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Fluid flow through packings of elastic shells
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Fluid transport in porous materials is commonly studied in geological samples (soil, sediments, etc.) or
idealized systems, but the fluid flow through compacted granular materials, consisting of substantially strained
granules, remains relatively unexplored. As a step toward filling this gap, we study a model of liquid transport
in packings of deformable elastic shells using finite-element and lattice-Boltzmann methods. We find that the
fluid flow abruptly vanishes as the porosity of the material falls below a critical value, and the flow obstruction
exhibits features of a percolation transition. We further show that the fluid flow can be captured by a simplified
permeability model in which the complex porous material is replaced by a collection of disordered capillaries,
which are distributed and shaped by the percolation transition. To that end, we numerically explore the divergence
of hydraulic tortuosity τH and the decrease of a hydraulic radius Rh as the percolation threshold is approached.
We interpret our results in terms of scaling predictions derived from the percolation theory applied to random
packings of spheres.
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I. INTRODUCTION

The physics of fluid flow through disordered porous media
is of fundamental importance to a wide range of engineering
and scientific fields, including enhanced oil recovery, car-
bon capture and storage, contamination migration in ground-
water, water transport, and nutrient transport in tissues and
microbial colonies [1–5]. This has led to a substantial effort
in looking for relationships between the effective physical
transport properties and the structural properties of porous
materials. In spite of the extensive work that has been done, a
full description of liquid transport in a broad range of material
parameters is elusive [6]. Experimental studies, especially in
3D systems, are limited because imaging material samples
and resolving fluid flow stream lines are challenging tasks
[7–10]. Numerical studies are most often tackled in 2D due to
the high computational burden [11–16]. Even though a broad
range of material porosities in 2D systems has been covered,
a drawback of these studies is that, for disordered materials,
the percolation transition coincides with the rigidity transition
[17]. For 3D systems, simulations are commonly performed
for an idealized model of randomly distributed interpenetrat-
ing objects like cubes or spheres [18–21]. These systems are
good prototypes to study critical phenomena, but liquid trans-
port in complex geometries depends on boundary condition
details; thus, the relevance of these models for actual materials
is not clear [22]. There is also work done on fluid transport in
geometries obtained from the microtomography of collected
materials. However, these studies are performed usually for
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a small number of samples and at relatively high porosity
[23,24].

In recent years, the interest in granular systems made of
deformable and strongly compacted elastic shells and mem-
branes increased [25–27]. This class of models is of interest
not only in physics and engineering, but also increasingly in
biological research of small cell clusters [28,29], epithelial
cells [30], and jammed microbial packings in confined spaces
[4,31]. Henceforth, in this work, we focus on a 3D model of
granular materials where particles are represented as elastic
spherical shells, with the volume of these shells kept con-
stant (motivated by experimental work on confined microbial
populations [4,31]). For such a model of the granular system,
we numerically study a single-phase viscous flow in Darcy’s
regime, i.e., laminar flow with a linear relation between
volumetric flow and pressure gradient. We consider packings
in a broad range of porosities, from the point the packings
start to be mechanically stable (jamming transition [32]) down
to the porosities where the liquid transport ceases to exist
(percolation transition [17]). We mainly focus on a model
by Kozeny and Carman [33,34]—the classical permeability-
porosity framework. First, we briefly introduce the Kozeny-
Carman model. Then, we present how the key features of
the Kozeny-Carman model can be physically grounded in a
percolation theory. Finally, we present numerical evidence on
how different structural features of granular porous material
contribute to the fluid transport in granular porous media.

A. Kozeny-Carman model

Permeability κ measures the ability of fluid to flow through
porous media and it is part of the proportionality constant in
Darcy’s law, the relation between the fluid volumetric flux U

2470-0045/2019/99(2)/023103(15) 023103-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.023103&domain=pdf&date_stamp=2019-02-08
https://doi.org/10.1103/PhysRevE.99.023103


PAWEL GNIEWEK AND OSKAR HALLATSCHEK PHYSICAL REVIEW E 99, 023103 (2019)

(discharge per unit area) and a pressure gradient:

U = −κ

η
∇P(r), (1)

where U is given in units of length/time, η is the dynamic
viscosity of the fluid, and P(r) is the pressure at the location
r. This phenomenological relation is valid at low Reynolds
numbers when the flow is laminar. For small pressure gra-
dients, we can further assume ∇P = �P/L, where L is the
linear size of the system.

For low Reynolds number flow in a straight and cylin-
drical capillary channel, the volumetric flux is given by the
Poiseuille equation:

U = −B
R2

η

�P

L
, (2)

where R is the radius of a capillary, B is a numerical factor,
and L is the length of the capillary. If a capillary occupies
only a fraction of the material, the liquid discharge per area
unit is correspondingly lower. Assuming that the capillaries
are homogeneously distributed in the material, the scaling
factor is the amount of the void space in the material, called a
porosity φ:

U = −φB
R2

η

�P

L
. (3)

For capillaries that are not straight, Kozeny pointed out
that due to the tortuous character of the flow, the length of
the equivalent channels should be 〈λ〉 ≡ τH × L, where τH is
called hydraulic tortuosity, and the fluid discharge needs to be
scaled down by it [33]. Carman further reasoned that it takes
τH times more time to discharge the same amount of fluid
through porous media than it takes for straight capillaries (in
a macroscopic direction of the flow). Thus, the discharge rate
should additionally be τH -times smaller [34]. Capillaries are
not limited to just the circular cross-sections. For the general
shape of the capillary, the radius R is commonly replaced
by a hydraulic radius Rh [35] (defined as the ratio of the
cross-sectional area normal to flow to the wetted perimeter of
the flow channels), but sometimes other parameters are used,
for example, the critical pore radius [36].

Thus from Eq. (3), the final relation for the capillary flow
in a porous material is [34]

U = −B
φR2

h

τH × η
× �P

τH × L
= −B

φR2
h

τ 2
H

1

η
∇P. (4)

Comparing Eq. (1) with Eq. (4), a general formula for
permeability reads

κ = B
φR2

h

τ 2
H

(5)

and is called the Kozeny-Carman equation. Despite being
semiempirical, Eq. (4) is commonly used as a simple model
for the permeability in porous materials.

II. METHODS

A. Packings of deformable shells

1. Generation of compressed packings

The initial packings of the shells are generated using a
standard jamming, with a periodic boundary conditions algo-
rithm [32], see Sec. A 2 for more details. Starting from these
jammed packings, more compacted packings are generated
by changing a linear dimension of the simulation box. The
changes of the box size are minute, and less than 0.4% of the
size of an elastic shell. After every box size change, the me-
chanical stresses are relaxed using the FIRE algorithm [37].

2. Shells mechanics

Every shell is modeled as a membrane using about 5000
triangular finite elements per shell. The ratio of a shell thick-
ness t to the initial diameter D0 is t/D0 = 0.02, so bending
effects can be neglected and the shell material is modeled as an
isotropic St. Venant-Kirchhoff membrane [38,39]. All of the
shells are slightly pressurized at the beginning of the simula-
tion, with initial pressure P0, and filled with an incompressible
liquid. The ratio between P0 and the Young’s modulus of the
shell E is equal to P0/E = 0.0025. The force due to the shell
volume-dependent pressure P(Vshell ) on a vertex i is calculated
as: F (ri ) = ∇ri [P(Vshell )Vshell] where Vshell(r1, . . . , rNvert ) is a
function of the Nvert vertices in the mesh and the volume
change for the vertex i is calculated using the tetrahedral
volume defined by the vertex i, its neighboring vertices in the
mesh, and the center of the mass [4,31]. Once the mechanical
forces are equilibrated, the constant shell volume constraint
is enforced by varying the shells’ internal pressures. If the
volume of a shell is not equal to the preassigned value V0, the
pressure is adjusted to the new value Pnew = Pold[1 + (V0 −
V )/V ]. This inevitably drags the system out of mechanical
equilibrium and the system needs to be equilibrated again. The
protocol continues until the volumes of the shells reach their
preassigned volumes within 0.1% of accuracy [31].

B. Identification of a percolating cluster

To identify clusters that percolate the void space between
the shells, we project a packing of shells onto a 3D lattice
with a lattice constant δ; see Fig. 1(a). Every lattice site
that contains a shell’s vertex is considered impermeable to
the liquid; see Fig. 1(a). The shells are represented as finite
elements. Thus, for a small enough lattice constants δ, the
membrane is permeable to the liquid, i.e., the liquid can
enter the interior of the shell. This problem can be overcome
by identifying impermeable lattice sites using triangles de-
fined by vertices rather than by vertices alone. However, the
midsurface plane is used to represent the three-dimensional
shells in two-dimensional form, so even though two shells
are in contact, there is a finite gap between their midsurfaces;
see Fig. 1(b). Thus, below a certain lattice size δc ≈ 0.025,
the packings can be permeable due to this finite gap, and
percolating clusters identified for δ < δc are dubious.

Finally, we look for a percolating cluster using the
connected-component labeling algorithm (implemented in the
scipy.ndimage Python library). The cluster is said to perco-
late the system if it contains lattice sites on the two opposite
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(a)

(b)

FIG. 1. Identification of a percolating cluster: (a) A schematic of
a 2D system projected onto a lattice with two different lattice sizes
(non-periodic boundary conditions are assumed for clarity). Every
lattice site that contains any part of a particle (yellow shapes) is
considered to be occupied and impermeable to liquid (white squares).
For the lattice resolution δ1 and a given configuration, there is no
percolating cluster capable of carrying liquid through the packing,
but there are some unoccupied lattice sites (green squares). For the
lattice size δ2, there is a percolating cluster (blue squares). There are
also some unoccupied lattice sites (green squares) that do not belong
to the percolating cluster. (b) A sketch of two elastic shells in contact.
Shells are represented by midsurfaces, so despite the fact that they are
in contact, there is a finite gap between them (δc ≈ 0.025).

sides of the simulation box. One of the characteristic length-
scales in the system is the initial diameter of a shell, D0.
We choose to express the lattice sizes, δ, in units of D0. In
principle, we would like to generate a lattice with δ → 0 as we
want to estimate a fluid flow in the continuum limit. However,
due to the aforementioned limitations, the resolution of the
lattices in our study is finite and varies from a coarse one to a
fine one, and it is in the range [0.03, 0.07]. Finally, percolation
clusters identified in this way are used for hydraulic radius and
lattice-Boltzmann calculations.

C. Lattice-Boltzmann simulations

Velocity fields of the fluid flow through the packings of
the shells are solved with the lattice-Boltzmann (LB) method
[40] using the D3Q19 lattice. This method was proven to
be successful in studies of liquid flow in porous materials
[11–14,16,18–21,23,24,41–45]. We use this method to obtain
a solution to the Navier-Stokes equation for the flow in low

Reynolds numbers limit. The LB method is using a velocity
distribution function rather than velocity and pressure fields
and is numerically more stable than the finite element method
at the irregular boundaries that are inevitable in porous
materials [40]. To ensure better numerical stability for the
complex geometry of the pores, we use multiple relaxation
times (MRT) to solve linearized Boltzmann equation with LB
method [46].

Permeability of the packing and the flow field are resolved
by setting a pressure difference �P between two opposite
sides of the simulation box, sufficiently small to keep the
flow in the incompressible and laminar regimes (Stokes flow).
Every simulation is performed for periodic boundary condi-
tion (PBC) in directions perpendicular to the pressure gra-
dient. In the direction of the pressure gradient, the system
is open and the boundary conditions are set by pressure
difference [23,24]. No-slip boundary condition is applied to
the solid material boundaries. It has been found [14,40] that
when the channels carrying liquid become very narrow (of the
order of one lattice site) LB simulations become unstable and
the evaluation of the stream lines become inaccurate. To deal
with this problem we use an approach proposed by Matyka
et al. [14], where every lattice site on which flow equations
are solved is further refined into M3 smaller cubic elements
(refinement level: M). Strictly speaking, δ̃ = δ/M is a lattice
size of the fluid phase, and throughout this paper we use M = 3
(unless stated otherwise). Due to computational limitations,
LB calculations are performed for the lattice constant δ = 0.04
(unless stated otherwise).

The flow fields obtained from LB simulations for each
lattice site, u(r), are further used to calculate the perme-
ability and the tortuosity. Permeability is calculated as κ =
η〈u(r)〉/∇P, and tortuosity as τH = 〈u(r)〉

〈u(r)x〉 , see Sec. A 4 for
the formal derivation. Permeability is given in lattice units
(for conversion to physical units follow Latt [47]). All the LB
simulations are performed with PALABOS [48].

The simulated model of the porous material accounts for
deformability and the mechanics of the shell membrane us-
ing finite-element method. The mechanics of the shells are
resolved with ∼ 3.75 × 105 degrees of freedom, and some
of the LB simulations required up to ∼ 107 lattice sites to
resolve the fluid velocity field. In turn, the resolution of the
calculation imposes restrictions on the largest system size
that we are able to study. Finite size effects for the studied
systems may result in small anisotropies in the permeability
tensor [15], but recent studies show that transport in complex
porous geometries can be reasonably well captured if the size
of the system is roughly � 10 times larger than the pore size
[23,41,49,50].

III. RESULTS

A. Percolation transition

In idealized systems, such as random packings of over-
lapping cubes or spheres (and their complementaries, where
the solid material is drilled in random locations, rather than
deposited [51,52]), the void space between them undergo a
percolation transition [53–57]. Since, in the vicinity of the
percolation threshold, a minute deposition of solid material
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FIG. 2. Percolation transition: (a) Percolating clusters (in blue) and deformable shells (in yellow) in the packing with periodic boundary
conditions as the compaction of the system progresses. For clarity, the smallest system is presented (N = 16) with a lattice resolution δ = 0.04.
As the system is more and more compact, the percolating cluster gets smaller and more tortuous, and eventually disappears at the critical
porosity. (b) Percolation probability for three system sizes: N = 16, 32, and 50. Dashed lines are sigmoid fits to the numerical data, and binned
averages are given by open dots. The lattice-size dependent percolation threshold φc(N ) has been estimated as the porosity value for which
percolation probability is equal to 0.5. The plots represent data for the lattice δ = 0.04. (c) Percolation probabilities for the system size N = 50
and varying lattice sizes: δ = {0.03, 0.04, 0.05, 0.06, 0.07}. As the resolution of the lattice increases, the percolation threshold shifts toward
lower porosity values. (d) We extrapolated the percolation threshold in the continuum limit. Dashed line is a power-law fit, where φ∗

c and the
exponent for δ are two fitting parameters. The fitted percolation threshold in continuum limit is φ∗

c = 0.035 ± 0.014, and the exponent is equal
to 1.1 ± 0.2. The relation �φ ∼ δ1.1 agrees well with the work of Koza et al. [56]. Details of a fitting procedure can be found in Sec. A 7.

can disconnect the percolating cluster and prevent further
liquid transport, the abruptness of this transition is well un-
derstood. The model studied in this work differs from the
aforementioned ones in that the narrow necks in the perco-
lating cluster decay continuously upon the compaction of the
material. It is, however, akin to the cherry-pit model [58],
where the sizes of impermeable obstacles are continuously
increased [59] and long-time transport properties vanish at the
percolation threshold due to an underlying continuum perco-
lation transition of the liquid accessible space [59]. To study
this aspect in our model, following the protocol described in
Sec. II B, percolating clusters are identified for three system
sizes (N = 16, 32, and 50 elastic shells) and various lattice

resolutions; see Fig. 2(a). The results for δ = 0.04 are shown
in Fig. 2(b). As the system gets larger, the transition becomes
steeper, as expected in a first-order transition case [54,57,60].
The steepness of this transition depends on the system size
L, and scales as ∼ L1/ν , where ν is a critical exponent of
the correlation length. In a continuum percolation model, this
exponent is approximately equal ν ≈ 0.88 [61].

Figure 2(c) shows that a sharp drop in fluid transport
capabilities occurs for different lattice resolutions and that
the percolation threshold shifts towards lower porosity values
as δ decreases—an effect anticipated from the studies on
idealized lattice models [56]. The finite representation of
the elastic shells in the studied model does not allow for
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TABLE I. Fitting parameters for a percolation threshold in the continuum limit φ∗
c , tortuosity τH , and permeability κ that are investigated

in this paper. In Figs. 10(c) and 10(d), φc is fixed, so no standard deviations are given. Fitting details are described in Sec. A 7.

Figure Formula Fitting Parameters Error Function Parameter Values

Fig. 2(d) φc(δ, N ) − φ∗
c (N ) = CNδβN CN , φ∗

c (N ), βN
1
n

∑n
i=1(φnum

c,i − φfit
c,i )

2 C16 = 3.70 ± 0.9
C32 = 3.77 ± 0.7
C50 = 3.67 ± 1.0

φ∗
c (16) = 0.064 ± 0.010

φ∗
c (32) = 0.053 ± 0.020

φ∗
c (50) = 0.035 ± 0.014

β16 = 1.2 ± 0.2
β32 = 1.0 ± 0.1
β50 = 1.1 ± 0.2

Fig. 4(b) τH = Cτ (φ − φc )−0.38 Cτ , φc
1
n

∑n
i=1(τ num

i − τ fit
i )2 φc = 0.124 ± 0.004

Fig. 5 κ = Cκ (φ − φc )γ+0.76φ2(1 − φ)−2 Cκ , φc, γ
1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.146 ± 0.003

γ = 0.83 ± 0.17
κ = Cκ (φ − φc )2.52φ2(1 − φ)−2 Cκ , φc

1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.101 ± 0.038

κ = Cκ (φ − φc )ē Cκ , φc, ē 1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.115 ± 0.053

ē = 3.61 ± 0.30

Fig. 10(a) κ = Cκ (φ − φc )γ+0.76φ2(1 − φ)−2 Cκ , φc, γ
1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.146 ± 0.003

γ = 0.83 ± 0.17
κ = Cκ (φ − φc )2.52φ2(1 − φ)−2 Cκ , φc

1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.101 ± 0.038

κ = Cκ (φ − φc )ē Cκ , φc, ē 1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc = 0.115 ± 0.053

ē = 3.61 ± 0.30

Fig. 10(b) κ = Cκ (φ − φc )γ+0.76φ2(1 − φ)−2 Cκ , φc, γ
1
n

∑n
i=1(κnum

i − κfit
i )2 φc = 0.150 ± 0.002

γ = 0.86 ± 0.14
κ = Cκ (φ − φc )2.52φ2(1 − φ)−2 Cκ , φc

1
n

∑n
i=1(κnum

i − κfit
i )2 φc = 0.060 ± 0.066

κ = Cκ (φ − φc )ē Cκ , φc, ē 1
n

∑n
i=1(κnum

i − κfit
i )2 φc = 0.120 ± 0.001

ē = 3.88 ± 0.18

Fig. 10(c) κ = Cκ (φ − φc )γ+0.76φ2(1 − φ)−2 Cκ , γ
1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc(fixed) = 0.141

γ = 0.91 ± 0.13
κ = Cκ (φ − φc )2.52φ2(1 − φ)−2 Cκ

1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc(fixed) = 0.141

κ = Cκ (φ − φc )ē Cκ , ē 1
n

∑n
i=1(log κnum

i − log κfit
i )2 φc(fixed) = 0.141

ē = 2.72 ± 0.14

Fig. 10(d) κ = Cκ (φ − φc )γ+0.76φ2(1 − φ)−2 Cκ , γ
1
n

∑n
i=1 (κnum

i − κfit
i )

2
φc(fixed) = 0.141
γ = 0.97 ± 0.16

κ = Cκ (φ − φc )2.52φ2(1 − φ)−2 Cκ
1
n

∑n
i=1 (κnum

i − κfit
i )

2
φc(fixed) = 0.141

κ = Cκ (φ − φc )ē Cκ , ē 1
n

∑n
i=1 (κnum

i − κfit
i )

2
φc(fixed) = 0.141
ē = 3.50 ± 0.17

calculations in the continuum limit. It is nevertheless possible
to extrapolate a percolation threshold in the continuum limit
δ → 0. In Fig. 2(d), we estimated that for N = 50, the
percolation threshold in the continuum limit is φ∗

c (N = 50) =
0.035 ± 0.014, which is consistent with the values obtained
for other granular porous materials [55–57,62,63].

For each system size, the percolation threshold φc for a
finite δ and N is expected to be related to the threshold in
the continuum limit φ∗

c as a power law φc(N ) − φ∗
c (N ) ≡

�φ(N ) ∼ δβ [56]. In Fig. 2(d), we estimate the lattice-size
scaling exponent to be β = 1.1 for N = 50, and similar values
of β are found for N = 16, 32; cf. Table I. The value of
the exponent β is in good agreement with the prediction
made by Koza et al. [56], where the exponent is estimated
to be β ≈ 1—yielding an approximate relation for the lattice-
size dependent percolation threshold that obeys: φc(N ) −

φ∗
c (N ) ∼ δ. Additionally, these fits in the continuum limit

are subject to a finite system size correction that overesti-
mates (in a first order) the thermodynamic limit by φ∗

c (N ) =
φ∗

c (N → ∞) + CI L−1/ν , where CI ∼ O(1), L ∼ N1/d , and
d = 3 [55,62,64,65]. An accurate extrapolation to the thermo-
dynamic limit requires data for systems spanning many orders
of magnitude, but in Secs. III C and III D we show that trans-
port properties discussed in this work do not depend on the
exact value of φ∗

c (N → ∞), but rather on a reduced porosity
δφ(δ, N ) ≡ φ − φc(δ, N )—a value that can be well estimated
for a given lattice size δ, and system size N [66]. The model
presented in this contribution can be further detailed, but
the numerical results clearly point to common characteristics
between the model studied in this work and previously stud-
ied percolation models [55–57,59,65,66]. Thus, we use the
formalism of percolation theory in the analysis of fluid flow
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FIG. 3. Hydraulic radius Rh: Hydraulic radius as a function of
porosity φ for the system size N = 50. For each of the identified
percolating cluster, the hydraulic radius was calculated as a ratio
of the cluster volume to the surface area, and then normalized by
the initial size of an elastic shell D0. Error bars give one standard
deviation. Dashed-lines are the fits to Rh ∝ φ/(1 − φ) for δ = 0.04.
At the jamming point (φ ≈ 0.4) for monodisperse packings of shells
with the size D0, the numerical data is in agreement with the expected
theoretical value Rh/D0 ≈ 0.14. See Sec. A 3 for more details.

obstruction in the vicinity of the critical porosity value φc,
which in this study is φc ≈ 0.15 (unless stated otherwise).

B. Decrease of hydraulic radius Rh with the porosity

The hydraulic radius is defined as a ratio of a cross-section
of a liquid carrying channel to its wetted perimeter; see
Sec. A 3 for more details. Only in relatively simple cases, such
as a laminar flow inside a pipe, can the hydraulic radius be
directly related to the geometry of the system. In practice,
finding this value is problematic because it is difficult to
accurately predict a channel’s shape along the flow stream
lines. The situation gets even more complicated in complex
geometries where percolating channels can merge or branch
out. Thus, the hydraulic radius is commonly approximated by
the ratio of the volume to the wetted area of a cluster carrying
the liquid [67].

Using the percolating clusters identified for the packings
of elastic shells, we estimated the hydraulic radii for different
lattice resolutions as a ratio of the number of lattice sites
belonging to the cluster divided by the number of surface sites
[41,68]. Using a geometric argument adapted from references
[69,70], the hydraulic radius is predicted to vanish linearly at
the limit of zero porosity; see Sec. A 3. Results corroborating
this prediction can be found in Fig. 3. The results indicate that
the hydraulic radius decays like

Rh ∝ φ/(1 − φ) (6)

as the porosity goes to 0. If the hydraulic radius was reaching 0
at the percolation threshold φc, this would indicate that as the
porosity approaches the percolation threshold φ → φc, most
of the fluid flow occurs in the layer in the vicinity of the
percolating cluster’s bounding surface, where the effects of
viscosity are significant. Thus, the liquid transport could be
controlled by a no-slip boundary condition on the cluster’s
surface and not necessarily the complex geometry of the
cluster. However, the hydraulic radius vanishes independently
of lattice size, and its value at the percolation threshold is
finite, as one would expect from a percolation theory [71].

C. Tortuosity divergence at the percolation threshold

Tortuosity underpins the relationship between a transport
process and the underlying geometry and topology of the
pores [72]. Recently it has been shown that the tortuosity
depends on material structural properties, and may vary sig-
nificantly close to the percolation threshold [14,16,35,73,74].
Although percolation ideas have been proposed in the context
of tortuosity in 3D porous materials [75], they have not been
thoroughly tested near the percolation threshold. In this con-
tribution, we numerically show a link between the geometry
of a percolating cluster and the liquid transport through porous
materials with a complex geometry of pores at the percolation
threshold.

Scaling arguments from Ghanbarian and coworkers
[6,75,76] suggest that the tortuosity scales, in the thermody-
namics limit, with the reduced porosity according to τH ∼
δφν(1−D), where ν is a critical exponent of the correlation
length (ν ≈ 0.88 for the continuum percolation model in 3D),
D is the fractal dimension of the cluster through which the
liquid is transported, and δφ = φ − φc. It was found that the
fractal dimension for the most probable path through which
liquid is transported is approximately D ≈ 1.43 [77–80],
implying

τH ∼ δφ−0.38. (7)

To test this dependence, we evaluated the tortuosity from
the velocity field as described in the Sec. II C, and the results
are presented in Fig. 4(a). Close to the jamming threshold,
δφ ≈ 0.25, we find that the tortuosity is τH ≈ 1.4. This result
agrees very well with experimental measurements for the
packings of glass beads, τH ≈ √

2 [67]. For porosities close
to jamming, the numerical results for all three lattice refine-
ment levels (M = 1,2,3) overlap [Fig. 4(a)] and agree with
the volume-averaged analytic prediction for monodispersed
spheres [73,74] [cf. black line in Fig. 4(b)]. For the porosities
close to the percolation threshold, δφ ≈ 0.0, we can see
that numerical simulations are consistent with the predicted
divergence for the hydraulic tortuosity; see Fig. 4(a). The
increase of tortuosity [and its variance; inset in Fig. 4(a)] upon
approaching the percolation threshold is caused by the com-
plex geometry of the percolating cluster rather than numerical
artifacts coming from the increased resolution of the liquid
phase lattice; cf. Fig. 9 in the Appendix. However, divergence
of a hydraulic tortuosity as τH ∼ δφ−0.38 is expected in the
thermodynamic limit, i.e., N → ∞. From Eq. (A17), we can
see that for finite system sizes, where CI L−1/ν � δφ, the
tortuosity is finite and reaches a maximum value at δφ = 0.
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FIG. 4. (a) Hydraulic tortuosity calculated for the system size N = 50, and lattice resolution δ = 0.04. The fluid flow is solved on a
lattice with three sizes δ̃ = δ/M, where M = 1, 2, and 3. At higher porosities, φ, all three lattice refinements give similar results. Closer to
the percolation threshold (δφ � 0.1), tortuosity calculations for the liquid phase with a refinement level M = 1 break down [14]. For the
refinement levels M = 2 and 3, the results suggest a divergence of the tortuosity at the percolation threshold (φc ≈ 0.15 for δ = 0.04). Error
bars are not given for better readability (data with error bars can be found in Fig. 8). Inset: Log-log plot of the same data. Red envelope gives
one standard deviation. Dashed line with a slope −0.38 is given as a reference for comparison. (b) Hydraulic tortuosity calculated for three
different system sizes: N = 16, 32, 50 and the refinement level M = 3. Black dashed line is an expected tortuosity dependence τH ∼ δφ−0.38 in
the limit of N → ∞. The black line provides an analytic prediction from Ahmadi et al. [73,74] with a parameter B = 1.16. Details of a fitting
procedure can be found in Sec. A 7.

This maximum tortuosity scales with the system size as
τmax

H (N |δφ = 0) ∼ N−(1−D)/d ≈ N0.14 (D = 1.43, d = 3, and
recall that N ∼ Ld ; see Sec. A 5 for details). In Fig. 4(b),
we can see that the maximum tortuosity on the approach
to the percolation threshold increases with the system size,
and we expect that as larger systems are simulated, these
values (in the limit of δφ → 0) will approach the scaling
relation τH ∼ δφ−0.38, denoted by the black dashed-line in
Fig. 4(b). In contrast to the relatively loose packings, for
which lattice refinement is not crucial, lattice refinement for
LB calculations is essential for the packings in the proximity
of the percolation transition. This in turn sets the numerical
limitations on the system size that can be feasibly simulated.
A potential solution to this obstacle could be an evaluation
of a geometric tortuosity [67] and leveraging on the putative
relation between geometric and hydraulic tortuosities [81].

D. Kozeny-Carman model of permeability

By construction of the Kozeny-Carman model, the liquid
transport through the material is ensured down to the porosity
φ = 0. However, this is not the case for granular porous
materials. To account for this in Eq. (3), the porosity φ

is replaced by the reduced porosity, φ → δφγ = (φ − φc)γ .
Exponent γ is sometimes taken ad hoc to be equal to γ =
1 in Refs. [55,82–84]; however, there is no firm argument
supporting this particular choice. Since this exponent is yet

unknown, we try to estimate γ from a fit to the numerical
data. Knowing γ is not crucial for highly porous materials, for
which δφ ≈ φ, but it is essential for lower porosities, where
the factor δφγ contributes to the vanishing permeability κ at
the percolation threshold, δφ → 0.

In Sec. III A, we found numerically that the percolation
threshold depends on the resolution of the used lattice. More-
over, in Sec. III B we found that the hydraulic radius reaches
0 at the porosity φ = 0, and does not strongly depend on the
lattices resolution δ. Finally, in Sec. III C we found that the
tortuosity of flow stream lines diverges upon the approach
of the percolation threshold, consistent with the prediction
τH ∼ δφ−0.38. Using Eqs. 5, 6, and 7, we can put together a
relationship between material porosity and permeability κ that
reads

κ = Cκ

δφγ+0.76φ2

(1 − φ)2
, (8)

where Cκ is a constant. A fit of this model is presented in Fig. 5
(black dashed line). Results are given for the lattice resolution
δ = 0.04, for which the tortuosity diverges and the flow ceases
at porosity φc ≈ 0.15. We can see in Fig. 5 that Eq. (8)
captures quite accurately the change of the material perme-
ability κ in a broad range of porosities—from the onset of the
jamming up to the percolation threshold, and regardless of the
model fitting method; cf. Figs. 5 and 10. Depending on the
fitting procedure, the value of the exponent γ varies slightly,
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FIG. 5. Permeability of deformable elastic shells packings in
Darcy’s regime: Permeability obtained from lattice-Boltzmann sim-
ulations for the system size N = 50, and lattice resolutions δ = 0.04
and δ̃ = δ/3 for the solid and fluid phases, respectively. Blue crosses
represent permeability for individual simulations. Black open circles
represent binned averages, and red stars correspond to medians.
Permeability κ is given in lattice units. Dashed lines correspond to
three different models: (i) Rh ∼ φ/(φ − 1), τH ∼ δφ−0.38, and the
exponent γ being a fitting parameter; (ii) Rh ∼ φ/(φ − 1), γ = 1.76,
and τH ∼ δφ−0.38; (iii) power-law ansatz: κ ∼ δφ ē. Fitting details can
be found in Sec. A 7.

with the average (over four different fitting procedures) value
γ = 0.89 ± 0.15. This is quite close to the value used ad hoc,
γ = 1.0. In the limit of the large porosities, i.e., where φ �
φ∗

c , we can approximate δφγ ≈ φγ , which reduces Eq. (8)
to a simpler form κ ∼ φ3.59/(1 − φ)2 (with γ ≈ 0.83). In-
terestingly, this approximate form, with a fractional power
close to 3.6, is in good agreement with recent experimental
and numerical work, where this exponent was estimated to be
3.7 (for porosities such that φ − φc ≈ φ) [23,24]. It is worth
noting that although the above model depends on a value of φc

(which also encompasses finite-size effects), it does not affect
the generality of the model because of two reasons: (i) the
value of the hydraulic radius is quite insensitive to the lattice
size used in the calculations; (ii) flow tortuosity and dilution
of the capillaries is determined by a reduced porosity δφ, thus
Eq. (8) should apply for various system and lattice sizes in
the vicinity of the percolation threshold even though the exact
percolation thresholds are different.

In this work we compare Eq. (8) to a scaling ansatz κ ∼
δφ ē, a good guess for the transport properties in disordered
systems and close to the critical point [66]. Halperin et al.
[51,52] showed that there are several universality classes of
porous media where the scaling exponent ē depends on the
model’s details. For example, in the so-called Swiss-cheese
model, ē ≈ 4.4, whereas for the inverted Swiss-cheese model,

ē ≈ 2.4. The relation κ ∼ δφ ē fits the data in a broad range of
porosities, yellow dashed lines in Figs. 5 and 10. However,
the fitted exponent values depend on the fitting procedure
and vary in the range of [2.72, 3.88], with an average value
ē = 3.4. Moreover, the estimated percolation threshold (φc)
differs noticeably from the estimations made in Fig. 2(c).
Despite the fact that the power-law scalings are often very
useful, it is not always clear how the scaling exponents relate
to the connectedness of the pores and the tortuosity of the flow
[66]. Additionally, in Figs. 10(a) and 10(b), we compare our
numerical data to the standard Kozeny-Carman model, where
κ ∼ φ3/(1 − φ)2 [2,34,70,82,85,86]. This classical model has
been successfully applied to many porous materials for which
φ − φc ≈ φ [2,70,87]. Some authors extended the Karman-
Cozeny model by accounting for fractal geometry of porous
materials [35,85,86], but these models still assume permeabil-
ity down to porosity φ = 0. However, in this work, we study
permeabilities in the range of the porosities for which the
above approximation does not hold. Therefore, the classical
Kozeny-Carman model performs worse, as shown by the
green dashed line in Figs. 10(a) and 10(b).

IV. DISCUSSION AND CONCLUSIONS

Our results support a simple model of the fluid flow retar-
dation in deformable granular materials, compressed from the
onset of mechanical stability at the jamming point down to the
percolation threshold. Porous material is essentially described
as a collection of tortuous and randomly placed capillaries,
where, close to the percolation threshold, tortuosity and capil-
laries dilution dominate liquid transport. We have shown that
upon compaction, the void space between pressurized elastic
shells undergoes a sharp system-size-dependent transition.
We also find that the hydraulic radius vanishes in a lattice-
resolution-independent manner as the porosity diminishes.
Next, using lattice-Boltzmann simulations, we have shown
that tortuosity of the flow stream lines abruptly increases at the
percolation threshold. In Eq. (5), the effects of the capillaries’
density and tortuosity are factorized, and this has motivated a
substantial research devoted to tortuosity [67,76]. Combined
with a percolation scaling theory, we were able to support
the fractional dependence of tortuosity on the porosity of the
sample. Our work underscores that at higher porosities, where
the fluid flow is not tortuous (τH is mildly varying for larger
φ), the major geometric determinant of the flow obstruction
is the amount of the void space accessible to fluid—captured
in the quadratic dependence on a hydraulic radius Rh. In turn,
upon the approach to the percolation threshold, the complex
geometry of liquid transporting channels ultimately leads to
flow hindrance. Nonetheless, the dilution of the capillaries
upon the approach to the percolation threshold, described by
the γ exponent, remains elusive. We found numerically that
γ ≈ 0.89 ± 0.15, which is close to the ad hoc value γ = 1.0
[55,82–84], but this value does not have a firm grounding
in the percolation theory. In Sec. A 6, we present a simple
scaling argument from the percolation theory that suggests
this exponent to be γ = 1.76. If tortuosity is neglected, this
would explain our numerical data very well. However, when
the tortuosity contribution is included, this leads to the decay
of the permeability in the vicinity of the percolation threshold
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with the exponent close to 2.5, i.e., κ ∼ δφ2.52. Despite the
fact that this is close to the Inverted Swiss-cheese model
exponent (ē ≈ 2.4), it does not reproduce the numeral data
well, cf. Figs. 5 and 10. However, it is worth noting that the
scaling argument given for γ (see Sec. A 6) is a geomet-
ric one, whereas the liquid transport is a dynamic process,
and the number of hypothetical capillaries may differ from
the number of possible percolating paths. Additionally, the
dynamic universality class for transport properties splits for
lattice and continuum percolation [51,88], therefore drawing
conclusions from the numerical calculations performed in a
discretized domain close to the critical point requires cau-
tion. This intriguing results motivate further research on the
capillary model in the proximity of the percolation threshold
within a framework of the percolation theory. Additionally,
this work, alongside the works of others [41,76,84,89,90],
can be potentially useful in studying other transport processes
like, for example, electrical conductivity of an electrolyte (as
well as the electrical tortuosity τe—an analog of the hydraulic
tortuosity τH in the fluid transport) [67,76,91,92].

Finally, in our work we considered only packings of iden-
tical shells. In Sec. A 3 we can see that polydispersity seems
to contribute only a constant factor in the relation for Rh,
Eq. (A8), without changing its functional dependence on the
porosity φ. Furthermore, in 3D packings of unequal spheres,
polydispersity has only a minor impact on the percolating
clusters [55,93]. Therefore, Eq. (8) may be applicable to
other disordered and compacted systems made of deformable
particles.
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APPENDIX

1. Source code availability

The source code for the lattice-Boltzmann calculations is
available on GitHub [94].

2. Generation of jammed packings

To generate jammed packings, we randomly place parti-
cles in a cubic box with periodic boundary conditions. The
initial radii of these spherical particles are set such that the
initial volume fraction is about ψ0 = 0.01. Next, we succes-
sively increase or decrease the radii of the particles, with
every change followed by the energy minimization with the
FIRE algorithm [37] and velocity-verlet integrator [95]. The
parameters used in the FIRE algorithm are: dtFIRE = 0.1,
dtmax

FIRE = 1.5, αFIRE = 0.1, Nmin = 5, fα = 0.99, finc = 1.1,

fdec = 0.25. The termination condition for the FIRE algorithm
is: max

i
|fi| � 10−15.

Initially, for each inflation step, the particle’s radius is
increased following the rule: rnew = rold(1 + εr ), where ini-
tially, εr = 0.01. The forces between particles are Hertzian:
F(R) = − 4

3 E∗√R∗R̂h3/2, where h is an overlap between par-
ticles, R̂ is a unit vector along R, E∗ = E/2(1 − ν2) is an
effective Young’s modulus, R∗ = r/2 is an effective radius,
and r is the radius of a particle. In this work, we use E = 1,
ν = 0.5. The pressure in the simulation box is calculated as
P = − 1

3

∑
α σαα , where the stress tensor σαβ is obtained from

the virial formula, σαβ = − 1
V

∑
i

∑
i> j rα

i jF
β
i j , where rα

i j is the
αth component of the vector pointing from the center of a
particle j to i, and Fβ

i j is the βth component of the contact
force between particles i and j.

When the pressure of the packing is greater than P >

2Pmin = 2 × 10−8, the parameter εr is halved, and the parti-
cles’ sizes are deflated according the rule: rnew = rold(1 − εr ).
When the pressure drops below Pmin = 10−8, then εr is again
halved and the particles are inflated. The process continues
until the pressure P settles at the value Pmin < P < 2Pmin. If
the packing contains any rattler, the configuration is rejected
and the procedure is repeated. The final configuration provides
positions of soft-spheres particles that are next replaced by the
finite element representation. The packings generated using
the described algorithm have been tested in terms of the
number of contacts (Fig. 6) and the finite-size effects on the
volume fraction at the jamming point (Fig. 7) [31,32].

3. Hydraulic radius: Geometric argument [69,70]

For a packed bed of spherical particles with a particle
size distribution n(Dp), the ith moment of the particle-size
distribution is

μi =
∫ ∞

0
Di

pn(Dp)dDp. (A1)

If a horizontal cut is made across the packing, one obtains
circular disks of the size x, projected on the sectional plane
(this assumption holds only approximately for more compact
systems). The size distribution of these disks is

f (x) =
∫ ∞

0
P(x|Dp)P(Dp)dDp. (A2)

Here P(Dp) is the pdf of Dp:

P(Dp) = n(Dp)∫
n(Dp)dDp

= n(Dp)

μ0
. (A3)

P(x|Dp) is a conditional probability density function that
given a sphere diameter Dp the diameter of a given disk in
a plane cut ranges between x and x + dx. Note that disks
of the same size can originate from spheres of a different
size because the disk size depends on the position at which
a sphere is cut.

It has been shown that a plane cut through a random
spheres packing provides a distribution of disks on a plane
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FIG. 6. Average contact number: A mechanically stable system
must have a force balance on each particle. For N spheres in d
dimensions, the number of constraints that has to be satisfied by the
interparticle forces is d × N . In the system with periodic boundaries
this number is d × N − d . Additionally, there is one more degree
of freedom—a volume fraction at the jamming—that has to be
constrained. Thus, the counting argument provides the number of
constraining equations that needs to be Nc = d × N − d + 1. Ac-
cording to Maxwell’s criterion, the number of interparticle contacts,
N〈Z〉/2, must be at least equal to the number of equations Nc. For
frictionless spheres the packing at the jamming point has exactly
this number of contacts: 〈Z〉 = 2d − 2(d − 1)/N ; which, for 3D, the
average number of contact per particle is 〈Z〉 = 6 − 4/N [32]. The
results are in the range of N that is meaningful for the present work:
(10,100). For each N , 100 different packings are generated. Error
bars give one standard deviation.

that follows [69,70]:

P(x|Dp) = x

Dp

√
D2

p − x2
[1 − �(x − Dp)], (A4)

where �(·) is the Heaviside function. Substituting Eq. (A4)
into Eq. (A2), we get

f (x) =
∫ ∞

0

n(Dp)

μ0

x

Dp

√
D2

p − x2
[1 − �(x − Dp)]dDp.

(A5)

Thus, for a given plane cut, the amount of the surface
occupied by the disks on that plane is given as:

α = Nα

π

4

∫ ∞

0
x2 f (x)dx = Nα

π

6

μ2

μ0
, (A6)

where Nα is the number of discs per unit cross-section area.
Integrating over the whole body, we obtain the volume of
the solid material: V = αL3, where L is a linear dimension
of a body. We can see that α is proportional to the volume
fraction ψ = V/L3, and finally Nα ∝ ψ = 1 − φ, where φ is

FIG. 7. Distribution of the volume fraction at the jamming
threshold ψJ : The position of the maximum of the jamming vol-
ume fraction distribution exhibits finite-size scaling: ψ∗ − ψJ =
d0N−1/dν , where d0 = 0.12 ± 0.03, d = 3, ν = 0.71 ± 0.08, and
ψ∗ = 0.639 ± 0.001 [32]. The asymptotic value is plotted as a
shaded area. The green dots in the plot are the average values
calculated from 100 independent simulation. Error bars give one
standard deviation.

the material’s porosity. Similarly, the wetted perimeter per
unit area of bed � can be obtained from

� = Nαπ

∫ ∞

0
x f (x)dx = Nα

π2

4

μ1

μ0
, (A7)

leading to � ∼ Nα ∝ 1 − φ.

FIG. 8. The same numerical data as in Fig. 4—with error bars.
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FIG. 9. Tortuosity calculated for three different δ and different lattice refinement levels: LB simulations are performed on percolating
clusters that are detected for three different lattice sizes: δ = [0.03, 0.04, 0.05], and N = 50. The flow fields are resolved on lattices with a size
δ̃ = δ/M, where M = 1, 2, 3 are lattice refinement levels [14]. Tortuosity increases as the refinement level increases, consistent with previous
studies [14]. The same behavior is observed for all δ. This suggests that the abrupt increase of τH close to the percolation threshold is caused
by the fractal geometry of the percolation cluster rather than by artifacts of the numerical methods. Each data-point is an average from about
100 simulations. τH is given as a function of δφ, where lattice size dependent percolation threshold was estimated from the fits in Fig. 2(d),
and Table I: {φc(0.03) = 0.113, φc(0.04) = 0.141, φc(0.05) = 0.171}. Error bars are not shown for better readability.

Finally, the hydraulic radius Rh is

Rh = 1 − α

�
= 2

3π

φ

1 − φ

μ2

μ1
. (A8)

For the monodisperse spheres packings, the size distri-
bution in Eq. (A1) is given by the Dirac δ function
n(Dp) ≡ δ(Dp − D0). This leads to μ2 = D2

0 and μ1 = D0,
which reduces Eq. (A8) to Rh/D0 = 2

3π

φ

1−φ
.

4. Tortuosity calculation

For the fluid flow, hydraulic tortuosity τH is defined as

τH = 〈λ〉
L

� 1, (A9)

where 〈λ〉 is the mean length of the fluid particles paths and L
is a linear dimension of a porous medium in the direction of
a macroscopic flow. Despite this simple definition, tortuosity
is not easy to measure experimentally and computationally. In
real porous media, flow streams are complicated, as the fluid
fluxes continuously change their sectional area, shape, and
orientation, or the flow streams branch and rejoin. It is also
not clear how the average in Eq. (A9) should be calculated:
over the whole volume or over the planar cross-section, and
if so, what is the most proper cross-section to do this? It has
been concluded that the proper hydraulic tortuosity should be
calculated as an average in which streamlines are weighted
with fluid fluxes [16,20,67]. Thus, tortuosity can be calculated
as

τH =
∑

i λ̃iωi∑
i ωi

, (A10)

where i enumerates discrete streamlines, λ̃i = λi/L, λi is
the length of the ith streamline with the weight ωi = 1/ti,
where ti is a time in which fluid particles move along the
ith streamline [16]. The rationale behind the ωi factor is to

weigh each streamline proportionally to the volumetric flow
associated with a streamline. For the incompressible flow, ti
tells how long it takes for the particles in a given streamline
to travel a distance L in a macroscopic flow direction. Thus,
the average component of the velocity for that streamline, in
a direction of the flow, is proportional to the weight factor
〈vx〉i ∼ ωi. Extending this idea in the continuous limit, for
a cross-section perpendicular to the macroscopic flow, the
hydraulic tortuosity can be formulated as

τH =
∫

A ux(r)λ̃(r)dσ∫
A ux(r)dσ

, (A11)

where A is a cross-section perpendicular to the axis x, both
integrals are taken over the surface dσ ∈ A, λ̃(r) is the length
of a streamline intersecting with the surface A at the location r
(normalized by L), and ux(r) is the component of the velocity
field at r ∈ A normal to A. Moreover, it was shown that the cut
can be done not necessarily in a direction of the macroscopic
flow but in principle in any direction [16]. Even though there
is freedom in the location of where the cut can be done, both
integrals are still difficult to calculate numerically [14].

This numerical problem can be bypassed by noticing
that [16]

τH =
∫

A u⊥(r)λ̃(r)dσ∫
A u⊥(r)dσ

=
∫

V u(r)dν∫
V ux(r)dν

(A12)

and the right-hand side can be further simplified as [16]

τH = 〈u〉
〈ux〉 . (A13)

This form of tortuosity is particularly handy in numerical
analysis since it requires only solving the flow field without
struggling with resolving streamlines [14,20]. Some inaccu-
racies may occur in Eq. (A13) if eddies exist in the flow.
Although it cannot be assured that such structures do not occur
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FIG. 10. Permeability obtained from lattice-Boltzmann simulations for the system size N = 50, the lattice resolution δ = 0.04, and the
lattice size for the fluid phase δ̃ = δ/3. Symbols are the same as in Fig. 5; blue crosses represent permeability for individual simulations, black
open circles represent binned averages, red stars are median values, and dashed lines correspond to different models. Permeability κ is given
in lattice units. Fitted parameters are given in Table I. In Figs. 10(a) and 10(b), φc is a free parameter, whereas in Figs. 10(c) and 10(d), φc is
fixed at φc = 0.141 (see Sec. A 7 a). Classical Kozeny-Carman model [κ ∼ φ3/(1 − φ)2] is given for a comparison in Figs. 10(a) and 10(b).
Error functions used in a fitting procedure are given in Table I.

in complex porous materials, the contribution from eddies to
Eq. (A11) is negligible at low Reynolds numbers [16].

Finally, the velocity field is found with lattice-Boltzmann
simulations. Then, τH can be calculated from the values of the
flow at each node in the lattice:

τH =
∑

r u(r)∑
r ux(r)

, (A14)

where r runs over all lattice nodes [20].

5. Hydraulic tortuosity: Percolation theory argument

The evolution of the void region between overlapping,
randomly located spheres undergoes a percolation transition
[55,57]. This transition exhibits a critical behavior and falls

into a continuum percolation universality class [55,57,65].
For porous materials, a porosity φ acts like the occupation
probability in a classical percolation theory. Above a cer-
tain porosity threshold φc, there exists a cluster that spans
the whole system and facilitates fluid transport. This has
been leveraged to connect tortuosity with material poros-
ity [6,75,76]. Here we present an equivalent but simpler
argument.

Percolation theory predicts that a mean distance ξ be-
tween any two sites on a cluster is given by a scaling
law [61]:

ξ ∼ |φ − φc|−ν, (A15)

where ν is a critical exponent of the correlation length. The
total length of a walk λ constructed on that cluster has a
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fractal dimension D and reads λ ∼ ξD [96]. At the percolation
threshold, the correlation length ξ diverges and is the same as
the system size. From the definition of a tortuosity τH , we have
then (close to the percolation threshold and φ > φc):

τH = λ

ξ
∼ ξD−1 ∼ |φ − φc|ν(1−D) ≡ δφν(1−D). (A16)

For a finite system, there is an additional finite-size correc-
tion that accounts for the shift of the percolation transition.
Taking this into account, the scaling for τH reads

τH ∼ |φ − φc + CI L
−1/ν |ν(1−D), (A17)

where CI is a constant and it is of the order of CI ∼ O(1).
It has been shown that the most probable traveling length

of an incompressible flow on a percolating cluster falls into
the same universality class as the optimal path in strongly
disordered media and the shortest path in the invasion perco-
lation with trapping [77,78]—for which the fractal dimension
is D ≈ 1.43 [79,80]. Finally, taking the exponent ν ≈ 0.88,
one gets a scaling law for tortuosity (L → ∞): τH ∼ |φ −
φc|−0.38 ≡ δφ−0.38. For finite systems (N < ∞), tortuosity
reaches maximum value at δφ = 0, which scales with the
system size as τmax

H ∼ L−(1−D) = N−(1−D)/d ≈ N0.14, where
d = 3 is a system dimension.

A similar scaling argument was numerically tested for 2D
overlapping squares on a Cartesian lattice [16], where via
finite-size scaling analysis, it was shown that the tortuosity
in the neighborhood of percolation transition is controlled by
the fractal geometry of a percolating channel.

6. Scaling argument for the γ exponent

Taking a planar cut through the porous material, we ob-
serve nc capillaries distributed over the area of the cut. If the
material is isotropic, the direction of the cut does not matter,
and we can assume that the cut is made perpendicularly to the
direction of fluid transport. This plane-cut would obviously
contain cross-sections of all the capillaries that are responsible
for the liquid transport thorough the material in the given di-
rection. Close to the percolation threshold, we expect to have a
single capillary in the area that is proportional to ξ 2, where ξ is
the correlation length. If that is the case, the expected number
of capillaries penetrating thorough the material is nc ∝ L2/ξ 2,
where L is the linear size of the body. ξ is related to the
exponent of the correlation length (ν ≈ 0.88) as ξ ∼ δφ−ν .
Therefore, we have a power-law relation between the number
of capillaries and δφ which reads nc ∼ δφ2ν ≈ δφ1.76.

7. Parameters fitting procedure

Parameters fitting and standard deviation estimations are
done with a nonlinear least squares method from the scipy
Python library.

a. Extrapolating percolation threshold to the continuum limit

In Fig. 2(d), we extrapolate a percolation threshold down
to the continuum limit φ∗

c , i.e., δ → 0. To that end, we fit
a sigmoid function to the percolation probability data in
Fig. 2(c). Next, for different δ we take a porosity at which
the percolation probability is equal to 1/2 as a percolation
threshold. Finally, we fit a power-law dependence: φc − φ∗

c =
CNδβ . The fitting results are in Table I [row: Fig. 2(d)]. Param-
eters are obtained as a result of minimization of the function:
Error ∝ ∑

i(φ
num
c,i − φfit

c,i )
2, where φnum

c,i is a percolation thresh-
old estimated from the numerical data, and φfit

c,i is estimated
from the power-law dependence for varying φ∗

c , CN , and β.

b. Fitting power-law dependencies for tortuosity

We fit a power-law dependency for tortuosity data obtained
from lattice-Boltzmann simulations. The relation has a func-
tional form τH = Cτ (φ − φc)−0.38, where there are only two
fitting parameters: φc and a constant factor Cτ . Porosity φ

is a value known from finite elements simulations, and the
exponent −0.38 is predicted from a percolation theory; see
Sec. A 5. We perform a nonlinear fit by minimizing the error
function: Error ∝ ∑

i(τ
num
i − τ fit

i )2, where the index i runs
over all numerical samples, τ num

i is a numerical tortuosity
from LB simulations for the system i, whereas τ fit

i is a fit to the
power-law dependency. The results are given in Table I [row:
Fig. 4(b)].

c. Parameters estimation for permeability

Fits are done for three different permeability rela-
tions: (i) κ = Cκ (φ − φc)γ+0.76φ2(1 − φ)−2, (ii) κ = Cκ (φ −
φc)2.52φ2(1 − φ)−2, and (iii) κ = Cκ (φ − φc)ē. In Figs. 5,
10(a), and 10(b), the percolation threshold is a fitting pa-
rameter φc, whereas in Figs. 10(c) and 10(d), the percolation
threshold is held fixed and estimated (for N = 50) from the
equation φc(δ) = 0.035 + 3.67δ1.1, where δ = 0.04 and the
numerical parameters are taken from the fit in Fig. 2(d).
Fits are done for two different error functions (i) Error ∝∑

i(log κnum
i − log κfit

i )2 in Figs. 5, 10(a), and 10(c), and (ii)
Error ∝ ∑

i(κ
num
i − κfit

i )2 in Figs. 10(b) and 10(d). κnum
i is a

permeability value obtained from LB simulations for the ith
packing, whereas κfit

i is a value for a given set of parameters.
The results of these fits are in Table I.
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