b)]. Solid circles: Experiments [20]; open
circles: DSMC for σ = 1.2 and α−1 = 0.6525; solid line: NSF; dashed line: LIT2; dotted line: LIT1, where the values for a2 and σ are given
in Table I.

a previous work by us [1] and here we fill this gap, and the
values of σ that give a better agreement with the experimental
information for the VSS model potentials at different Mach
numbers are given in Table I. With respect to the temperature
profiles shown in Figs. 1(d)–1(f), we note that the differ-
ences between the model potentials are more notorious than
those in the normalized density profiles; as we mentioned
above the model potential that better reproduces the ab initio
DSMC normalized density profiles computations corresponds
to the Maxwell model (σ = 1) and it also provides very good
agreement with the ab initio DSMC normalized temperature
profiles, as is shown in Figs. 3(b) and 3(c).

In order to see if our conclusions made for M = 1.55 hold
for larger Mach numbers we provide a similar comparison

for M = 9 in Fig 2. In this case the value of the viscosity-
temperature index that provides good agreement with the
experimental information on the normalized density profiles
by Alsmeyer is σ = 0.72 with α−1 = 0.6015, see Fig. 2(a).
The value of α is not very important and the VHS model
(α = 1) provides also very good agreement. While there are
differences between the VSS model and the ab initio DSMC
the results are practically equivalent, and this is illustrated in
Figs. 2(b) and 2(c). Notice that the ab initio DSMC com-
putations are for M = 10 while all others are for M = 9. In
Figs. 2(a)–2(c) we also provide other VSS model potentials
to see the effect of the viscosity-temperature index. As for
the case M = 1.55, there is a more noticeable difference
in the normalized temperature profiles than in those of the

FIG. 5. Normalized density profiles, ρn vs sA, for M = 3.38 in two different regions [(a) and (b)]. Solid circles: Experiments [20]; open
circles: DSMC for σ = 0.75 and α−1 = 0.6525; solid line: NSF; dashed line: LIT2; dotted line: LIT1, where a2, σ values are given in Table I.
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FIG. 6. Normalized density profiles, ρn vs sA, for M = 8 in two different regions [(a) and (b)]. Solid circles: Experiments [20]; open circles:
DSMC for σ = 0.68 and α−1 = 0.6015; solid line: NSF; dashed line: LIT2; dotted line: LIT1, where a2, σ values are given in Table I.

normalized density profiles for sA < 0, see Figs. 2(d)–2(f).
There is an overshoot in the normalized temperature which
is shown in Fig. 2(f) and it is apparently model independent
since all the different DSMC computations agree with each
other in this region; for further discussion on the overshoot
see Refs. [51,52].

It is interesting to analyze Bird’s DSMC results in the
plane v-τ , and they are shown in Fig. 3 for M = 1.55 and
M = 9. The important point to notice is that the DSMC data
for different VSS model potentials seem to lie on one line as
shown in Figs. 3(a) and 3(b). However, this behavior is only
apparent on the large since, as shown in Figs. 3(c) and 3(d),
there are deviations from it near down-flow (the hot part of the
shock wave), although for M = 9 the differences are minor.
In addition we have included the result of a hydrodynamic
model based on the NSF constitutive equations [1] and the
soft-sphere model in which the viscosity is proportional to a

power of the temperature; for this case it can be shown that
the curve in the v-τ plane is independent of the viscosity-
temperature index and in fact independent of the viscosity [1].
We conclude that the curves in the v-τ plane given by the NSF
hydrodynamic model are in agreement with those of DSMC
for M = 1.55 but not for M = 9. We will be interested to
test the phenomenological model proposed here in this plane.
Notice that in Figs. 3(b) and 3(d) the overshoot, mentioned
above, is clearly seen.

VII. THE LIT MODEL VS EXPERIMENTAL
AND DSMC CALCULATIONS

The experimental data as well as the DSMC calculations
allow us to have the criterion to choose the σ viscosity
index. This selection has provided a good agreement with
the normalizaed density and the NSF model as was shown

(a) (b) (c)

FIG. 7. Orbits, τ vs v, for different Mach numbers. (a) M = 1.55. Circles: DSMC for σ = 1.2 and α−1 = 0.6525; solid line: NSF; dashed
line: LIT2; dotted line: LIT1. (b) M = 3.38. Diamonds: DSMC for σ = 0.75 and α−1 = 0.6525; solid line: NSF; dashed line: LIT2; dotted
line: LIT1. (c) M = 8. Circles: DSMC for σ = 0.68 and α−1 = 0.6015; solid line: NSF; dashed line: LIT2; dotted line: LIT1, where a2, σ

values are given in Table I.

023114-11



R. M. VELASCO AND F. J. URIBE PHYSICAL REVIEW E 99, 023114 (2019)

(a) (b) (c)

FIG. 8. Normalized temperature profiles, τn vs sA, and different Mach numbers. (a) M = 1.55. Circles: DSMC for σ = 1.2 and α−1 =
0.6525; solid line: NSF; dashed line: LIT2; dotted line: LIT1. (b) M = 3.38. Diamonds: DSMC for σ = 0.75 and α−1 = 0.6525; solid line:
NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Circles: DSMC for σ = 0.68 and α−1 = 0.6015; solid line: NSF; dashed line: LIT2;
dotted line: LIT1, where a2, σ values are given in Table I.

recently [1]. However, the orbits were not reproduced com-
pletely; moreover, the NSF model is not able to reproduce the
qualitative normalized temperature profile. Now we have the
LIT model and we need the value for the a2(M ) parameter,
which is also obtained by taking into account the DSMC
calculations and the experimental data when available (LIT1).
The selection of the couple (σ (M ), a2(M )) parameters will
drive us to obtain better results than we did with the NSF
model (LIT2), a fact that will be shown in the figures below.

First, we consider the normalized density and temperature,

ρn = ρ(s) − ρ0

ρ1 − ρ0
, τn = τ (s) − τ0

τ1 − τ0
, (46)

where ρ(s) = 1/v(s). Their calculation will done with the
solution of Eqs. (36a) and (36b) with values for σ (M ) and
a2(M ), which will be chosen according to the comparison
with DSMC calculations and experimental data when avail-
able. Table I gives an example of the set of values we have

selected to develop the LIT model. This table presents the
values of the parameters needed as well as the calculation
of the asymmetry factor and the reciprocal width, properties
defined as

Qρ =
∫ 0
−s ρn(s′)ds′∫ s

0 [1 − ρn(s′)]ds′ and
λA

δ
=

∣∣∣∣dρn

ds

∣∣∣∣
max

, (47)

which measure different characteristics in the performance of
the normalized density profile for the shock wave. In fact,
we can say that the reciprocal thickness is local, since it
depends on the maximum value for the normalized density
derivative, whereas the asymmetry factor is a kind of global
measure. In Table I the row called NSF is the best result for the
viscosity index to fit the normalized density profile according
to the results in Ref. [1]. The DSMC gives the results with
Bird’s DSMC calculations; the first LIT row (LIT1) for each
Mach number gives the best fit of the a2(M ) parameter with
the σ (M ) index fixed with the experimental values for the

FIG. 9. Reduced longitudinal temperature profiles, τxx vs sA, for different Mach numbres. (a) M = 1.55. Circles: DSMC for σ = 1.2 and
α−1 = 0.6525; solid line: NSF; dashed line: LIT2; dotted line: LIT1. (b) M = 3.38. Diamonds: DSMC for σ = 0.75 and α−1 = 0.6525; solid
line: NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Circles: DSMC for σ = 0.68 and α−1 = 0.6015; solid line: NSF; dashed line:
LIT2; dotted line: LIT1, where a2, σ values are given in Table I.
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FIG. 10. Reduced viscous pressure tensor profiles, � vs sA, for different Mach numbers. (a) M = 1.55. Solid line: NSF; dashed line: LIT2;
dotted line: LIT1. (b) M = 3.38. Solid line: NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Solid line: NSF; dashed line: LIT2; dotted
line: LIT1, where a2, σ values are given in Table I.

shear viscosity as measured with other methods independent
of shock-wave structure; and, last, the second LIT row (LIT2)
reports the best fit for both parameters.

Figures 4–6 show the normalized density profile obtained
with the NSF model and two versions of the LIT model for
three values of the Mach number. The first version LIT1
takes the viscosity index σ that reproduces the shear viscosity
measurements and fits the a2 parameter to the experimental
normalized density profiles, and in the second version LIT2
we fit both the viscosity index σ as well as the a2 value.
Moreover, the results are contrasted with the Alsmeyer ex-
perimental data [20] and the DSMC calculations. It should be
noted that the first version, LIT1, and the NSF model results
are close enough.

The next step in our comparison is done with the orbits
in the v − τ plane, which are obtained by means of solving
Eqs. (36). We recall that the orbit does not depend on the
viscosity, but it does with the specific values chosen for the
a2(M ) parameter, giving a Mach number dependence stronger
than in the NSF model. The results are presented in Fig. 7

which deserves several comments to understand completely
the meaning of the comparison:

(1) First, we insist on the fact that the orbits equations in
both the NSF and LIT models do not depend on the viscosity.

(2) The scale in the vertical axis is different in Figs. 7(a),
7(b), and 7(c) due to the fact that the orbits are calculated
between the corresponding equilibrium points and their co-
ordinates are functions of the Mach number.

(3) The NSF model, which only contains the fit in the
viscosity index, is good enough only for small Mach numbers.

(4) The LIT model (LIT1) with the experimental value for
σ and the fit in the a2 value (dotted line) is qualitatively better
than NSF result.

(5) When the Mach number grows the performance of LIT
model with the fit in both parameters (LIT2) is better. The
comparison given by the broken line, with the DSMC results
represented with the open symbols is the best for all Mach
numbers we have tried.

The results for the normalized temperature profile are given
in Fig. 8 where the performance of LIT model is qualitatively

FIG. 11. Reduced heat flux profiles, q vs sA, for different Mach numbers. (a) M = 1.55. Solid line: NSF; dashed line: LIT2; dotted line:
LIT1. (b) M = 3.38. Solid line: NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Solid line: NSF; dashed line: LIT2; dotted line: LIT1,
where a2, σ values are given in Table I.
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FIG. 12. Reduced entropy production profiles, � vs sA. (a) M = 1.55. Solid line: NSF; dashed line: LIT2; dotted line: LIT1. (b) M = 3.38.
Solid line: NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Solid line: NSF; dashed line: LIT2; dotted line: LIT1, where a2, σ values
are given in Table I.

much better than it is for the NSF model. We must recall
that there are no experimental results for temperature profiles;
the only way to have a criterion comes from the DSMC
calculations. Taking this fact into account we see that the
overshoot present in DSMC calculations for Mach numbers
M = 3.38, 8.0 is reproduced in the LIT model but it is not
with the NSF model.

Some papers in the literature consider the longitudinal
temperature as a relevant variable in the studies of shock-wave
structure, and we wonder if it plays a role in our treatment
[41]. It is defined in terms of the component Pxx = ρkBTxx/m
in the complete pressure tensor, and when it is rewritten in
dimensionless variables we obtain

τxx(s) = v(s)[1 + τ0 − v(s)], (48)

where we notice that it does not depend explicitly on the
transport coefficients; it just depends on the speed. However, a
cautionary note must be made, since the speed as a function of
s is different for each set of dynamical equations in the model.

Figure 9 shows the corresponding calculation for our model
compared with the NSF model and DSMC data.

The viscous pressure tensor in LIT model contains the
crossed coefficients that we have introduced; then it is inter-
esting to have an insight about their contribution as compared
with the NSF calculation. Figure 10 shows the result for three
different Mach numbers, where the vertical axis gives the
values for the dimensionless viscous component σxx which is
defined as follows:

�(sA) ≡ λAσxx

η0u0
. (49)

Notice that the vertical scale is different for each Mach
number. The maximuum contribution occurs for sA � 0 and
grows with the Mach number.

In a similar way, Fig. 11 represents the heat flux, which also
carries the influence of the crossed terms in the LIT model and
it is written in the following dimensionless way:

q(sA) = qxλA

η0u2
0

. (50)

FIG. 13. Reduced entropy change profiles, �S vs sA, for different Mach numbers. (a) M = 1.55. Solid line: NSF; dashed line: LIT2; dotted
line: LIT1. (b) M = 3.38. Solid line: NSF; dashed line: LIT2; dotted line: LIT1. (c) M = 8. Solid line: NSF; dashed line: LIT2; dotted line:
LIT1, where a2, σ values are given in Table I.
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Now we turn to the entropy production given by Eq. (28),
which will written in terms of a dimensionless quantity,

� = mλ2
A�s

kBη0
= 1

τ (sA)

[
τ (sA)

τ0

]σ

×
[
−a1

(
dv

ds

)2

− a4

τ (sA)

(
dτ

ds

)2]
. (51)

Figure 12 shows its behavior for three different Mach num-
bers.

Last, the entropy change as a function of distance, and
between the equilibrium points can also be calculated ac-
cording to the local equilibrium hypothesis. In fact, such
a hypothesis has not been altered as a consequence of the
change in the constitutive equations; the equation of state
and the caloric equation are always valid in this treatment,
and then the entropy change taking the up-flow equilibrium
point as a reference is calculated in agreement with it and its
dimensionless expression is given as

m [S(sA) − S(sA = 0)]

kB
≡ �S(sA) = ln

{[
τ (sA)

τ0

]3/2
v(sA)

v0

}
,

(52)

recalling that v0 = 1 at up-flow. Notice that the entropy
change between the equilibrium points can be calculated as
a function of the Mach number without any reference of the
numerical solution obtained with models and it is given as

m �S

kB
= ln

[(
τ1

τ0

)3/2(
v1

v0

)]
, (53)

which must coincide with the difference at the asymptotic
values obtained with the numerical solution. Figure 13 shows

TABLE II. Dimensionless variables for M = 3.38, LIT2 model
with a2 = −1.0, σ = 0.90.

sA ρn τn τxx � q � �S

−10.0 0.000 0.000 0.053 0.000 0.000 0.000 0.000
−9.0 0.000 0.000 0.053 0.000 0.000 0.000 0.000
−8.0 0.000 0.000 0.053 0.000 0.000 0.000 0.000
−7.0 0.000 0.000 0.053 0.000 0.000 0.000 0.002
−6.0 0.000 0.002 0.053 0.002 −0.003 0.001 0.011
−5.0 0.002 0.015 0.057 0.011 −0.020 0.030 0.068
−4.0 0.012 0.076 0.076 0.056 −0.105 0.462 0.321
−3.0 0.046 0.254 0.130 0.193 −0.333 1.455 0.844
−2.0 0.121 0.519 0.206 0.424 −0.600 1.532 1.301
−1.0 0.263 0.768 0.265 0.646 −0.683 1.072 1.485
0.0 0.500 0.925 0.275 0.647 −0.486 0.530 1.408
1.0 0.778 0.984 0.253 0.352 −0.198 0.119 1.225
2.0 0.939 0.997 0.238 0.104 −0.051 0.010 1.118
3.0 0.987 0.999 0.234 0.023 −0.011 0.001 1.088
4.0 0.997 1.000 0.233 0.005 −0.002 0.000 1.081
5.0 1.000 1.000 0.233 0.001 0.000 0.000 1.079
6.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
7.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
8.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
9.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
10.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079

TABLE III. Dimensionless variables at M = 3.38 with the LIT1
model for a2 = −2.5, σ = 0.72.

sA ρn τn τxx � q � �S

−10.0 0.000 0.000 0.053 0.000 0.000 0.000 0.000
−9.0 0.000 0.000 0.053 0.000 0.000 0.000 0.000
−8.0 0.000 0.000 0.053 0.000 0.000 0.000 0.001
−7.0 0.000 0.001 0.053 0.001 −0.002 0.000 0.005
−6.0 0.001 0.006 0.054 0.003 −0.008 0.004 0.027
−5.0 0.004 0.029 0.060 0.012 −0.041 0.086 0.134
−4.0 0.016 0.122 0.083 0.049 −0.171 0.711 0.492
−3.0 0.051 0.343 0.137 0.137 −0.460 1.409 1.062
−2.0 0.125 0.636 0.209 0.300 −0.767 1.168 1.495
−1.0 0.266 0.877 0.265 0.481 −0.841 0.701 1.627
0.0 0.500 0.994 0.275 0.502 −0.590 0.339 1.491
1.0 0.774 1.011 0.254 0.284 −0.245 0.086 1.260
2.0 0.935 1.004 0.239 0.088 −0.066 0.008 1.129
3.0 0.985 1.001 0.234 0.020 −0.015 0.000 1.090
4.0 0.997 1.000 0.233 0.004 −0.003 0.000 1.081
5.0 1.000 1.000 0.233 0.001 −0.001 0.000 1.080
6.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
7.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
8.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
9.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079
10.0 1.000 1.000 0.233 0.000 0.000 0.000 1.079

the behavior of the entropy change for three different Mach
numbers.

In Tables II and III we give the results obtained with
M = 3.38 by means of two independent calculations for all
quantities in the figures. Also, in Tables IV and V, the results
are given for M = 8.0.

TABLE IV. Dimensionless variables for M = 8, LIT2 model
with a2 = −1.5, σ = 0.80.

sA ρn τn τxx � q � �S

−10.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−9.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−8.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−7.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−6.0 0.000 0.000 0.010 0.001 −0.002 0.007 0.013
−5.0 0.004 0.033 0.020 0.064 −0.120 9.108 0.750
−4.0 0.029 0.224 0.078 0.387 −0.778 12.388 2.464
−3.0 0.076 0.481 0.154 0.875 −1.543 6.964 0.340
−2.0 0.156 0.718 0.219 1.434 −1.922 4.054 3.724
−1.0 0.289 0.890 0.253 1.850 −1.897 2.415 3.796
0.0 0.500 0.978 0.247 1.749 −1.275 1.248 3.646
1.0 0.757 1.001 0.220 1.008 −0.547 0.348 3.416
2.0 0.924 1.001 0.203 0.335 −0.156 0.037 3.276
3.0 0.982 1.000 0.197 0.082 −0.036 0.002 3.231
4.0 0.996 1.000 0.196 0.018 −0.008 0.000 3.220
5.0 0.999 1.000 0.196 0.004 −0.002 0.000 3.218
6.0 1.000 1.000 0.196 0.001 0.000 0.000 3.217
7.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
8.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
9.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
10.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
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TABLE V. Dimensionless variables for M = 8, LIT1 model with
a2 = −2.0, σ = 0.76.

sA ρn τn τxx � q � �S

−10.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−9.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−8.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−7.0 0.000 0.000 0.009 0.000 0.000 0.000 0.000
−6.0 0.000 0.000 0.010 0.001 −0.002 0.006 0.013
−5.0 0.004 0.032 0.195 0.055 −0.116 8.595 0.726
−4.0 0.027 0.226 0.074 0.325 −0.792 12.429 2.483
−3.0 0.073 0.499 0.149 0.747 −1.624 6.748 0.397
−2.0 0.151 0.748 0.216 1.270 −2.130 3.728 3.791
−1.0 0.285 0.922 0.252 1.688 −2.036 2.136 3.853
0.0 0.500 1.001 0.247 1.616 −1.357 1.108 3.679
1.0 0.762 1.010 0.220 0.918 −0.567 0.310 3.425
2.0 0.929 1.004 0.203 0.292 −0.155 0.031 3.276
3.0 0.984 1.001 0.197 0.068 −0.035 0.002 3.230
4.0 0.997 1.000 0.196 0.015 −0.007 0.000 3.220
5.0 0.999 1.000 0.196 0.003 − 0.002 0.000 3.218
6.0 1.000 1.000 0.196 0.001 0.000 0.000 3.217
7.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
8.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217
9.0 1.001 1.000 0.196 0.000 0.000 0.000 3.217
10.0 1.000 1.000 0.196 0.000 0.000 0.000 3.217

VIII. CONCLUDING REMARKS

The main goal of this paper has been centered in the
construction of a model to reproduce the characteristic of the
shock-wave structure. Our guide has been the LIT approach,
which is a well-known scheme to work with nonequilibrium
problems. Recently [1] we have taken the NSF model with
a modification which contained an index relating the tem-
perature dependence of the shear viscosity. Such a modifi-
cation improved in a very good way the performance of the
usual Navier-Stokes equations to give an account of some
shock-wave properties. In fact, our proposal succeeded in
providing good agreement with the experimental normalized
density profiles by means of an enhancement of the viscosity.
However, we wonder whether it is possible to understand the
presence of a viscosity enhancement by means of some other
physical mechanism, which can be present in the shock-wave
problem due to the anisotrophy in the flow produced by the
shock-wave propagation. In order to develop such an idea,
this work has taken as a starting point the well-known LIT
theory. The new elements in this development include the
existence of the crossed terms in the xx component of the
viscous tensor and the x component of the heat flux. Moreover,
we analyzed the Onsager relations to couple both effects as
is usually done in LIT. As a consequence we have obtained
that the enhancement we observed in our NSF model can
be reproduced by the new model, which is called as LIT1
model, and the perfomance of it is about the same as NSF
with regard to the agreement with the normalized density
profile. However, we found it necessary to consider a two-
parameter model, LIT2, to explain, in addition to the normal-
ized density profiles, the orbit and the qualitative structure of
the normalized temperature profile. The detailed comparisons

show that the agreement is very good when the fit is done
with the viscosity index σ and the crossed coefficient a2;
both are functions of the Mach number. Also, it can be seen
that such an agreement is better for Mach numbers near 1,
although it is as good for M = 8. It is important to emphasize
that the LIT2 model is completely phenomenological and its
performance agrees in a very good way when compared with
experimental and DSMC data, even in a region where we do
not expect that a phenomenological model does. Moreover,
all other properties such as the viscous tensor and heat flux
contributions can be calculated in a straightforward way. The
entropy production is non-negative, in agreement with some
nonequilibrium versions of the second law of thermodynam-
ics, and shows a maximuum near the center of the profile
which can be understood in terms of the maximuun absolute
values taken by the fluxes near such a position. Last, the
change in the entropy between the equilibrium points also
shows a maximum between both steady states, and this point
has been discussed recently [57,58].

APPENDIX

Here we provide further details of Bird’s implementation of
the DSMC method. This method has been developed by G. A.
Bird [51,52] and A. L. Garcia [59,60], among many others.
It should be pointed out that there are different variants of it
and, therefore, it is important to specify the implementation
one is using. For a discussion of some variants, see chapter
10 in Ref. [51]. Here we use Bird’s 1994 implementation of
the shock-wave problem [51]; his DSMC calculations for the
shock-wave problem have a long history, see, for example,
Ref, [61]. We emphasize that we used his program to generate
the DSMC results reported in this work.

As mention by Bird [51,52], the DSMC method can be
regarded as a probabilistic physical simulation of flows in

FIG. 14. Normalized density profiles vs Bird’s reduced distance,
ρn vs sB , for different times. Crosses: DSMC calculation for one time
step (whose value is 0.75 ×10−6 s); circles: DSMC calculations for
100 time steps; boxes: DSMC calculations for 1000 time steps; solid
line: DSMC calculations for 10 000 time steps.
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gases. It considers molecules and their collisions, which are
treated in a probabilistic way, to mimic the actual processes
that happens in dilute gases and therefore one expects that the
results provided by the DSMC method should be related to
the Boltzmann equation. That the DSMC method provides
a stochastic solution to the Boltzmann equation, for Bird’s
implementation and under certain conditions, was shown by
Wagner in 1992 as mentioned previously [54]. However, as
pointed by Bird [52], there are some restrictions that hold
for the Boltzmann formulation but are not present in DSMC
and it can deal with effects that are beyond the Boltzmann
equation. It is not clear, for us, whether this comment refers
to monatomic gases in situations where ionization can be
neglected or to the phenomenological theory by Larsen-
Borhnakke, who included internal degrees of freedom [51].
If they apply to the Boltzmann equation, then one may infer
that Bird considers it as an approximation.

To illustrate the convergence properties of DSMC we con-
sidered the case of argon using the VHS model (α = 1), where

its mass is 6.6 × 10−26 kg, its diameter 4.092 × 10−10 m,
the temperature of up-flow is taken as 273 K, the number
density is 1020 atoms/m3, the viscosity index is equal to
σ = 0.81, and the Mach number is 2. The initial condition for
the normalized density profile corresponds to a discontinuous
profile at the origin that has the correct Rankine-Hugoniot
conditions, and in the case of the normalized density profiles
this corresponds to zero for sB ≡ x/λB < 0, where λB is Bird’s
mean free path given by Eq. (43) and one for sB > 0. In Fig. 14
the behavior of the density profiles calculated by the DSMC
method are given for different times. The crosses correspond
to the DSMC calculation for one time step, whose value
is 0.75 ×10−6 s, the circles for 100 time steps, the boxes
correspond to 1000 time steps, and the solid line for 10 000
time steps. In all the DSMC computations we have considered
times such that the profiles look smooth and do not change
noticeably when the time steps is increased, so that a steady
state seems to be reached. For more details on the DSMC
method the reader is referred to Refs. [51,52,59,60].
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