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Rotating polygonal depression soliton clusters on the inner surface of a liquid ring
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We report an experimental observation of rotating depression soliton sets on the inner surface of a viscous
liquid ring, carrying background waves. These occur within a rotating shallow layer of oil inside a stationary
cylindrical container. The solitons are organized either in single, two, or regular polygonal (triangle and hexagon)
clusters; they travel in unison at a higher speed than the background traveling waves. The spectral power density
reveals a possible energy exchange between the soliton clusters and the background mixed radial-azimuthal
modulations through wave radiation.
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I. INTRODUCTION

Russell in 1834 was the first to observe a soliton (or solitary
wave) in the Union Canal in Scotland [1]. This intriguing
localized wave pulse was seen to travel along the waterway
without appreciable change in its shape and speed. Today this
phenomenon is encountered in various physical systems that
include water waves [2–8], acoustic waves on a crystal lattice
[9], plasmas [10,11], optical fibers [12], conducting polymers
[13], superconductors [14], Bose-Einstein condensates [15],
DNA dynamics [16], quantum field theory [17], and in the
early-Universe cosmology [18]. They are also encountered in
technology as in telecommunications [19], optics [20], and
information systems processing [21]. Solitons are not limited
to very long and shallow media such as channels, fiber optics,
electric lines and others, but they also emerge in compact and
bounded geometry systems such as liquid droplets [22,23] and
confined rotating flows with free surface [24,25].

In 1990, Vatistas reported two phenomena associated with
symmetry breaking of free surface in confined rotating flows
inside a stationary cylindrical container [26]. The first deals
with the formation of rotating polygonal patterns within a
water hollow-core vortex, produced by a spinning disk located
at the bottom of the tank. The second involves the formation
of a revolving solitary wave during drainage of water from a
cylindrical container through a small central opening located
at the bottom. The former phenomenon has been the focus
of sustained research [25,27–33] while the latter has received
less attention [24,25].

In this paper, we report the coexistence of both features,
associated with the symmetry breaking of free surface in
confined rotating flows, namely, the polygonal patterns and
revolving circular solitary waves. The phenomenon occurs on
the inner surface of a viscous fluid ring, which is formed when
a shallow layer of oil is driven in rotation by a revolving
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circular flat disk inside a stationary cylindrical container.
The smooth inner surface of the ring undergoes its first
instability that gives rise to azimuthal wave modulations or
traveling waves. When these waves are perturbed or the disk
speed is increased, they can evolve into regular polygonal or
quasipolygonal patterns or stable rotating depression (dark)
soliton clusters. These solitons are symmetrically distributed
along the interior periphery of the viscous fluid ring; they
are organized in groups of single, two, and regular polygonal
soliton clusters (triangle and hexagon). It is worth highlighting
that the depression soliton is not as common as the single heap
type in fluid free-surface dynamics context [2,34,35].

Due to the analogy between the waves in optics and the
surface waves in fluids [2], we hypothesize that the observed
soliton clusters in the present experiments could be similar to
the multisoliton clusters in the form of rotating ringlike found
in bulk optical media [36] and to quasipolygonal stable soliton
clusters encountered in nonlinear optics [37].

II. EXPERIMENTAL DETAILS

The experiments were conducted in the apparatus shown
schematically in Fig. 1. It consists of a 284-mm-diameter
cylindrical container with a sealed bottom and a top open
to the atmosphere. A 283-mm-diameter rotating solid disk,
firmly attached to an axle, was placed near the bottom. The
flywheel shown in the figure dampens any possible fluctua-
tions of the angular velocity of the disk. Since the clearance
between the container and the disk was small (1 mm), the
evolving phenomenon was assumed to unfold in a stationary
vessel with practically a rotating bottom plate. The disk was
rotating in the counterclockwise direction, and an electronic
controller regulated its speed. The disk imparts angular veloc-
ity to a shallow layer of spindle oil (Mobil Velocite Oil No. 6)
having a kinematic viscosity of 22.69 cSt. The experiments
were conducted at three different fluid heights—8, 10, and
12 mm—of oil above the rotating disk (at rest). The phe-
nomenon was imaged using a CMOS camera (PCO.1200hs
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FIG. 1. Schematic of the experimental setup: The present tests
were conducted using Spindle Mobil Velocite Oil No. 6. The height
of the (quiescent) oil layer h0 was 10 mm, and the disk and tank radii
were Rd = 141 mm and Rt = 142 mm, respectively.

model) mounted on the top of the container to record temporal
images of the hollow core. The camera acquired a sequence
of resolution of 1280 × 1024 pixel images for each mode at
a rate of 500 frames per second as 8-bit grayscale. A lighting
system consisting of three circular fluorescent bulbs each with
2600 lumens output was used to capture images with the best
quality and maximum resolution.

III. RESULTS AND ANALYSIS

The formation of the oil ring and its inner surface dynamics
are first illustrated in Fig. 2. The revolving fluid develops a
centrifugal force that pushes the liquid toward the reservoir
wall. The retreating liquid exposes part of the surface of
the disk to air whereby the line of intersection between the
surfaces of the solid disk, the liquid, and air outlines the core
shape. For low rotational speeds the oil vortex core remains
circular (mode n = 0) [see Fig. 2(a)]. At a higher disk speed,
the vortex core remains circular but a second circular line ap-
pears near the container wall [see Fig. 2(b)]. This line marks a
topological change of the fluid region between the wall and the
hollow core. The last causes the formation of oil torus or fluid
ring, which leans back against the concavity near the wall.
By further increasing the disk speed, the inner ring becomes
unstable and trains of n waves are propagating around the oil
toroid surface as illustrated in Fig. 2(c). By increasing the
disk speed much further, the traveling waves evolve into a
polygonal pattern (heptagon), as shown in Fig. 2(d).

The instabilities of the oil ring depend on the oil viscosity,
the initial oil height, and the disk speed. These give rise to

FIG. 2. Formation of the oil ring and the evolution of its inner
free surface into a polygonal pattern through traveling waves with
increasing disk speed: (a) disk speed = 63 rpm, (b) disk speed =
99 rpm, (c) disk speed = 126 rpm, and (d) disk speed = 155 rpm.
Initial oil height h0 = 10 mm.

various intriguing dynamics of the inner free surface in-
cluding, wobbling, breathing, quasistationary, and retrograde
modes. However, the most striking of all is the formation of
rotating depression solitary wave clusters, shown in Figs. 3
and 4. The soliton clusters are found to travel faster than
the traveling waves in the same direction. Besides the single
soliton, the rest are symmetrically positioned in the apexes of
regular polygons as shown in Figs. 3–5. It is worth highlight-
ing that the soliton clusters are not transient; they persist as
long as the disk speed—the control parameter used here—
is not varied. While one-soliton and two-soliton states are
stable vis à vis external perturbations, the triangular and the

FIG. 3. Cluster of solitary waves observed at h0 = 10 mm: (a)
one solitary (disk speed = 114 rpm) wave, (b) two solitary waves
(disk speed = 117 rpm), (c) three solitary waves (disk speed =
126 rpm), and (d) six solitary waves (disk speed = 126 rpm).
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FIG. 4. Solitary wave profiles: (a) one solitary wave, (b) two solitary waves, (c) three solitary waves, and (d) six solitary waves.

hexagonal soliton clusters exchange their stability. In fact, for
the same disk speed a perturbation to one of the clusters can
cause its bifurcation into another one. Additionally, it is also
worth pointing out that clusters of four and five solitons were
not observed.

Figure 5 shows the spatiotemporal wave dynamics of the
inner surface of the ring, determined using an image pro-
cessing algorithm implemented in the MATLAB environment.
The algorithm includes image segmentation to extract the
contours of the inner perimeter of the oil ring shown in Fig. 3.
This operation converts the original 8-bit grayscale image
into a binary image using a suitable threshold. The noise in
the resulting binary image was filtered out using a low-pass
Gaussian filter. The contours of the oil ring inner perimeter
were extracted using the standard edge detection procedure.
These contours were then filtered using a zero-phase filter to
ensure that the contours have no phase distortion.

In Fig. 5, the white lines correspond to the waves of highest
amplitudes (solitons), stemming from the angle axes (t = 0
s). Figure 5 shows a set(s) of one, two, three, and six solitons
traveling in unison around the inner surface of the fluid ring.
The soliton clusters coexist with large wave number back-
ground traveling waves. These waves have relatively smaller
amplitudes in comparison to those of the solitons. Video
recordings, showing the orbiting soliton clusters and traveling
waves on the inner surface of the oil ring, are provided in the
Supplemental Material [38].

To deepen our understanding of the wave dynamics on the
inner perimeter of the oil ring, the spectral energy density
method was used to predict the dispersion relations. The full
space and time-resolved power spectrum of wave amplitude,
Sη(ω, k), was computed from each set of inner perimeter

contour deformation η(θ, t ). We performed successively
Fourier transforms in both space and time on η(θ, t ), depicted
in Fig. 6. The operation was performed on 4000 images, taken
at 500 frames per second, corresponding to a duration of
approximately 8 s. The spatiotemporal power spectra Sη(ω, k)
of the free-surface displacement η(x, t ) as a function of the
dimensionless wave number k and the angular frequency ω

are shown in Fig. 6. This figure represents the experimental
dispersion relations, corresponding to the distribution of en-
ergy over the Fourier space (ω ≡ 2π f , k ≡ 2π/λ) where λ is
the dimensionless wavelength and f is the frequency of the
waves. Equivalently, Fig. 7 gives the spatial amplitude for all
time signals analyzed.

From Fig. 6 it is shown that the energy of the wave dy-
namics is distributed over relatively large intervals of angular
frequency ω and dimensionless wave number, k. Angular
frequency ω ranges from 0 to 30 rad/s, while k spans from
0 to approximately 2.8. The resulting wave spectra or the
experimental dispersion relations depicted in Figs. 6(a)–6(d)
consist mainly of three branches (outlined by the dashed
lines). The large numbers of discrete peaks, corresponding
to relatively high wave amplitudes, are clustered along the
main branch (straight lines in Fig. 6). This stands for the
rotating solitons, their amplitude modulations, and the wave
dynamics in their vicinity, which are triggered as they travel
and interact with the background waves (see Figs. 4 and 7).
This can explain the fact that the wave spectrum or the Fourier
transform is spread over large intervals (ω, k) along the main
branch. It is worth recalling that the wavelength λ is defined as
2π/n where n is an integer which represents the wave mode
or the number of crests along the perimeter. In other words,
the wave number k is defined as n/2π .
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FIG. 5. Unwound surface contours depicted in the space-time (θ, t) plane. Soliton clusters (brighter) on background traveling waves:
(a) one solitary wave, (b) two solitary waves, (c) three solitary waves, and (d) six solitary waves.

The second branch locates above the main one, and re-
veals the existence of a frequency cutoff and an asymptotic
wave number. From Fig. 6(a) the cutoff angular frequency

and the wave number are approximately ωc = 7 rad/s and
kc = 0.65, respectively. The asymptotic dimensionless wave
number corresponds to the mode n ≈ 4 (n = 0.65 × 2π ).

FIG. 6. Power spectra Sη(k, ω) of the inner interface of the fluid ring, η(x, t ): (a) one solitary wave, (b) two solitary waves, (c) three solitary
waves, and (d) six solitary waves.
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FIG. 7. Spatiotemporal wave dynamics of the inner surface of the ring: (a) one solitary wave, (b) two solitary waves, (c) three solitary
waves, and (d) six solitary waves.

The second branch stands for the radial modulation of the ring
shape, which appears as a quasistanding wave of wave number
n = 4 in Fig. 7(a). This quasistanding wave or the radial
modulation of the oil ring inner perimeter, should correspond
to a kind of breathing or varicose mode of the oil ring. Similar
quasistanding waves with wave number n = 4 are found in
Figs. 6(b)–6(d) and Figs. 7(b) and 7(c). Although captured
in Fig. 6(d), the quasistanding wave with n = 4 is not as
clear in Fig. 7(d), possibly due to their strong interaction with
the hexagonal soliton cluster and the traveling waves. The
latter propagate at constant speeds but slower than the soliton
cluster; they are depicted in Fig. 6 by the third branch, which
lies below the main one.

The third branch of the dispersion curves shows that the
energy of the traveling waves is distributed over a large
scale of dimensionless wave numbers k. For instance, the
horizontal straight lines in Figs. 6(a) and 6(b) spread over
a large dimensionless wave number interval that extends up
to approximately k = 2.4, which corresponds to n = 15 (n =
2.4 × 2π ). This is consistent with the number of traveling
waves depicted in Figs. 5(a) and 5(b). In Figs. 6(c) and
6(d), the third branch becomes convex but remains below the
main one, which means that the speed of the traveling waves
remains slower than that of the soliton clusters. The upper
limit of the dimensionless wave number, k, increases slightly,
which corresponds to a higher mode of traveling waves, i.e.,
n = 17 and n = 16, respectively [see Figs. 5(c) and 5(d)].
However, a traveling wave with n = 16 is barely visible in
Fig. 5(d). As indicated previously, this is possibly due to the
strong interactions between the three types of waves depicted
by the three dispersion relation branches above.

In Fig. 6, one can also notice the energy distribution
over discrete wave number and angular frequency intervals
between the three branches or dispersion curves. Since the
oil ring can be considered as a compact bounded geometry
or as a closed system in itself, the presence of discrete
points, (k, ω), between branches suggests energy exchange,
through wave radiation between the mixed radial-azimuthal
modulations (background waves) and the soliton clusters. This
may also explain the shift of the third branch toward the
higher frequencies and its convexity in Figs. 6(c) and 6(d).
The convexity of the third branch can be also interpreted as a
rise of wave dispersion.

The present research shows that a rotating shallow layer
of spindle oil can lead to the formation of a fluid ring.
The initial ring with a smooth and circular inner surface
develops a first instability. This leads eventually to the forma-
tion of quasistationary and traveling background waves. We
found in this work that the fluid ring carrying mixed radial-
azimuthal modulations can evolve into single, two, triangular,
and hexagonal soliton clusters. Here, we test whether or not
the well-known Korteweg–de Vries theoretical sech2 profile
curve fits the experimental profile of the soliton in space
and time (see Fig. 8). It shows that the profile of the soliton
in space can be curve fitted fairly well in space by sech2.
However, considering the soliton celerity, the sech2 profile
does not match well the profile in time. This may perhaps
suggest that the observed clusters of depression solitary waves
cannot be fully modeled by the Korteweg–de Vries equation.
Consequently, one should explore the possibility whether they
can be described by other well-known nonlinear equations
such as the nonlinear Schrödinger or cubic-quintic complex
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FIG. 8. Curve fitting of the typical experimental soliton by sech2 profiles: (a) in time and (b) in space.

Ginzburg-Landau equation, which describe fundamental soli-
ton and polygonal soliton clusters [37,39].

IV. CONCLUDING REMARKS

The polygonal soliton clusters reported in this contribution
give rise to a new paradigm. Although these soliton clusters
were observed in the same apparatus that we have used in the
past, they are fundamentally different from those found in a
shallow layer of water. In fact, the polygonal patterns observed
in a shallow layer of water occur in the inner solid-body
region of the hollow core vortex, while the polygonal soliton
clusters reported here occur in a thin spindle oil ring. The
oil ring topology is most probably due to the shear thinning
propriety of spindle oil and not only to the oil viscosity. In fact,
the pattern observed with various glycerin-water mixtures,
much more viscous than water, resembles the one observed
with water [29]. The observed solitons appear to be of nearly
the same amplitude and they occur in a very narrow range
of the rotating disk speed (between 114 and 126 rpm). The
control of the conditions of their occurrence remains elusive;
their occurrence depends on various parameters, e.g., type of
oil, disk speed, initial height of the oil, and perhaps surface
tension.

Various explanations of the polygonal patterns in water
can be found in the literature depending on the model of the
hollow-core vortex. For instance, the patterns are explained
as a resonance between gravity and centrifugal waves, when
the hollow-core vortex is considered as potential [40]. When
the hollow-core vortex is modeled as a Rankine vortex, the
polygonal patterns are explained as the result of the inter-
action between gravity and “Kelvin-centrifugal” waves [41].
Contrasting with the wave approach of the polygonal patterns
phenomenon, these are seen as Kelvin’s equilibria or a result
of the satellite vortices at the apexes of the polygonal patterns
[26–28]. Unlike water used in the aforementioned studies on
the formation of polygonal patterns, the non-Newtonian prop-
erties of the Spindle oil possibly give rise to the dynamical
behavior observed in this work.

It is worth noting that the polygonal soliton clusters ob-
served here on an oil ring, which can be considered as
compact bounded geometry, can be related to those unfolding
in another compact bounded geometry, namely, liquid drop. In
fact, the present liquid ring can be considered as topologically
similar to liquid drop. The latter is known to support traveling
wave solutions, which can evolve from small oscillations to
cnoidal waves, and to solitary waves [22,42]. It is worth noting
that liquid drop paradigm was used to give reason to a diverse
set of scientific and technological problems [23].
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