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We consider Rayleigh-Taylor and Richtmyer-Meshkov instabilities at the interface between two fluids, one or
both of which may be viscous. We derive exact analytic expressions for the amplitude η(t ) in the linear regime
when only one of the fluids is viscous. The more general case is solved numerically using Laplace transforms.
We compare the exact solutions of the initial-value problem with the approximate solutions of the eigenvalue
problem used in a simple expression for η(t ) in terms of two growth rates, γ+ and γ−. We then propose a hybrid
model as an improvement on the approximate model. The hybrid model is based on the same expression for
η(t ) in terms of γ± but uses exact eigenvalues for γ+, the larger growth rate, and a relationship between γ−
and γ+. We also discuss two concepts: isogrowth wave number pairs and asymptotic decay. The first relies on
viscosity in one or both fluids to identify perturbations of two different wavelengths having the same γ+. The
second concept, which is more general, can be found in viscous as well as inviscid fluids and requires only a
specific initial growth rate η̇critical

0 to force η(t ) → 0 as t → ∞. We present several examples illustrating these
two concepts and comparing exact, approximate, and hybrid treatments.

DOI: 10.1103/PhysRevE.99.023112

I. INTRODUCTION, MOTIVATION, AND BACKGROUND

Hydrodynamic instabilities are known to cause the growth,
often exponential, of small perturbations at an interface be-
tween two fluids, leading to transition from laminar to turbu-
lent flow. The Rayleigh-Taylor (RT) instability arises when a
low-density fluid supports a higher-density fluid in a gravita-
tional field [1], or accelerates it with or without the presence of
gravity [2]. The Richtmyer-Meshkov (RM) instability arises
when a shock wave passes through the interface, in either
direction [3,4]. Recent interest in RT and RM instabilities
stems from their effect on inertial-confinement fusion (ICF)
[5–7] and supernova explosions [8]. A six-volume review by
Zhou citing numerous recent experimental, theoretical, and
numerical investigations can be found in [9,10].

In this paper we consider RT and RM instabilities in two-
fluid systems when one or both of the fluids are viscous. We
present exact, approximate, and “hybrid” (combining exact
and approximate) expressions for the evolution of perturba-
tions at the interface between the two fluids. Viscosity almost
always slows down the growth and has important applications
in a number of fields: ferrofluids [11], tectonics [12], ICF [13],
exploding foils [14], aerobreakup [15], and astrophysics [16].

Linear analyses start with a small-amplitude, initial value
η0, sinusoidal perturbation η0cos(kx) of wavelength λ =
2π/k in the x direction, taking the acceleration or the shock to
be in the y direction. We shall consider only two-dimensional
(2D) planar geometry. For the perturbation amplitude η(t ) to
remain in the linear regime it must satisfy η(t )k � 1.

Since the Navier-Stokes (NS) equations are second order in
time their solutions, in the linear regime, must have the form

η(t ) = η0F (t ) + η̇0G(t ), (1)

where η̇0 ≡ η̇(t = 0) ≡ ( dη

dt )0. F and G satisfy initial condi-
tions F (0) = Ġ(0) = 1 and G(0) = Ḟ (0) = 0. We shall refer
to Eq. (1) as the initial-value (IV) solution.

In Eq. (1) we suppress the dependence of F and G on
the parameters of the problem: ρ1, ρ2, μ1, μ2, g and/or
�V, T (s), and k, where ρ = density, μ = viscosity, g =
acceleration, �V = interfacevelocity jump following a shock,
and T (s) is the surface tension at the interface. Of course
these parameters determine the stability or instability of the
configuration, taken to be two infinitely thick fluids (finite-
thickness effects will be considered elsewhere). Stability is
determined by a growth rate γ which depends strongly on
those parameters. Following Chandrasekhar [17], γ is de-
termined by assuming that η(t ) ∼ eγ t in the linearized NS
equations. This yields an eigenvalue problem with γ the
eigenvalue, and the resulting equation that determines γ is
often called the “dispersion relation” (DR). Assuming that
there are two solutions denoted, for example, by γ+ and γ−,
we proposed [18]

η(t ) = η0
γ+eγ−t − γ−eγ+t

γ+ − γ−
+ η̇0

eγ+t − eγ−t

γ+ − γ−
, (2)

from which F (t ) and G(t ) can be readily identified. All seven
or eight parameters defining the system appear only in γ± and
a real, large γ+ indicates a highly unstable system as η(t ) ∼
eγ+t . We shall refer to Eq. (2) as the eigenvalue (EV) solution.

The exact solution for η(t ) is given by the IV solution,
assuming that the linearized, time-dependent NS equations
have been solved exactly. The EV solution, Eq. (2), is only an
approximation, more of an ansatz. The two solutions may or
may not agree with each other, depending on the complexity
of the problem—they will agree if the fluids are inviscid, but
not if one or both of them are viscous.
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A somewhat subtle point, which had escaped us when
we proposed Eq. (2), is what to do when there is only one
eigenvalue, say γ+. We hope to provide an answer in this paper
by proposing a hybrid solution. This was not an issue in our
earlier work [18] because we had coupled Eq. (2) with another
approximation, that of using approximate γ±, making our
results doubly approximate justified only by their simplicity.

In anticipation of what is to follow in this paper we simply
state that the hybrid model uses Eq. (2) with γ+ calculated
from the exact DR and γ− = −gkA/γ+, where A is the usual
Atwood number defined as (ρ2 − ρ1)/(ρ2 + ρ1).

Interestingly, finding a hybrid solution lies on the following
general observation: The instability of a system, evidenced
by the existence of a large and positive γ+, means that
perturbations in general will grow with time. It does not mean
that every perturbation will grow—it depends on the initial
conditions. Assume that the ratio F (∞)/G(∞) exists and is
finite, and define

η̇critical
0 ≡ −η0 lim

t→∞ [F (t )/G(t )]. (3)

If η̇0 = η̇critical
0 then η(t ) = η0[F (t ) − ( F (∞)

G(∞) )G(t )] → 0 as
t → ∞. In this process, which we label “asymptotic decay,”
the η0 and η̇0 terms in Eq. (1) “cancel” each other out
asymptotically even though each term separately grows large.
If Eq. (2) applies then we need to zero out the coefficient of the
growing eγ+t term which is (η̇0 − η0γ−)/(γ+ − γ−). Hence

η̇critical
0 = γ−η0

(
approximate

)
. (4)

In this paper we will propose using the concept of a critical
η̇0 to define a γ− where one does not exist or is not allowed by
the DR.

In most early applications of the RT instability η̇0 was
set equal to zero, a natural choice. With the relatively recent
focus on RM instabilities [7,9,10,19] we know that each shock
is accompanied by a change in η̇, the growth rate of the
perturbation. The concept of a critical η̇0 and asymptotic
decay, occurring in RT instabilities, is similar but somewhat
different from that of freeze-out occurring in RM instabilities
[19] where a perturbation immediately stops growing (η̇ = 0)
after a second shock tuned to cancel the growth induced
by a first shock. In contrast, with asymptotic decay η̇critical

0
drives η → 0 in an unstable system which otherwise would
be growing exponentially with time. Examples will illustrate
this point in Sec. IV. Note that this argument is quite general
and does not require nor preclude viscosity.

We first review previous work starting with the classic
system of two inviscid fluids [1]. The DR reads

γ 2 − gkA = 0, (5)

from which γ± = ±γ with γ = γ classical = √
gkA. In this

paper we consider only unstable configurations A > 0 and
g � 0. Equation (5) was derived first by Lord Rayleigh [1]
for gravity. Substituting for γ± in Eq. (2) one obtains the
well-known result for the classical RT instability:

η(t ) = η0 cosh (γ t ) + η̇0

γ
sinh (γ t ), γ =

√
gkA. (6)

Taylor used the IV approach to derive [2]

η̈(t ) − gkAη(t ) = 0, (7)

whose solution, for a constant g, is the same as given above in
Eq. (6).

We now review the classical RM problem. Richtmyer
[3] first treated the shock as an instantaneous acceleration,
essentially replacing g by �V δ(t ) in Eq. (7) [δ(t ) is the Dirac
delta function]. Integrating Eq. (7) once leads to

η̇0 = �V kAη0. (8)

Assuming g = 0 after the shock one obtains

η(t ) = η0 + η̇0t = η0(1 + �V kAt ), (9)

another well-known result for a single-shock RM instability.
If g �= 0 after the shock one must combine RM and RT

instabilities [18] by solving Eq. (7) with an initial η̇0 given by
Eq. (8). If after the shock g = const. then one simply uses the
solution given by Eq. (6) in which η̇0 is given by Eq. (8). Note
that the condition for criticality, η̇critical

0 = γ−η0 = −γ η0 =
−η0

√
gkA = �V kAη0, will be satisfied if �V = −

√
g

kA . The

negative sign means the initial shock must proceed from the
heavy to the light fluid.

For double-shock freeze-out one generalizes Eq. (8) to
read [19]

η̇0+ = �V kAη0 + η̇0−, (10)

where η̇0− is set by the first shock arriving at some time
t < 0 and the second shock arriving at t = 0. Clearly, the two
terms on the right-hand side of the above equation can cancel
each other out, leading to η̇0+ = 0 after the second shock.
Examples can be found in Ref. [19].

The above discussion is exact within the limitation of
linearity, incompressibility, and μ1 = μ2 = T (s) = 0. Finite
surface tension can be accounted for by the replacement

g → g − k2T (s)

ρ2 − ρ1
. (11)

For simplicity of notation we will suppress surface tension
terms remembering that in the final formulas the above re-
placement must be done if T (s) is appreciable. Its effect on the
RM instability was treated in [18].

The problem, however, becomes extremely complex when
we include viscosity, calling for approximate treatments
which must be compared against the few cases where an exact
treatment is possible, the main subject of this paper. Needless
to say, all treatments must return to the above inviscid results
for μ1 = μ2 = 0 (this is not as simple as it appears) but,
in general, approximations must be used for viscous fluids.
Suffice it to note that there are no explicit exact results for
arbitrary μ1 and μ2. There are solutions for special cases and
to differentiate one case from another we propose using a
viscous Atwood number Aμ in analogy with the one based
on density:

Aμ ≡ μ2 − μ1

μ2 + μ1
. (12)

The first exact and general eigenvalue treatment was car-
ried out by Harrison [17,20] followed by Bellman and Pen-
nington [21], deriving a DR reproduced in our Appendix A.
It cannot be solved explicitly for arbitrary A and Aμ and one
must solve it numerically. An explicit analytic solution for the
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simplest case of all, a single viscous fluid, was presented in
Ref. [22] solving a quartic equation. This single-fluid case
can be described as the case A = 1 and Aμ = 1, which we
refer to as case A. Most often studied [17] is case B where
ν1 ≡ μ1

ρ1
= ν2 ≡ μ2/ρ2; i.e., Aμ = A, arbitrary A. Two cases

which have not been studied very much are case C, μ1 = 0,
and case D, μ2 = 0; the results are presented in this paper.
The following summarize these four cases:

Aμ = 1, A = 1
(
single fluid

)
, case A, (13a)

Aμ = A, A arbitrary, case B, (13b)

Aμ = 1, A arbitrary, case C, (13c)

Aμ = −1, A arbitrary, case D. (13d)

Of course the single-fluid case A can be considered as a
special case of C where the “heavy” fluid has viscosity μ2.

All four cases above share one common characteristic:
Their DRs reduce to a fourth-order polynomial equation
which can be solved explicitly [23], although numerical solu-
tions are more common. With exact, explicit solutions in hand
we will compare them with approximate techniques, which
we discuss next. These are useful because of their simplicity.

The first approximate DR was proposed by Hide [24]:

γ 2 + 2νk2γ − gkA = 0, (14)

where

ν ≡ μ2 + μ1

ρ2 + ρ1
. (15)

The larger root of Eq. (14),

γ+ = γ
approx.
+ = −νk2 +

√
gkA + ν2k4, (16)

was shown earlier [21] to be an upper bound of the exact DR.
Invariably, γ+ has been shown to be a good approximation, not
just an upper bound, to the exact result, and our comparison
confirms this fact (see Fig. 1 below). As we will argue in this
paper the smaller, negative root γ− = −νk2 −

√
gkA + ν2k4

is the more interesting quantity.
Hide’s derivation, based on an original suggestion by

Chandrasekhar, was criticized by Reid [25]. We showed [18],
however, that by using a variation of that method one can
sidestep Reid’s criticism and arrive at the same approximate
DR shown in Eq. (14) above.

The most extensive comparison of exact and approximate
DRs was presented in Willson’s seldom-cited paper [26]
followed by Menikoff et al. [27] who limited their comparison
to γ+ only and who, like Willson, found good agreement
between exact and approximate γ+. Considering γ−, however,
Willson reported gross discrepancies. The exact DR not only
disagreed with the approximate γ−, but there were cases,
most notably when μ1 = μ2, where a second exact root did
not even exist. In Ref. [22] we also reported that an exact
second root (associated with Z2 in Ref. [22]) did not exist
for k < ( g

ν2 )1/3. Although a second exact root exists for k >

( g
ν2 )1/3 (see the last paragraph in [22]), we merely noted its

existence and did not compare it with the approximate γ−.
A comparison is presented in this paper (Figs. 2 and 3) and
indeed there are vast discrepancies between the exact (where
it exists) and approximate results.

One would naturally think that the exact result is the
correct one. However, recently, in studying the viscous RM
instability, we reported [28] that the exact EV result leads to
the wrong growth for η(t ) and that the approximate γ− which
we had used earlier gave the correct behavior. In fact, we
reported (without proof—the proof is given in Appendix A
of this paper) that the asymptotic RM value is given by

η(∞) = η0 + η̇0

2νk2
, (17)

and that this is exact for any value of μ1 and μ2. The above
result was obtained [18] by using the approximate eigenvalue
γ−, in contrast to using the exact eigenvalue which misses the
mark by more than a factor of 2! The work presented in this
paper was spurred in part by this apparent contradiction.

The solution to the above-mentioned puzzle (approximate
γ− gives better results for RM than the exact γ−) lies in
the following basic observation which is also the core con-
clusion of this paper: The time evolution of the amplitude
η(t ) is given by solving the NS equations as an IV problem
[29,30]. In the linear regime it has the general form given by
Eq. (1). The EV solution addresses the following question:
Are there exponentially growing solutions? The existence of
such solutions does not guarantee, nor contradict, the solution
in the form of Eq. (2). There are initial conditions, which we
have denoted by η̇critical

0 , where an initial perturbation decays
to zero even in a highly unstable system. As Prosperetti has
shown (Eq. (24) in Ref. [30]), the IV approach asymptotes to
η(t ) ∼ eγ+t , where γ+ is the largest root of the DR, but the
coefficient is not necessarily the same as in Eq. (2). The two
approaches, EV and IV, yield the same η(t ) for the inviscid
case but not for the viscous case.

The IV solution was given by Carrier and Chang [29]
explicitly for the case of a single viscous fluid which is case A,
Eq. (13a). Prosperetti [30] gave the formal solution in terms of
a Laplace transform for the general case and gave an explicit
expression only for case B, Eq. (13b). In this paper we derive
(Appendix B) the explicit expressions for cases C and D as
defined by Eqs. (13c) and (13d).

A second motive for studying cases C and D is that other
models [31,32] predict no viscous slowdown when only one
of the fluids is viscous; they require viscosity in both fluids for
any viscous slowdown. While numerical simulations support
our approximate model, an exact solution for cases C and D
would be further confirmation that viscosity in only one of the
fluids is sufficient for slowdown.

In Sec. II we present the DRs for cases C and D and
discuss the RT and RM problems in Secs. II A and II B,
respectively, comparing exact and approximate growth rates
γ±. In Sec. III we present exact and explicit expressions for
η(t ) as an IV solution for cases C and D, taking up the
RT and RM problems in Secs. III A and III B, respectively.
A comparison between EV and IV treatments is given in
Sec. IV where we use concepts based on η̇critical

0 to propose
a hybrid model intermediate between the approximate and the
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exact results. We also discuss the dependence on the viscous
Atwood number Aμ and point out the existence, in general,
of “isogrowth wave numbers,” two different wave numbers
sharing the same growth rate γ+. Conclusions and future work
are discussed in Sec. V. In two appendices we present the
mathematical derivations of our results.

II. EIGENVALUES

A. Rayleigh-Taylor (RT)

The general DR for obtaining exact growth rates
[17,20,21,26,27,30] can be written as

γ 2 + 
(γ )γ − gkA = 0, (18)

with 
(γ ) given in Appendix A. The complexity of 
(γ )
rules out any analytic solution for the general case where both
μ1 �= 0 and μ2 �= 0 and they are arbitrary. Here we outline the
derivation for case C where μ1 = 0 and only the heavy fluid
has an arbitrary viscosity μ2. Our notation follows mostly
Chandrasekhar’s [17] which was also adopted in Ref. [22].

The heavy fluid of density ρ2 lies in y � 0 and has a
perturbed velocity W = A2e−ky + B2e−q2y while the lighter
fluid of density ρ1 lies in y � 0 and has a perturbed velocity
W = A1eky (for the general case where μ1 �= 0 one would add
B1eq1y.) Here

(q1,2)2 ≡ k2 + γ
ρ1,2

μ1,2
, (19)

and q1,2 are defined as having a positive real part because the
velocity perturbations must vanish as y → ±∞.

For the general case the four constants A1, B1, A2, B2

must be determined by the following four conditions all
applied at the interface (see [17] or [22]): (1) a “jump”
condition assuring continuity of pressure; (2) continuity of
W ; (3) continuity of the derivative DW ≡ dW (y)/dy; and (4)
continuity of μ(D2 + k2)W (y). For case C which has only
three constants, A1, A2 and B2, one must give up one of
these constraints, and it is the third condition, continuity of
DW , that must be given up. Since DW is proportional to the
tangential velocity [17], giving it up means allowing for slip at
the interface. The same is true for the completely inviscid case
μ1 = μ2 = 0. All other conditions, in particular condition (4),
are satisfied in all cases.

The procedure is well known and we will not give any more
details: The three conditions for the three unknowns are writ-
ten in matrix form MV = 0 with the vector V = (A1 A2 B2)T

and the DR is given by setting det(M ) = 0 necessary for a
nontrivial solution. The result is

D(Z ) = Z4 + 2AZ2 − 2(1 + A)Z + 1 − AQ2 = 0, (20)

where

Z ≡ q2/k and Q2 ≡ g/ν2
2 k3. (21)

The same result is obtained by taking the limit μ1 → 0
in the general DR (Eq. (113) in Chap. X of Ref. [17]). We
went through the exercise outlined in this and the preceding
paragraph to identify which constraint must be given up when
one of the fluids has vanishing viscosity as in case C.

For case D, Eq. (13d), where the heavier fluid has μ2 = 0,
the result is similar:

Z4 − 2AZ2 − 2(1 − A)Z + 1 − AQ1 = 0, (22)

where

Z ≡ q1/k and Q1 ≡ g/ν2
1 k3. (23)

For physical applications viscous fluids are usually heavier
so case C is probably more useful, for example, honey sup-
ported by water.

By using the definitions given by Eqs. (19) and (21) or (23),
one obtains the growth rates γ by solving the quartic equations
(20) or (22) and using the largest solution for Z . Note that Z ′s
are functions of A and Q2 or Q1 only. Now, quartic equations
are solved by writing them as a pair of quadratic equations
[23]. Note that Eqs. (20) and (22) are relatively simpler forms
of quadratic equations as they lack a cubic (Z3) term. As we
hinted above setting A = 1 (ρ1 = 0) reproduces the simplest
case of all, case A, a single viscous fluid: Eq. (20) above
reduces to Z4 + 2Z2 − 4Z + 1 − Q2 = 0 which is Eq. (20) in
Ref. [22]. Note that when ρ1 = μ1 = 0 then ν2 = ν; hence
Q2 = Q.

The four solutions to Eq. (20) mirror the ones discussed in
Ref. [22]. There are two real and two complex solutions for Z .
The two complex roots labeled Z3,4 have negative real parts
and hence are not acceptable. The largest root Z1 is always
positive and hence always present and must be associated with
γ+. As for Z2, it is real and negative and hence unacceptable if
AQ2 > 1, meaning if k < ( gA

ν2
2

)1/3. However, for k > ( gA
ν2

2
)1/3,

Z2 is positive and hence acceptable, and the associated γ may
be identified with γ−—more on this later.

Given the complexity of the exact solutions for even a case
as simple as case C, the simplicity of the approximate solu-
tion, Eq. (14), is even more appreciable. Comparing Eqs. (14)
and (18), the approximation corresponds to letting 
 → 2νk2

for any and all cases. This approximate solution has the highly
desirable property that its viscous term persists even when
only one of the fluids is viscous. As we mentioned in the
Introduction, this brings up another motivation for studying
cases C and D, cases where one of the fluids is inviscid
yet viscous effects clearly persist because the other fluid is
viscous. We have pointed out [28] that models where all
viscous effects vanish as soon as one of the fluids becomes
inviscid are rather unphysical and must be limited to cases,
like case B, where both fluids have comparable viscosities.

To compare exact and approximate growth rates we follow
the usual scaling procedure of reducing the six variables in
γ (ρ1, ρ2, μ1, μ2, g, k) to three nondimensional variables
in Y (A, Aμ, X ). We will concentrate on case C; hence Aμ = 1.

For X , we define X ≡ k( ν2
2
g )1/3, and for Y we define Y ≡

γ ( ν2
g2 )1/3. Similar variables were used in Refs. [17,22]. In

Fig. 1 we plot Y as a function of X for A = 0.1, 0.5, and 1.0,
the last one reverting to case A. The agreement between exact
and approximate γ+ is indeed impressive.

In Ref. [22] the same quantities, Y vs X , were plotted for
A = 1 (Fig. 2 of Ref. [22]). Unfortunately we had made an
error in plotting the approximate curve in that figure—the
factor of 2 that appears in the approximate Eq. (14) above
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FIG. 1. Y vs X , the normalized growth rate Y defined as γ ( ν2
g2 )1/3

vs normalized wave number X defined as k(
ν2

2
g )1/3, for three values

of the Atwood number: A = 0.1, 0.5, and 1.0. This is case C, Aμ = 1
(μ1 = 0). The continuous thick lines are exact results calculated from
the first solution Z1 of Eq. (20) and related to Y by Y = X 2(Z2 − 1).
The dashed lines are approximate results from Eq. (16). This figure
is for the larger growth rate γ+. The flat horizontal dashed line,
intersecting the A = 1.0 curve, illustrates “isogrowth” rates where Y
is the same at X = X< and X = X>, the subscripts < and > indicating
values less than and greater than, respectively, Xmax(≈ 1

2 ) defined as
the location where Y has its maximum value Ymax. Isogrowth modes
are discussed in Sec. IV D.

was left out leading to an approximate curve that actually
corresponds to ν/2 instead of ν as it should have been. This
error was first reported in Ref. [11]. The correct comparison
is given in Fig. 1 of this paper and the upper pair of the curves
for A = 1 in the present Fig. 1 should replace the incorrect
Fig. 2 of Ref. [22].

In addition to the generally good agreement between γ exact
+

and γ
approx.
+ , we see another property in Fig. 1: All the curves

in it are concave downwards. We conclude that Y (X ) or,
equivalently, γ+(k) has a maximum value γ max

+ at some k =
kmax. It also follows that for any γ+ < γ max

+ there are always
two wave numbers, call them k< and k>, which have the same
growth rate. An example is indicated in Fig. 1. We call them
isogrowth wave numbers and will return to these modes in
Sec. IV.

A more extensive comparison [27] of exact and approxi-
mate γ+ shows that they agree to within 10% for any case.
We concentrated on case C because its exact DR is a quartic
equation solvable analytically for all four roots.

As Willson reported [26], the same cannot be said of the
smaller (and negative, i.e., decaying) growth rate. This is
shown in Fig. 2 where we plot Y vs X for the smaller, γ− root
of Eq. (18), using Z2, the second root of Eq. (20). Z2 is real, but
is positive only for X > A1/3; hence the corresponding exact
Y start at X = 0.464, 0.794, and 1.0 for A = 0.1, 0.5, and
1.0, respectively. Unlike Fig. 1, in Fig. 2 there is more than
a factor of 2 difference between the exact (continuous lines)
and approximate (dashed lines) results.

The difference between γ exact
− and γ

approx.
− may not appear

important because both are negative and hence represent
decaying modes. However, two puzzles remain: First, what

FIG. 2. Same as Fig. 1 for the smaller growth rate γ−. The exact
solutions, from the second solution Z2 of Eq. (20), exist for X > A1/3.
The continuous and dashed lines are similarly ordered.

should one do when γ exact
− does not exist [26]? Second, why

does γ exact
− give such poor results compared with γ

approx.
− when

they are used in the treatment of the RM instability [28]? In
Sec. IV we will propose a solution to these (related) puzzles.

B. Richtmyer-Meshkov (RM)

Following Richtmyer [3] we consider the case of an ideal
single shock and set g = 0 after shock passage. The approxi-
mate DR, Eq. (14), reads γ 2 + 2νk2γ = 0, from which γ+ =
0, γ− = −2νk2. Equation (2) reduces to [18]

η(t ) = η0 + η̇0
(eγ−t − 1)

γ−
= η0 + η̇0

(1 − e−2νk2t )

2νk2
. (24)

We now turn to the exact DR given by Eq. (18) with g = 0.
It reads γ 2 + 
(γ )γ = 0. Clearly, γ = 0 is a solution and
we conclude that γ+ = 0 is actually an exact result valid for
any value of μ1 and μ2 [28]. The other root, γ−, requires
solving γ + 
(γ ) = 0 which again cannot be carried out in
the general case. Hence we turn to the exact DR given by
Eq. (20) for case C. The same treatment applies to the DR
for case D given in Eq. (22).

Now, Eq. (20) can be written as

(Z − 1)[Z3 + Z2 + (1 + 2A)Z − 1] − AQ2 = 0, (25)

and, since Q2 = 0 for g = 0, it follows that Z = 1 is one root
from which γ+ = 0, as expected. The remaining three roots
are determined by the cubic equation,

Z3 + Z2 + (1 + 2A)Z − 1 = 0. (26)

Again, two of the roots, Z3 and Z4, are complex conjugate
roots sharing a negative real part, but the third, Z2, is a
real solution from which one obtains γ exact

− = (Z2
2 − 1)ν2k2.

Cubic equations being straightforward to solve we will not
write down Z2 explicitly but note that it is less than 1; hence
γ exact

− < 0.
With g = 0 we cannot use the nondimensional variables X

and Y adopted in the previous RT subsection. The Atwood
number A being the only variable appearing in Eq. (26) the
Z ′s depend only on A and therefore γ exact

− /ν2k2 depends only
on A.
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FIG. 3. Exact (thick continuous line) and approximate (dashed)
results for the RM instability, g = 0, case C. We plot the smaller
growth rate γ− normalized by ν2k2 vs Atwood number A, obtained
from Eqs. (26) and (27) which are exact and approximate, re-
spectively. We do not plot the larger growth rate γ+ because both
treatments yield γ+ = 0 when g = 0.

Similarly for γ
approx.
− , since μ1 = 0 for case C

it follows that ν ≡ (μ2 + μ1)/(ρ2 + ρ1) = μ2/(ρ2 + ρ1) =
ν2(1 + A)/2 and therefore

γ
approx.
− = −2νk2 = −ν2k2(1 + A). (27)

We conclude that γ−/ν2k2 depends only on A for both
exact and approximate treatments, as required also by a simple
dimensional argument.

In Fig. 3 we plot γ−/ν2k2 vs Atwood number A for both ap-
proximate and exact treatments. As in the RT problem (Fig. 2)
they differ by factors of ∼2. To illustrate, for A = 1 the value
of the approximate γ−/ν2k2 is −2 [see Eq. (27)] while the

exact result is −2[4 + (
√

297 − 17)
1
3 − (

√
297 + 17)

1
3 ] ≈

−0.9126. This value was used in a summary report by
Bakhrakh et al. [33]. Yet, as reported in [28], numeri-
cal simulations of the viscous RM instability clearly fa-
vor γ

approx.
− over γ exact

− . Similarly, for case B where we
provided an exact analytic expression for η(t ), we found
it much closer to the approximate result reproduced here
as Eq. (24).

III. INITIAL-VALUE APPROACH

In the preceding section we found eigenvalues, i.e., modes
growing like eγ±t , with exact and approximate expressions
for γ±. The existence of these modes, however, does not
guarantee that Eq. (2) is correct in all cases. The evolution
of the amplitude must be found by solving the initial-value
problem, considered in this section, first for the RT problem
and then for the RM problem, following a general discussion
applicable to both.

In the linear regime, to which this paper is limited, the
general expression is given by Eq. (1) which depends on the
suppressed parameters of the system. There are nine such
parameters: η0, η̇0, ρ1, ρ2, μ1, μ2, g or �V , k, and t .
By dimensional considerations, they can be reduced to five
nondimensional parameters. We write Eq. (1) in a “growth

factor” form:

η(t )

η0
= f

(
η̇0

η0νk2
, A, Aμ, Re; τ

)
, (28)

in which the Reynolds number Re is defined by

Re = ReRT ≡
√|gA|
νk3/2

(29a)

and

Re = ReRM ≡ |�VA|
νk

(29b)

for RT and RM, respectively (see also Ref. [28]). Note that g
and �V appear explicitly only in the Reynolds numbers. We
use the products gA and �VA because the acceleration and
the jump velocity always appear multiplied by the Atwood
number A. As usual, Re measures the ratio of inertial forces
(∼g or �V ) to viscous forces (∼ν).

There are two ways to nondimensionalize time: The first is
τ ≡ t

√
gkA and τ ≡ t |�V kA| for RT and RM, respectively.

The second way is to use τ ≡ νk2t for both RT and RM. The
ratio of the two ways is the Reynolds number Re. We will
use whichever is convenient; for example, when we want to
display results for finite ν as well as for ν = 0 then the first
way is obviously more convenient.

To illustrate the above approach consider our approximate
model for RT; by substituting γ± from Eq. (14) into Eq. (2)
we obtain

ηapprox.(t )

η0
= e−τ

{
cosh(τ

√
1 + Re2) +

(
1 + η̇0

η0νk2

)

× sinh(τ
√

1 + Re2)√
1 + Re2

}
, (30)

where τ = νk2t and Re = ReRT. Comparing this expression
with Eq. (28) note that neither A nor Aμ appear explicitly
in it, a property on which we comment in the concluding
section.

The restriction to the linear regime implies that, first, the
nondimensional variable η0k cannot appear in Eq. (28) and
that, second, η̇0

η0νk2 must appear only linearly in it.
By choosing ν ≡ (μ2 + μ1)/(ρ2 + ρ1) as our primary vis-

cous parameter we stress the symmetry between μ1 and μ2.
All the terms appearing in Eq. (28) are symmetric under the
interchange μ1 ↔ μ2, except for Aμ. Approximate expres-
sions are indeed symmetric [see Eq. (14)] and do not involve
Aμ. Exact expressions, however, are not quite symmetric and
do depend on Aμ—compare, for example, Eqs. (20) and (22)
for Aμ = +1 and −1, respectively. This asymmetry will be
studied below.

The time evolution of the growth factor η(t )/η0 for RT
and RM problems will be presented in Secs. III A and III B,
respectively.

A. Rayleigh-Taylor (RT)

The exact, general evolution equation for η(t ) is obtained
by inverting the following equation [30]:

η̃(s) = 1

s

(
η0 + η0gkA + η̇0s

s2 + s
(s) − gkA

)
, (31)
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where η̃(s) is the Laplace transform of η(t ):

η̃(s) ≡
∫ ∞

0
η(t )e−st dt, (32)

and 
(s) is the same function appearing in Eq. (18) and given
explicitly in Appendix A. Its complexity again rules out any
analytic solutions for the general μ1,2 case.

For the inviscid case μ1 = μ2 = 0 we have 
 = 0 and
Eq. (31) reduces to

η̃(s) = sη0 + η̇0

s2 − gkA
, (33)

which, when Laplace inverted, gives the classical solution
shown in Eq. (6). For the viscous case, if we use the ap-
proximate relation 
 ≈ 2νk2 then the resulting equation can
again be Laplace inverted and leads to Eq. (2) with the
approximate γ± [write the denominator appearing in Eq. (31)
as (s − γ+)(s − γ−) and use partial fractions].

Exact analytic expressions for η(t ) have been given in
the literature [29,30] only for cases A and B specified by
Eqs. (13a) and (13b). Before we present the results for cases
C and D let us quote the exact result for the asymptotic value
of η(t ) given by Prosperetti [30]:

η(t )t→∞ =
η0

( gkA
γ

) + η̇0

2γ + 
(γ ) + γ
′(γ )
eγ t , (34)

where γ ≡ γ+, the largest real root of the exact DR given
in Eq. (18). Since the exact and approximate γ+ are quite
close (see Fig. 1) Eq. (34) implies that the time dependence
of the asymptotic growth η ∼ eγ+t is well captured by the
approximate formula, but the coefficients may differ. We will
return to this point later.

In the Appendix we derive the exact, fully explicit result
for case C:

η(t )

η0
= erfc(

√
τ2)

2 − AQ2
2(1+A)

+
4∑

i=1

Zi

D′(Zi )

[
AQ2

Z2
i − 1

+ η̇0

η0ν2k2

]

× e(Z2
i −1)τ2 erfc(−Zi

√
τ2), (35)

where erfc is the complimentary error function 1 − erf, τ2 ≡
ν2k2t = ( μ2

ρ2
)k2t , and, as before [Eq. (21)], Q2 ≡ g/ν2

2 k3. The
Zi are the four roots of the equation D(Z ) = 0 where

D(Z ) ≡ Z4 + 2AZ2 − 2(1 + A)Z + 1 − AQ2 (36)

and

D′(Z ) ≡ 4Z3 + 4AZ − 2(1 + A). (37)

Note that Eq. (36) is the same as Eq. (20). The roots Zi,
i = 1 − 4, are functions of A and Re only because

AQ2 = gA

ν2
2 k3

= [(1 + A)Re/2]2, (38)

where Re = ReRT as defined in Eq. (29a).
We recover the single-fluid case, case A, by setting A = 1

in the above equations: After some algebra Eq. (35) reduces
to the result given in Ref. [29] (note that Carrier and Chang
set η̇0 = 0.)

FIG. 4. The RT growth factor η(t )/η0 as a function of the nondi-
mensional time t

√
gkA for case C, Aμ = 1, starting with η̇0 = 0. The

Atwood number A is kept fixed at A = 0.5 and four values for the
Reynolds number [Eq. (29a)] are considered: Re = ReRT = 2, 5, 10,
and ∞. These are exact results based on Eq. (35).

A similar expression is obtained for case D:

η(t )

η0
= erfc(

√
τ1)

2 − AQ1
2(1−A)

+
4∑

i=1

Zi

D′(Zi )

[
AQ1

Z2
i − 1

+ η̇0

η0ν1k2

]

× e(Z2
i −1)τ1 erfc(−Zi

√
τ1), (39)

where τ1 ≡ ν1k2t = ( μ1

ρ1
)k2t and Q1 ≡ g/ν2

1 k3. The Zi are the
roots of D(Z ) = 0 where

D(Z ) = Z4 − 2AZ2 − 2(1 − A)Z + 1 − AQ1 (40)

and

D′(Z ) = 4Z3 − 4AZ − 2(1 − A). (41)

The above equations can also be obtained by noting that to
go from case C to case D we can let ρ1 ↔ ρ2, μ2 → μ1, and
g → −g; therefore A → −A and AQ2 → AQ1.

In Fig. 4 we plot the growth factor η(t )/η0 for case C using
Eq. (35). We keep the Atwood number fixed at A = 0.5 and
vary ReRT from low (Re = 2, lowest curve in Fig. 4) to high
(Re = ∞, highest curve in Fig. 4). For the x axis we chose
the nondimensional τ = t

√
gkA, also called “e-folding time,”

because it is the same for all Re. A nontrivial check is to verify
that the curve plotted for Re = ∞, obtained from Eq. (35)
for Re � 1, is also the same as the classical curve given by
Eq. (6).

From Fig. 4 we see that after 7 e-foldings the exact growth
factors for Re = 2, 5, 10, and ∞ are 41, 133, 239, and
548[= cosh(7)], respectively. As expected, the approximate
formula given by Eq. (2) with γ± = −νk2 ±

√
gkA + ν2k4

overestimates the growth giving 55, 186, 310, and 548, re-
spectively. Although these values are some 30%–40% larger
than the exact results they are justified, we believe, by the
simplicity of the approximate formula. Furthermore, the ap-
proximate formula can be used for any case, meaning any
values of μ1 and μ2, so that it should be compared not just
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with Eq. (35) but with Eq. (31), the more general Laplace
transform which cannot be inverted analytically. Of course
that equation can be inverted numerically, in which case the
exact, explicit formulas presented in this paper, Eqs. (35) and
(39), can serve as highly nontrivial checks of that numerical
inversion.

An improved, hybrid model will be presented in Sec. IV C.
It consists of using Eq. (2) with γ+ = γ exact

+ while retaining
the relation γ− = −gkA/γ+. The exact, approximate, and
hybrid results will be compared in that subsection also.

B. Richtmyer-Meshkov (RM)

In the classic calculations of Richtmyer [3] and exper-
iments of Meshkov [4] the fluid velocity is constant after
the passage of the shock, leading to growth linear in time.
However, as we pointed out earlier [19], this is not necessary:
The shock can be followed by acceleration, deceleration, or
any general motion as indeed happens in ICF implosions
[6,19,34]. The shock induces an initial growth rate η̇0 =
η0�V kA = ±η0νk2ReRM; hence Eq. (28) reads

η(t )

η0
= f (±ReRM, Aμ, A, ReRT; τ ), (42)

with the Reynolds numbers defined by Eqs. (29a) and (29b).
In the pure RM case we set g = ReRT = 0 in the above

equation and use either τ = t |�V kA| (inviscid) or τ = νk2t
(viscous). Equation (31) is much simplified for this case:

η̃(s) = 1

s

(
η0 + η̇0

s + 
(s)

)
. (43)

However, this Laplace transform still cannot be inverted
analytically because of the nontrivial form of 
(s). For the
inviscid case 
 = 0 and one obtains η(t ) = η0 + η̇0t as men-
tioned above. For the viscous case, if we approximate 
 ≈
2νk2 then we obtain the result given in Ref. [18] reproduced
here as Eq. (24). An exact expression for case B was given
in Ref. [28]. Exact expressions for cases A, C, and D will
be given below after a brief discussion of our approximate
expression for viscous RM, Eq. (24).

Using Eq. (8) for η̇0 and ReRM defined in Eq. (29b),
Eq. (24) can be written as

η(t )

η0
= 1 +

(
η̇0

η0

)(
1 − e−2νk2t

)
2νk2

= 1 + �V kA

(
1 − e−2νk2t

)
2νk2

= 1 ± (1 − e−2τ )ReRM/2, (44)

where τ = νk2t . The sign is determined by the direction of
the shock: positive if it proceeds from a light fluid to a heavy
fluid (A�V > 0), negative in the opposite case (A�V < 0).

In Ref. [28] we claimed, without proof, that the asymptotic
value of our approximate expression was exact. From the
above equation,

η(t )t→∞ = η0 + η̇0

2νk2
= η0

(
1 ± ReRM

2

)
. (45)

To show that the above expression is exact we compare
it with the asymptotic value of the exact Laplace transform.

From Eq. (43) we obtain

η(t )t→∞ = η0 + η̇0


(0)
. (46)

In Appendix A we show that 
(0) = 2νk2 and we con-
clude that Eq. (45) is exact and valid for arbitrary μ1 and
μ2. The asymptotic expressions for RT and RM instabili-
ties, given by Eqs. (34) and (45), respectively, are the only
explicit and exact results for arbitrary μi and ρi; all other
known exact results fall into one of the four cases listed
in Eq. (13).

Note that in the case of the RT instability the effect of vis-
cosity was only a reduction in the growth rate: The amplitude
continues to grow exponentially with time, η(t ) ∼ eγ t , albeit
at a reduced rate—see Eq. (34) and Fig. 4. In the case of the
RM instability, however, viscosity has a more dramatic effect
altering the inviscid growth η(t ) ∼ t to η(t ) → constant—see
Eq. (45) above and Fig. 5 below.

To investigate exact η(t ) for arbitrary t we consider
first case C, Eq. (13c). Since g = 0 for RM, we must set
Q2(≡ g

υ2
2 k3 ) equal to 0 in Eq. (35). Care, however, must

be exercised in evaluating the term AQ2/(Z2
i − 1) for i = 1

since Z1 = 1 and numerator and denominator both vanish. We
evaluate it using Eq. (25):

AQ2

Z2
1 − 1

= AQ2

(Z1 + 1)(Z1 − 1)

=
[

Z3 + Z2 + (1 + 2A)Z − 1

Z + 1

]
Z=1

= 1 + A. (47)

Using D′(1) = 2(1 + A), erfc(z) + erfc(−z) = 2, the final
result from Eq. (35) is

η(t ) = η0 + η̇0erfc(−√
τ2)

2(1 + A)ν2k2
+ η̇0

ν2k2

4∑
i=2

Zi

D′(Zi )

× e(Z2
i −1)τ2 erfc(−Zi

√
τ2), (48)

with τ2 = ν2k2t . The three roots Zi, i = 2, 3, 4, are the roots
of Z3 + Z2 + (1 + 2A)Z − 1 = 0 [see Eq. (26)] and depend
only on A.

Figure 5 illustrates the evolution of RM growth factors.
Compare with Fig. 4. As discussed above, while viscosity
changes the exponential growth of the classical inviscid RT
instability to a reduced exponential growth (Fig. 4), it changes
the classical inviscid RM growth from linear in time to an
asymptotically constant value as seen in Fig. 5.

In the limit t → ∞ only the first and second terms survive
in Eq. (48). Although viscosity appears as a product (1 + A)ν2

in that second term, this is equal to 2ν for case C. Similarly
for case D: That product is replaced by (1 − A)ν1 which is
again equal to 2ν, and similarly for case A, the single-fluid
case where the product is 2ν2 = 2ν. Using erfc(−∞) = 2 we
confirm that η(∞) = η0 + η̇0/2νk2 in all cases, agreeing with
Eq. (45).

We end this section by giving the exact, explicit RM
expression for the viscous single-fluid case, case A:

η(t ) = η0 + η̇0erfc(−√
τ )

4νk2
+ η̇0

νk2

4∑
i=2

Zi

D′(Zi )

× e(Z2
i −1)τ erfc(−Zi

√
τ ), (49)
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FIG. 5. The RM growth factor η(t )/η0 as a function of the nondi-
mensional time �V kAt for case C, Aμ = 1. The Atwood number A
is kept fixed at A = 0.5 and four values for the Reynolds number
[Eq. (29b)] are considered: Re = ReRM = 2, 5, 10, and ∞. The exact
results, using Eq. (48), are shown as thick continuous lines, and
approximate results [Eq. (44)] as dashed lines. Both asymptote to
1 + Re/2. Compare with Fig. 4.

where the Zi are the three roots of the cubic equation
Z3 + Z2 + 3Z − 1 = 0, and D′(Z ) = 4(Z3 + Z − 1) =
−4Z (Z + 2). The three roots are Z2 = a − b − 1/3
and Z3,4 = (b − a)/2 − 1/3 ± i

√
3(a + b)/2, where

a ≡ ( 21/3

3 )(
√

297 + 13)1/3 and b ≡ ( 21/3

3 )(
√

297 − 13)1/3. The
numerical value of Z2 is approximately 0.2956 from which
the normalized growth rate γ−/νk2 = Z2

2 − 1 ∼= −0.9126 as
discussed above. This value, however, should not be used in
the approximate, eigenvalue treatment of the RM instability,
as we cautioned previously [28].

IV. DEPENDENCE ON Aμ, ASYMPTOTIC DECAY,
A HYBRID MODEL, AND ISOGROWTH WAVE NUMBERS

A. Dependence on Aμ

As we have seen, exact results for γ+ and η(t ) depend
on Aμ : Compare Eq. (20) with Eq. (22) and Eq. (35) with
Eq. (39). Even when you set ν1 = ν2 where Eqs. (35) and
(39) become (almost) formally identical since Q1 = Q2, the
DRs which give the corresponding Zi and D′(Zi ), Eqs. (20)
and (22), are still different because they call for A → −A.

In contrast, the approximate results depend only on ν and
therefore are always symmetric under μ1 ↔ μ2.

To accentuate this difference we plot in Fig. 6 η(t )/η0 vs
τ ≡ νk2t for A = 0.9 and Re = ReRT = 1. The two curves
in Fig. 6 refer to two different systems: One where only the
heavier fluid has viscosity μ (lower curve, Aμ = +1), and one
where only the lighter fluid has the same viscosity μ (upper
curve, Aμ = −1). Of course ν is the same for both curves.
From these two exact curves we conclude that viscosity in the
heavier fluid is more effective in suppressing RT growth than
the same viscosity appearing in the lighter fluid, although the
difference is not very large even at A = 0.9; needless to say,
the difference is even smaller at lower A. Note that ν1(= μ

ρ1
) is

larger than ν2(= μ

ρ2
) because ρ2

ρ1
= 1+A

1−A and ρ2 is some 19 times
larger than ρ1. This difference between Aμ = +1 and −1 is

FIG. 6. The RT growth factor η(t )/η0 vs τ ≡ νk2t for A = 0.9
and ReRT = 1. The upper curve has μ1 = μ, μ2 = 0 (hence Aμ =
−1) while the lower curve has μ1 = 0, μ2 = μ (hence Aμ = +1).
These are exact results calculated from Eqs. (39) and (35), respec-
tively. The approximate result (not shown) does not distinguish
between these two cases and is closer to the upper curve.

not captured by the approximate result (not shown) which
always overestimates the growth somewhat and is much closer
to the upper curve. A hybrid model, presented below, captures
the difference.

There is no need to replicate the above exercise for RM
instabilities because the difference between the two cases is
even smaller and very brief in duration—we know that the
exact RM asymptote, Eq. (17), does not depend on Aμ because
it involves only ν which is symmetric under μ1 ↔ μ2.

B. Asymptotic decay and calculation of η̇crit.
0

As discussed in the Introduction, one can define η̇crit.
0 such

that η(t → ∞) = 0, called asymptotic decay, in both RT and
RM systems. We distinguish this phenomenon from the better-
known RM freeze-out where the growth rate vanishes instan-
taneously, i.e., η̇ = 0, and is of a different origin occurring,
for example, immediately after a second shock cancels the
growth induced by the first shock [19], or if the reflected and
transmitted shocks in compressible fluids conspire to arrest
the growth of the interface perturbation [35]. Viscosity is not
necessary for asymptotic decay or RM freeze-out to occur.
As we have seen, the viscous RM instability always ends
with freeze-out (η̇ = 0) but not necessarily decay (η = 0)
except for the special case ReRM = 2 [see Eq. (45)] with the
shock proceeding from a heavy to a light fluid, in which case
the amplitude decays asymptotically to zero: η(t → ∞) =
η̇(t → ∞) = 0—see Ref. [18].

Let us point out an interesting contrast between shocked
and accelerating systems. A second shock can freeze (η̇ = 0)
an amplitude but not when η = 0 for the simple reason that a
shock hitting a flat interface has no effect on it–see Fig. 3(i)
in Ref. [19]. In other words one needs a finite amplitude in
order to freeze it by a second shock. The opposite is true in an
accelerating system: Since the amplitude grows exponentially
with time at late times it is not possible to have η̇ → 0 unless
η → 0 also.
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FIG. 7. Same as Fig. 4 with η̇0 = η̇crit.
0 = −( gkA

γ+ )η0; now the
growth factors asymptote to zero.

The existence of η̇crit.
0 does not depend on viscosity but

is more general requiring only that the ratio F (∞)/G(∞)
be finite—see Eq. (3). As we discussed in the Introduction,
using the approximate Eq. (2) one obtains η̇crit.

0 = γ−η0. For
the classical RT instability given by Eq. (6),

η̇crit.
0

η0
= γ− = −

√
gkA = −gkA/γ+, (50)

where γ+ ≡ √
gkA is the classic inviscid RT growth rate.

What is somewhat surprising is that the same combination,
gkA/γ+, appears in the coefficient of the exact, viscous RT
asymptote, Eq. (34), which implies that if η̇0 = −η0( gkA

γ+
) then

there is no asymptotic growth. We conclude that Eq. (50) is a
rather general relationship valid for both inviscid and viscous
fluids and for any value of ρi and μi. Of course γ exact

+ is a
more complicated quantity than the classic

√
gkA, being the

largest real root of Eq. (18), the exact DR for the viscous RT
instability.

We illustrate by repeating the same exact RT calculations
displayed in Fig. 4 but now, instead of starting with η̇0 = 0,
we start with η̇0 = η̇crit.

0 = −η0gkA/γ+. The new results are
displayed in Fig. 7. All amplitudes go to zero at late times. Of
course the curve for Re = ∞ is given by the classical result,
Eq. (6). The rest use Eq. (35). Note that, since this is an RT
system, when we choose η̇0 = η̇crit.

0 then η → 0 with η̇ → 0,
meaning that the amplitude approaches zero with zero slope,
as confirmed by the curves in Fig. 7.

We should caution, however, that these situations are rather
precarious and a slight deviation from the criticality condition
η̇0 = η̇crit.

0 can lead to large growth, positive or negative. To
the two cases η̇0 = 0 and η̇0 = η̇crit.

0 discussed so far one
can add two more: η̇0 = 2η̇crit.

0 and η̇0 = −η̇crit.
0 . These four

cases are shown in Fig. 8 as curves labeled 1, 2, 3, and
4, respectively. Overshooting the targeted value by a factor
of 2 (η̇0 = 2η̇crit.

0 , curve 3) takes us back to the growing
η̇0 = 0 curve, curve 1, except it is now negative. Of course
η̇0 = −η̇crit.

0 , curve 4, has the “wrong” sign (it is positive in
value) and ends up essentially doubling the η̇0 = 0 curve,
curve 1. Elsewhere we will propose and simulate experiments
with η̇crit.

0 .

FIG. 8. Variations on η̇0 for the problem displayed in Figs. 4 and
7 with Re = 5. The curve labeled 1 has η̇0 = 0 and is the same as the
one appearing in Fig. 4. Curve 2 has η̇0 = η̇crit.

0 and appears in Fig. 7
also. Curve 3 has η̇0 = 2η̇crit.

0 and is essentially the negative of curve
1. Curve 4 has η̇0 = −η̇crit.

0 and is essentially double curve 1. All are
exact results using Eq. (35).

We now turn to the RM instability. It requires only a
brief discussion since η(∞) is known exactly [Eq. (45)] and

η(∞) = 0 only for η̇0

η0
= η̇crit.

0
η0

= −2νk2, requiring ReRM = 2
as mentioned above. This zero asymptote was already dis-
cussed in Ref. [18] and all we need to add is that this is an
exact result (which we were not aware of at that time).

Stemming from the above considerations of η̇crit.
0 , here

we would like to propose an alternative relationship between
γ

approx.
− and γ exact

− which, we believe, solves the conflict be-
tween them noted first by Willson [26] and which is clear from
our Figs. 2 and 3. Since q ∼ Z and we require the real part of
q > 0 for the eigenvalue analysis [17], in finding the roots of
Eq. (18) one must impose this condition and, Willson pointed
out, there are cases where only one root (the one we are
calling γ+) can be found [26]. We have verified this explicitly
for case A in Ref. [22] (at that time we were not aware of
Willson’s general analysis). Even when it exists, γ exact

− differs
significantly from γ

approx.
− , as confirmed by Figs. 2 and 3.

What we propose is to compare γ
approx.
− with a "γ exact

− " not
associated with Z2, which may or may not exist, but associated
with η̇crit.

0 . Specifically, if we define

γ exact
− ≡ η̇crit.

0 /η0, (51)

then both the approximate and the exact γ− satisfy the relation

γ− = −gkA/γ+. (52)

The advantage of this approach is twofold: (i) γ− always
exists because γ+ does, and (ii) since γ

approx.
+ ≈ γ exact

+ (see
Fig. 1) we are guaranteed that γ

approx.
− ≈ γ exact

− defined this
way.

We illustrate by comparing γ
approx.
− with the new γ exact

−
in Fig. 9. The former is given by γ

approx.
− = −gkA/γ

approx.
+ =

−νk2 −
√

gkA + ν2k4 and the latter by γ exact
− = −gkA/γ exact

+ .
Since both γ

approx.
− and γ exact

− are given by −gkA/γ+, the good
agreement between them stems from the proximity of γ

approx.
+

to γ exact
+ seen in Fig. 1.
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FIG. 9. The smaller, normalized RT growth rate γ−/ν2k2 for case
C, Aμ = 1, as a function of the Atwood number A for three values of
the Reynolds number ReRT = 2, 5, and 10. We use γ− = −gkA/γ+
for both exact (solid lines) and approximate (dashed) results based
on γ exact

+ and γ
approx.
+ , respectively.

In summary, we advocate defining γ exact
− not as the second

root of the exact DR which may or may not exist, but as
−gkA/γ exact

+ which always exists. In this way both the exact
and the approximate treatment allow η(t ) to decay to zero
(Fig. 7) when η̇0 = η̇crit.

0 = γ−η0. This approach suggests that
the simple approximate treatment may be improved leading to
a hybrid model discussed in the next subsection.

C. Hybrid model

The exact evolution of η(t ) is obtained by inverting the
Laplace transform given in Eq. (31) which, in general, must
be carried out numerically: As far as we know only the four
cases listed in Eq. (13) admit analytic solutions. Even then
the resulting exact expressions are quite complex—compare
Eq. (35), which involves error functions of a complex variable
Z , with the approximate result given by Eq. (2) which involves
only exponentials with γ+ ≡ −νk2 +

√
gkA + ν2k4 and γ− ≡

−gkA/γ+. Since this γ
approx.
+ is actually an upper bound for

γ exact
+ (see Ref. [21]) it is not surprising that the approximate

results overestimate the growth as we discussed in Sec. III A.
The hybrid model improves upon the approximate model

albeit at some cost which we deem worthwhile. It is the same
as the approximate model, Eq. (2), in which γ− = −gkA/γ+
as before, but γ+ = γ exact

+ , a quantity that must be found from
Eq. (18). Except for the four cases listed in Eq. (13) where
that DR becomes a quartic equation solvable analytically
[23], this root must be found numerically. Needless to say
the advantage of the hybrid model is that it does not require
Laplace transforms.

It is straightforward to show that our approximate solution,
Eq. (2), obeys the following ordinary differential equation
(ODE):

η̈(t ) − (γ+ + γ−)η̇(t ) + γ+γ−η(t ) = 0. (53)

Since γ+γ− = −gkA the above ODE can be written as

η̈(t ) −
(

γ+ − gkA

γ+

)
η̇(t ) − gkAη(t ) = 0, (54)

FIG. 10. Comparison of exact, approximate, and hybrid models
for the case Aμ = 1, A = 0.5, and Re = ReRT = 2, 5, and 10. Nine
curves are displayed in this figure. The exact results (thick contin-
uous lines) are based on Eq. (35). The hybrid results (dotted) use
Eq. (2) with γ+ = γ exact

+ and γ− = −gkA/γ+; they can be barely dis-
tinguished from the exact results. The approximate results (dashed)
use the same equations with γ+ = γ

approx.
+ = −νk2 + √

gkA + ν2k4;
they overestimate the growth factor by 30%–40% after 7 e-foldings.

and the only difference between the approximate and hy-
brid solutions is whether one uses the approximate γ+ from
Eq. (16) or the exact γ+ by solving Eq. (18).

We now return to the exact results displayed in Fig. 4 and
compare them with the approximate and the hybrid results
for Re = ReRT = 2, 5, and 10. We do not consider Re = ∞
since all give the same exact classical evolution for inviscid
fluids. This comparison is presented in Fig. 10; the hybrid
results are so close to the exact results that they can be barely
distinguished. After 7 e-foldings the (exact, hybrid) growth
factors are (41, 43), (133, 137), and (239, 243) for Re = 2, 5,
and 10, respectively, compared with the approximate results
(dashed curves in Fig. 10) which are some 30%–40% larger.

The one and only price to pay in going from the approx-
imate to the more accurate hybrid model for RT is the com-
putation of γ exact

+ . Since γ exact
+ depends on Aμ it differentiates

between Aμ = +1 and Aμ = −1, cases C and D, as shown in
Fig. 6. The exact growth factors η/η0 at the end (τ = 12) of
the two problems shown in Fig. 6 for Aμ = 1 and -1 are 92 and
121, respectively. The approximate model gives 123 for both
cases, while the more accurate hybrid model gives 96 and 121,
respectively.

We now examine a system that is not covered by any
of the four cases listed in Eqs. (13a)–(13d) and hence the
exact solution must be obtained by numerically inverting
Eq. (31). Choose η̇0 = 0, A = 1/6, Aμ = 2/3, τ = νk2t , and
Re = ReRT = 2.5 or 1. These are the only variables needed to
compute the growth factor η(t )/η0 as indicated in Eq. (28).
The approximate, hybrid, and exact results are shown in
Figs. 11(a) and 11(b) for Re = 2.5 and 1, respectively, show-
ing the expected slowdown with decreased Re.

A concrete system with the above parameters is the
following: Oil (ρ = 1 g/cm3, μ = 10 P) and syrup (ρ =
1.4 g/cm3, μ = 50 P) in Earth’s gravity, g = 980 cm/s2.
This gives ν = 25 S. Re = 2.5 for k ≈ 0.347 cm−1 or λ ≈
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FIG. 11. Growth factors for the case Aμ = 2/3, A = 1/6, and
ReRT = 2.5 (a) or 1.0 (b), starting with η̇0 = 0. The horizontal axis
is τ ≡ νk2t . Exact, hybrid, and approximate results are plotted as
red solid lines, blue solid, and black dashed lines, respectively.
This is a case not covered by any of the four special cases listed
in Eqs. (13a)–(13d) and exact results must be found numerically
using Eq. (31). The exact (red) lines display least growth, while the
approximate (black) lines display most growth. The hybrid (blue)
lines are intermediate and much closer to the exact results.

18 cm. The classical inviscid growth rate would be γ class ≈
7.53 s−1, while the viscous approximate rate, from Eq. (16),
is γ approx. ≈ 5.10 s−1, somewhat larger, as expected, than the
exact viscous rate γ exact ≈ 4.61 s−1, calculated numerically
from Eq. (18). Since νk2 ≈ 3 s−1, it follows that t ≈ 1 s
by τ ≈ 3 in Fig. 11(a), when the growth factor is about 70.
That growth factor reaches only 2.7 for Re = 1 in Fig. 11(b).
Now, the simplest way to change ReRT is to change g, gravity,
leaving everything else the same. Reducing g by a factor
of 2.52 = 6.25 reduces Re to 1. It follows that the same
experiment described here, done on the surface of the Moon,
will follow Fig. 11(b) due to its reduced gravity, and the
growth rates will be given by γ class ≈ 3.01 s−1, γ approx. ≈
1.25 s−1, and γ exact ≈ 1.17 s−1. In all cases the hybrid model,
which uses γ exact instead of γ approx., gives results closer to the
more accurate but numerically obtained growth factors. An
alternative and more common method to change g and hence
ReRT is to carry out microgravity experiments as, for example,
in Ref. [36].

The reader may inquire whether the approximate model for
RM can be similarly improved, “hybridized.” The answer is
no, because of two facts: First, γ

approx.
+ = γ exact

+ = 0 already.

Second, γ
approx.
− = −2νk2 already gives the exact asymptotic

value because 
(0) = 2νk2 is an exact relationship, proved
in our Appendix A. It is somewhat ironic that the RM model
presented in Ref. [18] was better than the RT model on which
it was based, though we were not aware of it at that time. The
first exact η(t ) for viscous RM was given in Ref. [28] for case
B, and in this paper for cases A, C, and D. That our exact and
approximate expressions for RM show good agreement with
each other in all cases is due to the two facts mentioned here.

D. Isogrowth wave numbers

As we pointed out earlier and illustrated in Fig. 1, for any
γ < γ max

+ one can find two wave numbers which have the
same growth rate. We call these isogrowth wave numbers.

Let us define kmax as that unique value of k where γ =
γmax ≡ γ max

+ . Then the isogrowth wave numbers k≶ come in
pairs, one on each side of kmax, with k< < kmax and k> > kmax.
As usual, explicit expressions can be found only if we use the
approximate treatment, and they are

k< = gA

4νγ
−

√
g2A2

16ν2γ 2
− γ

2ν
(55a)

and

k> = gA

4νγ
+

√
g2A2

16ν2γ 2
− γ

2ν
, (55b)

where γ is any growth rate 0 < γ < γmax shared by the
two wave numbers. The above expressions follow from the
approximate DR, Eq. (14), viewed not as a quadratic equation
in γ but in k. Note that the product k<k> = γ /2ν. In this
approximation γmax and kmax are given by setting k< = k> =
kmax; i.e., kmax = gA

4νγmax
= 1

2 ( gA
ν2 )1/3 and γmax = 1

2 ( g2A2

ν
)1/3.

Perturbations with isogrowth wave numbers have the same
asymptotic growth rates but always evolve somewhat differ-
ently because now the other growth rate, γ−, is different be-
tween the two: γ− = −gkA/γ+ and having the same γ+ at two
different k′s implies that γ− is different between the two. Note
that it is not possible to have “isodecay wave numbers” having
the same γ− because the curves for γ−, which is negative,
are not concave but, starting from 0, decrease monotonically
with k—see Fig. 2. What this implies is that, in general, even
though perturbations of k< and k> will share the same γ+,
the corresponding amplitudes will not evolve similarly; i.e.,
η(t )k<

�= η(t )k>
. An additional condition is required to achieve

η(t )k<
≈ η(t )k>

.
We illustrate with an example. Take ρ1 = 1 g/cm3, ρ2 =

3 g/cm3; hence A = 1/2. Let μ1 = 0 and μ2 = 1 P, hence
ν = 1

4 S. Taking g = 1000 cm/s2, we find γmax = 50 s−1 at
k = kmax = 10 cm−1. Suppose we seek γ = 40 s−1; then
the two k− values are k< ≈ 3.77 cm−1 (λ ≈ 1.7 cm) and
k> ≈ 21.2 cm−1 (λ ≈ 0.3 cm). The decaying modes are
γ−(k<) ≈ −47 s−1 and γ−(k>) ≈ −265 s−1. These modes
decay quickly; nevertheless, the corresponding η(t ), starting
with η̇0 = 0, are still different, as shown in Fig. 12(a). The
mode with k = k> grows about 1.6 times more than the other,
even though its Re is about 13 times smaller. The exact results,
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FIG. 12. Growth factor η(t )/η0 in a system where ρ1 = 1 g/cm3,
ρ2 = 3 g/cm3, μ1 = 0, μ2 = 1 P, and g = 1000 cm/s2, plotted as
a function of time in seconds for two isogrowth wave numbers:
k = k< ≈ 3.8 cm−1 and k = k> ≈ 21.2 cm−1, which share the same
growth rate γ+ = 40 s−1 (see text). In the top figure (a) η̇0 = 0 and
the k> mode grows faster in both the exact treatment (solid red lines)
and the approximate treatment (dashed black lines). In the bottom
figure (b) η̇0 = η0γ+ and the two k< and k> modes collapse into one
for both treatments [there are four curves in panel (b) also]. With
η̇0 = η0γ+ the evolution is purely exponential eγ+t with the same γ+
at the two widely separated wave numbers k< and k>—see the dashed
horizontal line in Fig. 1. We do not show hybrid results because they
are indistinguishable from the exact results.

calculated from Eq. (35), are also shown, in red: Again, the k>

mode grows about 1.5 times more than the k< mode. Equation
(35) is too complicated to throw light on this issue, but the
approximate Eq. (2) gives (setting η̇0 = 0 and neglecting eγ−t

terms)

η(t )/η0 ≈ eγ+t

1 − γ+/γ−
, (56)

explaining the factor of 1.6 by

(1 − γ+/γ−)k<

(1 − γ+/γ−)k>

= 1 + 40
47

1 + 40
265

≈ 1.6. (57)

Still neglecting eγ−t terms but now keeping the η̇0 term
Eq. (2) gives

η(t )/η0 ≈
(

η̇0

η0
− γ−

γ+ − γ−

)
eγ+t , (58)

so that if η̇0

η0
= γ+ then η(t )/η0 ≈ eγ+t and the two modes

indeed evolve identically. This is the required additional con-
dition, as shown in Fig. 12(b). We conclude that isogrowth
wave numbers are necessary but not sufficient to have η(t ) be
the same at two different wave numbers; one must also have
η̇0

η0
= γ+, their shared growth rate. As usual, this is another

condition that can be satisfied by starting the instability with
appropriately tuned shocks.

V. REVIEW, CONCLUDING REMARKS,
AND FUTURE WORK

(i) In this paper we introduced the viscous Atwood number
Aμ to classify various cases and compared approximate, exact,
and hybrid treatments of the viscous RT and RM instabilities.
We believe that exact explicit expressions can be obtained
only for the four cases (13a)–(13d); other cases require solv-
ing Eq. (18) and inverting Eq. (31) or Eq. (43), all done
numerically, as we did for the example presented in Fig. 11.

The approximate result uses Eq. (2) with the approximate
DR given in Eq. (14). The hybrid model also uses Eq. (2)
but with γ+, the larger growth rate, obtained from the exact
DR, Eq. (18), and γ− = −gkA/γ+. This last condition ensures
that for any inviscid or viscous case one can always find a
critical initial growth rate η̇crit.

0 = γ−η0 = −( gkA
γ+

)η0 such that
the amplitude, instead of growing exponentially with time,
will decay exponentially to zero.

These three approaches, exact, approximate, and hybrid,
were illustrated in Figs. 10 and 11. Since asymptotically
η(t ) ∼ eγ+t the difference between γ exact

+ and γ
approx.
+ can

naturally result in large differences after several e-foldings,
as seen in Fig. 10. The hybrid model, as expected, performs
much better: In Fig. 10 exact and hybrid methods can be
barely distinguished at Re = 2 and not at all at Re = 5 and 10.
At higher Re the differences are even less noticeable since all
three approaches lead to the classical inviscid evolution given
in Eq. (6).

We believe the hybrid model presented in this paper and
the approximate method presented in Ref. [18] solve the quest
undertaken by Prosperetti in Ref. [30]. After presenting the
Laplace transform of the exact solution Prosperetti searched
for a model that approximated the exact result, but he did not
find one: He found models that agreed with the asymptotic
behavior of η(t ) but violated the initial conditions, and models
that captured the initial conditions but violated the asymptotic
evolution—see his Figs. 1–3. The hybrid model fulfills both
conditions and, to a lesser degree, so does the approximate
model, Eq. (2). By construction, Eq. (2) accommodates arbi-
trary initial conditions and, to the extent that γ

approx.
+ ≈ γ exact

+
(see Fig. 1), its asymptotic evolution is also acceptable. By
defining γ− ≡ −gkA/γ+ and using γ exact

+ in Eq. (2) the hy-
brid model goes one step further reproducing the asymptotic
evolution exactly, albeit at the price of finding γ exact

+ .
(ii) We discussed that the approximate model is symmetric

under μ1 ↔ μ2 while the hybrid and exact models are not. A
similar property is the following: In the Boussinesq approxi-
mation [37] one keeps the Atwood number A multiplying the
acceleration g or the jump velocity �V but otherwise treats
the system as one fluid with average densities and viscosities,
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i.e., ρ1,2 → (ρ1 + ρ2)/2 and μ1,2 → (μ1 + μ2)/2, i.e., set
A = Aμ = 0. In the Boussinesq approximation all possible
viscous cases collapse into one and the result can be written
formally [see Eq. (28)] as

ηB(t )

η0
= f

(
η̇0

η0νk2
, 0, 0, Re; τ

)
. (59)

Note that the Atwood number appears only in Re (=ReRT

or ReRM) multiplying g or �V . Clearly, in the Boussinesq
approximation one uses τ = νk2t .

Recent considerations of the Boussinesq approximation
in the context of RT and RM instabilities can be found in
Refs. [38–40]. We pointed out that inviscid linear results re-
main the same under this approximation, but nonlinear results
do not [39]. Here let us point out that viscous linear results
also remain the same in our approximate treatment, but the
exact and hybrid results do not remain the same, as the reader
can easily verify from the expressions given in this paper.

(iii) Equation (53) can be considered a generalization of
Taylor’s equation, Eq. (7), which is recovered when γ+ =
γ class. = √

gkA. We would like to propose Eq. (53) as a bridge
between the eigenvalue and the initial-value formulations of
RT instabilities in the presence of viscosity or any other
stabilizing mechanism such as ablation, rotation, magnetic
fields, etc., as reflected in γ+.

Additionally, Eq. (53) and its solution, Eq. (2), may de-
scribe the time evolution of perturbations in other types of hy-
drodynamic instabilities such as the Kelvin-Helmholtz insta-
bility with or without the stabilizing mechanisms mentioned
above. We hope to investigate this possibility in the future.

(iv) From our discussion of isogrowth perturbations it
should be clear that this is a general phenomenon not limited
to viscosity: Any concave curve for γ+ will admit two different
wave numbers k< and k> that have the same growth rate γ+.
As another example, one can write the DR for RT with surface
tension, which is a quadratic equation in γ (see Ref. [17]), as

a cubic equation in k, k3 − k2
c k + γ 2k2

c
gA = 0, and obtain from it

the pair k< and k> which have the same growth rate γ between
0 and γmax where γ 2

max ≡ 2gAkc/3
√

3, kc being the cutoff wave
number given by k2

c ≡ (ρ2 − ρ1)g/T (s). In all cases if one
wants to achieve η(t )k<

≈ η(t )k>
one must further impose the

condition η̇0

η0
= γ+.

(v) To treat the viscous RM instability we followed Richt-
myer’s incompressible approach: The shock is an impulsive
acceleration giving η̇0 = η0�V kA followed by g = 0, an ap-
proach whose power should be amply clear to the reader. The
exact (but still incompressible) treatment requires Laplace in-
verting Eq. (43) which, again, we believe can be done analyt-
ically only for the four cases A–D mentioned above. For RM
there is no distinction between the approximate and a hybrid
model because the exact result γ+ = 0 is already captured by
the approximate model. Furthermore, since γ

approx.
− = −2νk2

and 
(0) = 2νk2 is an exact result (see Appendix A), we
are guaranteed that the approximate model gives the correct
asymptote, as reported earlier [28]. Exact and approximate
RM results were compared in Fig. 5.

Another model for the viscous RM instability can, in lim-
ited cases, perform better than our approximate model during
the early brief period when approximate and exact results

are different. That model [31,32] misses the asymptotic value
completely and can in fact go negative at late times [28,41].
At early times it does well for cases where μ1 ≈ μ2 but when
μ1 ≈ 0 or μ2 ≈ 0 it is completely wrong because it predicts
no viscous effect. This means that for cases C and D studied
in this paper, where there is only one viscous fluid, that model
would predict inviscid (!) RM growth. Physical intuition, let
alone exact results, lead us to expect that viscosity in only
one fluid is sufficient for viscous behavior. A more recent
comparison can be found in Ref. [42].

(vi) A similar shortcoming can be found in the nonlinear
model of Sohn [43]. This is quite disappointing since the
inviscid ingredients of that model have performed well. Sohn
[43] built a model for nonlinear bubbles in viscous RT and
RM instabilities by adding viscosity to Goncharov’s nonlin-
ear, inviscid model [44] which, in turn, was an extension
of Layzer’s A = 1 inviscid model [45]. Although there are
more modern, inviscid, nonlinear models [46], Layzer’s model
and Goncharov’s extension of it to arbitrary A have proved
highly useful and compared well with numerical simulations,
particularly when limited to the bubble part of the instability.
Sohn’s further extension [43] to viscous fluids was indeed the
natural next step. We have performed two-dimensional (2D)
numerical simulations (results to be presented elsewhere)
showing that Sohn’s nonlinear viscous model is acceptable
in many cases, but not in others. Its failure is similar to that
of Carles and Popinet [31,32] although a completely different
technique (originated by Layzer) is used in the nonlinear
model. As we have shown [47], Layzer’s model can be solved
analytically by choosing η0 = η∗ ≡ 1/(1 + c)k where c = 1
for 3D (three-dimensional) and c = 2 for 2D perturbations.
The same choice solves Sohn’s viscous model. We find, how-
ever, that for case D, for example, when μ2 = 0, Sohn’s model
predicts inviscid evolution for η(t ) no matter what the value of
μ1, a shortcoming similar to that of Carles and Popinet and a
clearly unphysical behavior. This shortcoming does not occur
for the single-fluid case, case A, and in Ref. [28] we presented
the nonlinear analytic solution for that case. The nonlinear
extension to arbitrary Atwood number remains for a future
investigation.

(vii) Another application left for the future is the approxi-
mate equivalence between viscosity and material strength (de-
noted by Y ), both being properties that suppress growth. We
advocated [28] a relationship between these two properties:

Y/μ = 2
√

gkA/3 (60a)

and

Y/μ = 2|η̇0|k/3 (60b)

for RT and RM, respectively. In the exact, hybrid, or ap-
proximate expressions given in this paper one can replace μ1

or μ2 by Y1 or Y2 using the above relationships and arrive
at formulas describing, approximately, RT or RM growth
suppressed by material strength. As discussed in Ref. [28] this
is only a crude (but useful—see Ref. [48]) equivalence; hence
one need not distinguish between exact, hybrid, and approx-
imate expressions—simple approximate results will do. The
equivalence appears to hold up even in nonlinear jet formation
[49]. Turbulence generated by RT and RM instabilities have
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been studied in detail [50–52] in fluids with no viscosity
or strength; questions on how they will be affected by such
physical properties are left for the future.

(viii) Finally compressibility which, we believe, is the
hardest fluid property to incorporate into RT and RM in-
stabilities, is also left for a future study. At present there
is no treatment which parallels Richtmyer’s work, albeit for
linear perturbations, but which includes compressibility and
viscosity in even one fluid, let alone two. At present the only
available approach is numerical simulations and we hope to
present such results in the future; we believe that the already
rich and interesting phenomena that occur in RT and RM
instabilities are further enriched when fluid properties such as
viscosity, strength, and compressibility are taken into account.
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APPENDIX A: �(γ ) AND �(0)

For completeness we provide the exact expression for

(γ ) in Eq. (18). It has the dimensions of a growth rate γ ,
which appears also in the wave numbers q1 and q2 defined in
Eq. (19).


(γ ) = 4k
N (γ )

D(γ )
, (A1)

N (γ ) = −ρ1ρ2γ + k(μ2 − μ1)[ρ2(k − q1) − ρ1(k − q2)]

+ k2(μ2 − μ1)2(k − q2)(k − q1)/γ , (A2)

D(γ ) = (ρ1 + ρ2)[ρ2(k − q1) + ρ1(k − q2)]. (A3)

The above form was given by Prosperetti [30]. For a
derivation and early history see Chandrasekhar [17].

Some care must be exercised to show that 
(0) = 2νk2,
where ν ≡ (μ2 + μ1)/(ρ2 + ρ1), because as γ → 0 q1,2 → k
and there are “0/0” terms. These are evaluated following
L’Hôpital’s rule using ∂qi

∂γ
= ρi

2qiμi
= 1

2νiqi
. After repeated ap-

plications of that rule (we omit the rather lengthy but straight-
forward steps) one finds 
(0) = 2νk2. This completes the
proof that the asymptotic RM value η(∞) = η0 + η̇0/2νk2 is
exact for any value of μi and ρi, as claimed in Ref. [28].

Although Hide adopted a different approach to derive the
approximate DR [Eq. (14)] his result is equivalent to letting

(γ ) → 
(0) in the exact DR, Eq. (18). We should point
out that the exact DR given in Refs. [17,21], in its standard
form, differs from Eq. (18) by multiplicative factors. This is
discussed by Menikoff et al. [53] who treated the initial-value
problem in a general form. In special cases such as ρ1 = 0 or
μ1 = 0 these factors can vanish and the relationship between
the two forms becomes ill defined. This was another reason
why we went through the standard derivation to arrive at
Eqs. (20) and (22), in addition to identifying which constraint
(continuity of tangential velocity, i.e., no-slip condition) one
must give up when one of the fluids has no viscosity.

Hide’s approximation being an upper bound for γ+, the
largest root of the exact DR [21], γ

approx.
+ may be denoted

by γ
upper
+ . A lower bound γ lower

+ is given by another quartic
equation (Eq. (11) in Ref. [27]). The closeness of these two
bounds (Fig. 2 in Ref. [27]) explains the success of Hide’s
approximation. One can solve that second quartic equation for
γ lower

+ and use the average (γ upper
+ + γ lower

+ )/2 as an improved
estimate for γ

approx.
+ . Successive approximations using New-

ton’s method quickly converge [27], and a first iteration has
been recently reported [54].

Finally, one should not underestimate the following usage
of Hide’s explicit approximation. The exact DR reduces to a
quartic equation only for the four cases [Eqs. (13a)–(13d)]
discussed in this paper. For the general case the exact DR,
γ 2 + γ
(γ ) − gkA = 0, must be solved numerically. All nu-
merical techniques for finding the zeros of an expression call
for a “first guess” and γ

approx.
+ provides an excellent one: By

trying values slightly less than γ
approx.
+ one quickly finds the

numerical value of γ exact
+ , and indeed this was the method we

used to find γ exact
+ needed in Fig. 11.

APPENDIX B: DERIVATION OF EQ. (35)

We now outline the derivation of Eq. (35) for case C, μ1 =
0. Equation (39) is derived similarly for case D, μ2 = 0. These
two cases are more general than the single-fluid case A treated
in Ref. [29] but more specific than the completely general case
(arbitrary μ1 and μ2) treated in Refs. [30,54,55] which must
be solved numerically.

The general solution, Eq. (22) in Ref. [30], can be written
down in terms of its Laplacian transform η̃(s):

η̃(s) = 1

s

(
η0 + sη̇0 + gkAη0

s2 + s
(s) − gkA

)
, (B1)

where 
 is given by Eq. (23) of Ref. [30] and reproduced here
as Eq. (A1) above after replacing the growth rate γ by s, the
parameter for the Laplace transform.

Our notation follows mostly that of Carrier and Chang [29]
since we are essentially extending their one-fluid treatment to
two fluids, plus keeping all η̇0 terms. We will perform several
checks in the intermediate steps.

Let ψ i
y(x, y, t ) be the stream function in fluid i and as-

sume all x dependence to be given by eikx; i.e., ψ i(x, y, t ) =
eikxψ i(y, t ). Denote differentiation with respect to a variable
like x, y, or t by the subscript of that variable and D ≡ ∂

∂y , as

in ∇2ψ = ψxx + ψyy = (−k2 + D2)ψ .
Momentum conservation reads

∇2ψ i
t = νi∇2∇2ψ i. (B2)

The x and y components of the velocity are given by
ψyy = D2ψ and −ψxy = −ikDψ , respectively. Continuity of
the normal velocity at the interface reads

ηt ≡ η̇ = −ψ1
xy(y = 0) = −ψ2

xy(y = 0), (B3)

i.e., η̇ = −ikψ1
y = −ikψ2

y at y = 0.
The tangential stresses must be continuous across the in-

terface. Since

τ i
xy = μi

[
ψ i

yyy − ψ i
xxy

]
, (B4)
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we have

ψ2
yyy = ψ2

xxy at y = 0. (B5)

Without surface tension the normal stresses must also
be continuous: −τyy = p + 2μψxyy = p(0, 0, t ) + ρψxt −
ρgy − μ[ψxxx − ψxyy] in each fluid. Remembering that
μ1 = 0 for case C, it follows that at the interface, y = η,

ρ1ψ
1
xt − ρ1gη = ρ2ψ

2
xt − ρ2gη − μ2

[
ψ2

xxx − ψ2
xyy

]
, (B6)

which can be written as

ρ2ψ
2
t − ρ1ψ

1
t + i(ρ2 − ρ1)

(g

k

)
η + μ2[k2 + D2]ψ2 = 0,

(B7)

with ψ1,2 evaluated at y = 0.
We now take the Laplace transform of the above equations,

denoting the Laplace transform of a quantity by a tilde (∼)
above it. From Eq. (B2) with ν1 = 0 we have

ψ̃1 = A1(s, k)eky, (B8)

while in fluid 2 with ν2 = μ2/ρ2 Eq. (B2) reads

s(D2 − k2)ψ̃2 − ν2(D2 − k2)(D2 − k2)ψ̃2 = 0. (B9)

The solution can be written in the following form:

ψ̃2 = A2(s, k)e−ky + B2(s, k)e−q2y, (B10)

where q2 ≡ (k2 + s
ν2

)1/2. Since ψ2 satisfies Eq. (B5) at y =
0 the functions A2 and B2 are related via the requirement
D(D2 + k2)ψ̃2 = 0 at y = 0, with the result

B2 = −2k3

q2
(
2k2 + s

ν2

)A2, (B11)

so that Eq. (B10) reads

ψ̃2(s, k, y) =
{

e−ky − 2k3e−q2y

q2
(
2k2 + s

ν2

)
}

A2. (B12)

Finally, a relationship between A1 and A2 can be found by
using Eq. (B3) which reads ψ̃1

y = ψ̃2
y at y = 0, with the result

A2 = −
(

2k2 + s

ν2

)(ν2

s

)
A1. (B13)

Substituting (B13) in (B12) we have

ψ̃2 =
{
−

(
1 + 2k2ν2

s

)
e−ky + 2k3ν2

sq2
e−q2y

}
A1. (B14)

Note that ψ̃1 [Eq. (B8)] and ψ̃2 [Eq. (B14)] now satisfy
continuity of the normal velocity Dψ at y = 0, i.e., Dψ̃2 =
Dψ̃1 = kA1, as well as continuity of the tangential stress at
y = 0 which reads D(D2 + k2)ψ̃2 = 0, for any s, implying
any time. These are the same conditions used in the eigenvalue
treatment [17].

The next step is to transform Eq. (B7) using L[ψt (t )] =
sL[ψ (t )] − ψ (t = 0) = sψ̃ − ψ (0). We get

ρ2[sψ̃2 − ψ2(0, 0)] − ρ1[sψ̃1 − ψ1(0, 0)]

+ i(ρ2 − ρ1)
(g

k

)
η̃ + μ2(k2 + D2)ψ̃2 = 0, (B15)

evaluated at y = 0. The initial values ψ1,2(0, 0) are related to
η̇0 ≡ η̇(t = 0) from Eq. (B3):

η̇0 = −ikψ1
y (0, 0) = −ik2ψ1(0, 0) = ik2ψ2(0, 0), (B16)

where ψ1(0, 0) = −ψ2(0, 0) follows from assuming zero
initial vorticity.

From Eq. (B8) ψ̃1(y = 0) = A1. From Eq. (B14)
ψ̃2(y = 0) = {−1 − 2 k2ν2

s + 2 k3ν2
sq2

}A1(s, k) and (k2 + D2)ψ̃2

(y = 0) = {−2k2 − 4k4ν2
s + 2k3

q2
+ 4k5ν2

sq2
}A1. Substituting these

expressions in Eq. (B15) we get{
−s(ρ2 + ρ1) − 4k2μ2 + 4k3μ2

q2
− 4k4ν2μ2

s
+ 4k5ν2μ2

sq2

}
A1

= − i(ρ2 + ρ1)η̇0

k2
− ig(ρ2 − ρ1)η̃

k
. (B17)

Next, we substitute for A1(s, k) by transforming Eq. (B3):

sη̃ − η0 = −ikψ̃1
y (y = 0) = −ik2A1. (B18)

Substituting Eq. (B18) in Eq. (B17) and collecting terms
we have

sη̃ − η0 = gkAη0 + sη̇0

s2 + 2ν2
2 (1 + A)k2(q2 − k)q2 − gkA

. (B19)

We now pause to compare the above equation
with Eq. (B1). Consistency requires that s
(s) =
2ν2

2 (1 + A)k2(q2 − k)q2, so we study 
(γ ) given in Eq. (A1)
in the limit μ1 → 0, meaning q1 → ∞. In this limit we need
keep only terms proportional to q1 in N and D:

N → −kμ2

[
ρ2 + kμ2(k − q2)

s

]
q1,

D → −ρ2(ρ2 + ρ1)q1.

The q1 factors in N and D cancel out and 
 = 4kN/D
is finite and we verify that s
(s) indeed equals the middle
term in the denominator of Eq. (B19). This is an independent,
nontrivial check of our calculations at this intermediate stage.

The final stage is to invert Eq. (B19) to find η(t ). First, note
that for the classical inviscid case 
 → 0 and the denominator
in Eq. (B19) becomes s2 − gkA (q2 diverges only as 1/

√
μ2

while ν2 ∼ μ2 → 0; hence the middle term vanishes). Writing
s2 − gkA = (s − γ+)(s − γ−) with γ± = ±√

gkA and using
partial fractions, the result of the inversion is Eq. (6). For the
viscous case using the approximation 
(s) = 2νk2 = const.,
the same procedure leads to Eq. (2) in which γ± are given by
the two solutions to Eq. (14).

The steps are more complicated with the exact kernel
appearing in the denominator of Eq. (B19). We define Z ≡
q2

k = (1 + s
ν2k2 )1/2 and write Eq. (B19) as

sη̃ − η0 =
AQ2η0 + (

s
ν2

2 k4

)
η̇0

Z4 + 2AZ2 − 2(1 + A)Z + 1 − AQ2
, (B20)
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with Q2 ≡ g/ν2
2 k3 as before [Eq. (21)]. Note that the denom-

inator in the above equation is the same as the left-hand
side of Eq. (20) with γ ↔ s. In that equation this fourth-
order polynomial is set equal to zero because Eq. (20) stands
for Det(M ) = 0, the condition necessary for solving the set
of equations (three in this case, four in the general case)
capturing the continuity and other conditions imposed on the
eigenfunctions, as is done in a typical eigenvalue problem
[17] leading to a dispersion relation like Eq. (20), D(z) = 0.
Here, however, we set the same polynomial equal to zero
for a purely mathematical purpose: We set Z4 + 2AZ2 −
2(1 + A)Z + 1 − AQ2 = 0 so that we can find its four roots,
Zi, i = 1 − 4, write the polynomial as a product of four
factors, and write Eq. (B20) as

η̃ = η0

s
+

η̇0

ν2
2 k4 + AQ2η0

s

(Z − Z1)(Z − Z2)(Z − Z3)(Z − Z4)
. (B21)

Clearly, Zi = Zi(A, Q2). We do so to use partial fractions,

1∏4
i=1 (Z − Zi )

=
4∑

i=1

1

D′(Zi )(Z − Zi )
, (B22)

where the derivative D′(z) = 2(2Z3 + 2AZ − 1 − A). Thus
isolated, each term in the sum can be inverted using well-
known results from Laplace transforms. The roots satisfy the
following relations:

4∑
i=1

1

D′(Zi )
= 0, (B23a)

4∑
i=1

Zi

D′(Zi )
= 0, (B23b)

4∑
i=1

Z2
i

D′(Zi )
= 0, (B23c)

and

4∑
i=1

Z3
i

D′(Zi )
= 1. (B23d)

Equation (B21) reads

η̃ = η0

s
+

4∑
i=1

η̇0

ν2
2 k4 + AQ2η0

s

D′(Zi )(Z − Zi )
. (B24)

The inverse of the first term, η0/s, is simply η0. In the remaining terms we have to invert expressions like 1/(Z − Zi ) and
1/s(Z − Zi ), using the definition of Z in terms of s (see above). We use

L−1

(
1

Z − Zi

)
= k

√
ν2L−1

{
1√

s + ν2k2 − k
√

ν2Zi

}

= k
√

ν2e−ν2k2t

{
1√
πt

+ k
√

ν2Zie
ν2k2Z2

i t erfc(−k
√

ν2Zi

√
t )

}
. (B25)

Note that the first term above, containing 1/
√

πt , is independent of Zi and hence will drop out when forming the sum over i
and using Eq. (B23a).

Somewhat more complicated is the inversion of 1/s(Z − Zi ) terms. Using

L−1

[
g(s)

s

]
=

∫ t

0
f (u)du, (B26)

where f (t ) ≡ L−1[g(s)], we need to integrate over the right-hand side of Eq. (B25), i.e., evaluate an integral of the form

I ≡
∫ t

0
ebuerf (a

√
u)du. (B27a)

Transforming
√

u = x and integrating by parts, the result is

I = ebt

b
erf (a

√
t ) − a

b
√

a2 − b
erf (

√
a2 − b

√
t ). (B27b)

Since erfc(z) ≡ 1 − erf (z) we have

L−1

[
1

s(Z − Zi )

]
= k2ν2Zi

∫ t

0
ek2ν2(Z2

i −1)u[1 − erf (−k
√

ν2Zi
√

u)]du

= k2ν2Zi

{
ek2ν2(Z2

i −1)t − 1

k2ν2
(
Z2

i − 1
) −

∫ t

0
ek2ν2(Z2

i −1)uerf (−k
√

ν2Zi
√

u)du

}

= Zi

Z2
i − 1

(
ekν2(Z2

i −1)t − 1
) + Zi

Z2
i − 1

ek2ν2(Z2
i −1)t erf (k

√
ν2Zi

√
t ) − Z2

i

Z2
i − 1

erf(k
√

ν2

√
t ). (B28)
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Using Eqs. (B25) and (B28) we can now invert Eq. (B24) to obtain

η(t ) = η0 + AQ2η0

4∑
i=1

1

D′(Zi )

(
Zi

Z2
i − 1

)[
ek2ν2(Z2

i −1)t erfc(−k
√

ν2Zi

√
t ) − 1 − Zierf (k

√
ν2

√
t )

]

+ η̇0

k2ν2

4∑
i=1

Zi

D′(Zi )
ek2ν2(Z2

i −1)t erfc(−k
√

ν2Zi

√
t ). (B29)

We have used erfc(−z) = 2 − erfc(z) = 1 + erf (z).
As a check, note that Eq. (B24) can be written as

sη̃ − η0 =
4∑

i=1

AQ2η0 + sη̇0/ν
2
2 k4

D′(Zi )(Z − Zi )
. (B30)

The left-hand side of the above equation is the Laplace transform of η̇(t ). Therefore

η̇(t ) =
4∑

i=1

1

D′(Zi )

{
AQ2η0L−1

(
1

Z − Zi

)
+ η̇0

ν2
2 k4

L−1

(
s

Z − Zi

)}

=
4∑

i=1

Zi

D′(Zi )

[
AQ2η0k2ν2 + (

Z2
i − 1

)
η̇0

]
ek2ν2(Z2

i −1)t erfc(−k
√

ν2Zi

√
t ). (B31)

The same result is obtained by differentiating Eq. (B29), using the “sum rules” given in Eqs. (B23a)–(B23d). Integrating the
above equation is another way of deriving Eq. (B29).

Equation (B29) can be simplified. The coefficient of the term erf(k
√

ν2
√

t ) is

4∑
i=1

Z2
i

D′(Zi )
(
Z2

i − 1
) =

4∑
i=1

1

D′(Zi )
(
Z2

i − 1
) , (B32)

where we have subtracted and added 1 to the numerator Z2
i and used Eq. (B23a). To simplify further we adopt a technique

pioneered by Prosperetti [56] and here give only the essential elements for the problem at hand. The basic idea is to factor
the sixth-order polynomial D(Z )(Z2 − 1). In Prosperetti’s notation, ci = Zi for i = 1 − 4 and choose c5 = −c6 = 1. With D(Z )
given by Eq. (20) we have P6,5 = 2D(1) = −2AQ2 and P6,6 = −2D(−1) = −2[4(1 + A) − AQ2]. Now, from Ref. [56],

0 = S6(0) =
6∑

i=1

1

P6,i
=

4∑
i=1

1

D′(Zi )
(
Z2

i − 1
) + 1

P6,5
+ 1

P6,6
, (B33)

from which

4∑
i=1

1

D′(Zi )
(
Z2

i − 1
) = 1

2AQ2
+ 1

2[4(1 + A) − AQ2]
= 2(1 + A)

AQ2[4(1 + A) − AQ2]
, (B34)

to be used in Eq. (B32).
The last term in Eq. (B29) that can be simplified by this technique is

∑4
i=1

Zi

D′(Zi )(Z2
i −1)

, the coefficient of the -1 term in
Eq. (B29). We use [56]

0 = S6(1) =
4∑

i=1

Zi

D′(Zi )
(
Z2

i − 1
) + Z5

P6,5
+ Z6

P6,6
, (B35)

from which

4∑
i=1

Zi

D′(Zi )
(
Z2

i − 1
) = − Z5

P6,5
− Z6

P6,6
= − 1

P6,5
+ 1

P6,6

= 1

2AQ2
− 1

2[4(1 + A) − AQ2]
= 2(1 + A) − AQ2

AQ2[4(1 + A) − AQ2]
. (B36)

The rest of the terms in Eq. (B29) cannot be simplified by Prosperetti’s technique because Zi appears in the exponential as
well as the complementary error function erfc. Substituting Eqs. (B32), (B34), and (B36) in Eq. (B29) and collecting terms we
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arrive at

η(t )

η0
= 2(1 + A)erfc(k

√
ν2t )

4(1 + A) − AQ2
+

4∑
i=1

Zi

D′(Zi )

[
AQ2

Z2
i − 1

+ η̇0

η0k2ν2

]
e(Z2

i −1)k2ν2t erfc(−Zik
√

ν2t ), (B37)

which is the result given in Eq. (35). It is instructive to set t = 0 in the above equation and check that indeed η(t = 0) = η0

and η̇(t = 0) = η̇0, two arbitrary constants of the initial-value problem. Much more work is required to show that the above
expression reduces to the inviscid result, Eq. (6), in the limit ν2 → 0.
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