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Cancellation exponents in isotropic turbulence and magnetohydrodynamic turbulence
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Small-scale characteristics of turbulence such as velocity gradients and vorticity fluctuate rapidly in magnitude
and oscillate in sign. Much work exists on the characterization of magnitude variations, but far less on sign
oscillations. While in homogeneous turbulence averages performed on large scales tend to zero because of
the oscillatory character, those performed on increasingly smaller scales will vary with the averaging scale in
some characteristic way. This characteristic variation at high Reynolds numbers is captured by the so-called
cancellation exponent, which measures how local averages tend to cancel out as the averaging scale increases,
in space or time. Past experimental work suggests that the exponents in turbulence depend on whether one
considers quantities in full three-dimensional (3D) space or uses their one- or two-dimensional cuts. We
compute cancellation exponents of vorticity and longitudinal as well as transverse velocity gradients in isotropic
turbulence at Taylor-scale Reynolds numbers up to 1300 on 81923 grids. The 2D cuts yield the same exponents
as those for full 3D, while the 1D cuts yield smaller numbers, suggesting that the results in higher dimensions
are more reliable. We make the case that the presence of vortical filaments in isotropic turbulence leads to this
conclusion. This effect is particularly conspicuous in magnetohydrodynamic turbulence, where an increased
degree of spatial coherence develops along the direction of an imposed magnetic field.
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I. INTRODUCTION

Small-scale motions in fluid turbulence such as velocity
gradients and vorticity exhibit fluctuations of positive and
negative signs, in both space and time. If oscillations in sign
continue to occur no matter how small a spatial or temporal
interval is probed, a form of singularity can be said to exist.
Even the smallest amount of averaging will cancel out the
signal. This behavior is known as sign-singularity [1–3]. For
all physical signals, this cancellation tendency occurs only
over some range of averaging scales.

Mathematically the idea is made clear with the introduction
of a signed measure μi(l ) at some scale l:

μi(l ) =
∫

Qi (l ) dr f (r)∫
Q(L) dr| f (r)| , (1)

where Qi(l ) denotes a hierarchy of disjoint subsets of size
l covering the entire domain Q(L) of size L, and f (r) is
a scalar field with a zero mean value. The denominator is
chosen to bound μi(l ) between [−1, 1], thus making it a
signed probability measure. The sum of the absolute values of
all the signed probability measures gives rise to the partition
function χ (l ) defined as

χ (l ) =
∑
Qi (l )

|μi(l )|. (2)
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Since χ (l ) = 1 if f (r) is sign-definite, sign-singularity is
readily reflected in non-unity χ (l ), which is possible only
when cancellations of opposite signs occur in the numerator of
Eq. (1). Therefore, to measure the propensity of the quantity
considered to cancel out when averaged over a region of space
or an interval of time, the “cancellation exponent” κ is defined
[1,2] via

χ (l ) ∼ l−κ . (3)

Clearly, sign-definite signals have κ = 0.
To help understand the properties of cancellation expo-

nents, we show in Fig. 1 simple one-dimensional signals of the
square wave, sinusoidal wave, and standard Wiener process
(Brownian motion) as well as their partition functions. In
Fig. 1(a) for the square wave extending from x = 0 to 2n
(where n is an integer), the signed measure μi(l ) is zero when
l is even, and ±1/(2n) when l is odd. Since the number
of disjoint subsets at size l is (2n)/l , following Eq. (2) the
partition function χ (l ) = ∑

Qi (l ) |μi(l )| = (2n)/l × 1/(2n) =
1/l for odd values of l , and zero otherwise. As a result,
plotting χ (l ) as a function of odd numbers of l only, Fig. 1(d)
shows that the cancellation exponent κ = 1, which is known
to be the case for nondifferentiable signals [3]. In Fig. 1(b)
for the sinusoidal wave with a period of 100, the integral in
the numerator of Eq. (1) vanishes when the interval size l
takes multiples of the period and χ (l ) is zero. Indeed, very
small values of χ (l ) are seen in Fig. 1(e) for l equal to any
integral multiple of the period. Since finite numerical accuracy
prevents the occurrence of exact zero, the small values of
χ (l ) appear as deep valleys. Furthermore, the signed measure

2470-0045/2019/99(2)/023102(9) 023102-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.023102&domain=pdf&date_stamp=2019-02-07
https://doi.org/10.1103/PhysRevE.99.023102


X. M. ZHAI, K. R. SREENIVASAN, AND P. K. YEUNG PHYSICAL REVIEW E 99, 023102 (2019)

(a) (d)

(b) (e)

(c) (f)

lx

l−1

l−1

l−0.5

FIG. 1. Signals of (a) a square wave with magnitude of unity;
(b) a sinusoidal wave y(x) = sin[(2π/100)x] with a period of 100;
and (c) a standard Wiener process (Brownian motion) where the inset
shows the ratio of step-wise increment and unit step size. For brevity,
in (a) and (b) we show only a few periods of the signal. Partition
functions χ (l ) of signals (a)–(c) are shown in (d)–(f). Dashed lines
mark power-law behaviors.

μi(l ) depends strongly on the interval size l , resulting in large
variations of χ (l ). The envelope, as expected, has a slope of
−1. In Fig. 1(c) for the standard Wiener process (Brownian
motion), the ratio of the stepwise increment and step size
(shown in the inset) is highly oscillatory and is known [4] to
correspond to κ = 0.5. A good match with κ = 0.5 can be
seen in Fig. 1(f).

The examples constructed above show that even simple
signals can be sign-singular. In fact, sign-singularity is ubiq-
uitous in nature, such as in more sophisticated signals in
magnetohydrodynamics (MHD) [5–7], solar activities [8–11],
geomagnetic field [12], helical flows [13], rotating turbulence
[14], and aspects of classical turbulence [1–3]. As an example,
Fig. 2 shows line traces of longitudinal velocity gradient

(b)(a)

xx

FIG. 2. Line traces of (a) longitudinal velocity gradient ∂u/∂x
and (b) vorticity component ωz = ∂v/∂x − ∂u/∂y from a simulation
of isotropic turbulence at Rλ = 400 on a 20483 grid.

∂u/∂x and vorticity component ωz = ∂u/∂y − ∂v/∂x from di-
rect numerical simulations (DNS) of isotropic turbulence with
a Taylor-scale Reynolds number Rλ = 400. Both quantities
oscillate strongly in sign, with vorticity exhibiting ostensibly
greater intermittency than the longitudinal velocity gradient.
We will discuss both signals in more detail in Sec. IV.

An unresolved question in the study of cancellation ex-
ponents is whether and how different types of calculation
methods affect the results. In particular, such a question
naturally arises when sign cancellations are measured along
lines (one-dimensional, 1D), in planar intersections (2D), or
over three-dimensional (3D) volumes. While some theoreti-
cal results connect lower dimensional results with those in
three dimensions (see, e.g., Mandelbrot [15], Sreenivasan
[16], Vainshtein et al. [3]), it is not clear that they should
work for real quantities in arbitrary flows. Experimental data
analysis suggests that measurements over the spatial extent
of different dimensions are different. Past 2D measures of
cancellation exponents for vorticity were larger, with κ =
0.85 [3], than 1D measures, κ = 0.45 [1] and κ = 0.6 [17].
These differences indicate that 1D measures are “blind” to
structures with dimensions higher than two, and assessment
in higher dimensions might be quite necessary for turbulent
quantities [3]. However, partly due to difficulties of making
measurements in 3D, a thorough comparison of cancellation
exponents measured in all three dimensions has not been
made. It follows that the underlying causes of the differences
by measures of different dimensions have not been clearly
identified.

One objective of this paper is to examine systematically
how cancellation exponents formed in all three different di-
mensions differ. We use data from DNS of homogeneous
isotropic turbulence, and compute cancellation exponents
using 1D, 2D, and 3D measures; indeed, quantifying sign
oscillations in simulations can be more versatile than in ex-
periments because of access in the former to all the quantities
of interest. In addition, the isotropic nature of turbulence
in our simulations alleviates issues of large-scale anisotropy
in experiments [18]. Since the term “cancellation exponent”
was introduced more than 25 years ago, great advances in
computing power have now allowed us to examine the effects
of Reynolds number as well, up to Rλ = 1300 on 81923 grids
[19]. This is an important issue.

Three small-scale quantities—vorticity and longitudinal
and transverse velocity gradients—are considered in this
study. All three are found to have the same cancellation
exponent of 2/3 when measured in 2D and 3D, but 1D
values are much smaller for transverse velocity gradients and
vorticity, while they are close to 2/3 for longitudinal velocity
gradients even in 1D. For vorticity, a relation exists between
the cancellation exponent and the characteristic exponent for
first-order velocity increments [3,17,20], and κ is expected to
be close to 2/3. As a result, a cancellation exponent value of
2/3 in 2D and 3D confirms dimensions higher than 1D are
indeed necessary for quantifying sign cancellations, at least
for vorticity. Our work suggests that the use of 1D measures
in past experiments may be why κ is underestimated, but it
becomes necessary to understand this better. We provide an
explanation from the perspective of the geometry of small-
scale motions, and suggest the differences in cancellation
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exponents in different dimensions result from the prevalence
of coherent structures in some preferred direction. The ba-
sic idea is that coherent structures are mostly composed
of events of the same sign, and therefore 1D measures of
sign oscillation, if taken along such structures, do not record
effective sign cancellations and tend to give lower values of
cancellation exponents. In comparison, the neighborhoods of
coherent structures contain events of opposite signs, where
sign cancellations occur in all directions. To demonstrate the
idea, we consider MHD turbulence at low magnetic Reynolds
numbers where the diffusion of the magnetic field is much
stronger than the advective transport [21]. We observe that
the substantial elongation of the vortical structures along the
magnetic field is accompanied by a strong reduction of sign
cancellations when a 1D measure is used. This result suggests
that a similar explanation holds also for vorticity in isotropic
turbulence [22,23].

The rest of the paper is organized as follows. In Sec. II
we outline the computational method and discuss measures
in different dimensions. Our main results are presented in
Sec. III, where we show cancellation exponents measured in
1D, 2D, and 3D for vorticity and longitudinal and transverse
velocity gradients. In Sec. IV, we show visualizations and can-
cellation exponents for low-Rm MHD turbulence, and discuss
the relationship between elongated structures and reduced
values of cancellation exponents. Finally, in Sec. V we present
the conclusions and discuss the implications of the work.

II. COMPUTATIONAL METHOD

We perform DNS of the incompressible Navier-Stokes
equations

∂u/∂t + (u · ∇)u = −∇(p/ρ) + ν∇2u + f, (4)

where u is the solenoidal velocity field (∇ · u = 0), p is
pressure, ρ is fluid density, ν is the kinematic viscosity,
and f is the forcing term that maintains a stationary state
[24,25]. We use Fourier pseudospectral calculations [26] on
a periodic domain of size (2π )3 with an explicit second-
order Runge-Kutta integration in time. A combination of
phase-shifting and truncation is used to reduce aliasing errors,
where the highest resolved wave number kmax = √

2N/3 and
N is the number of grid points in one dimension. Typical
spatial resolution, expressed by kmaxη, is around 1.5 in past
simulations aimed at higher Reynolds numbers [27]. Recently
Yeung et al. [28] pointed out that at higher Reynolds numbers,
more stringent spatial and temporal resolutions are necessary.
For the data analysis in this paper, we have used data sets with
improved resolution of kmaxη � 2 over a wide range of Taylor-
scale Reynolds number, Rλ = 140 to 1300, as summarized in
Table I.

For MHD turbulence, motions of electrically conducting
fluids under an external magnetic field B0 produce a current,
which induces a secondary fluctuating magnetic field b, and
also gives rise to the Lorentz force that modifies the momen-
tum equation. At low magnetic Reynolds number (Rm), the
induced fluctuating magnetic field is quickly diffused away by
strong magnetic diffusion and is therefore much weaker (i.e.,
|b| � |B0). Moreover with the quasistatic approximations at
Rm � 1, we only need to consider how the velocity field is

TABLE I. Data sets of isotropic turbulence used in the analysis.
Rλ is the Taylor-scale Reynolds number. Spatial resolution is denoted
by kmaxη. N is the number of grid points along each side of the cubic
domain. NR denotes the number of realizations used for ensemble
averaging.

Rλ 140 240 400 650 1300
kmaxη 5.6 5.6 2.7 2.7 2
N 1024 2048 2048 4096 8192
NR 8 14 16 12 6

affected by the magnetic field. Specifically the momentum
equation becomes

∂u/∂t + (u · ∇)u = − (1/ρ)∇(p + B2
0/2μ) + ν∇2u

− (σ/ρ)[(B0 · ∇)2(∇−2u)], (5)

which can be readily transformed to Fourier space. Numeri-
cally the Lorentz term [the last term in Eq. (5)] is treated ex-
actly via an integrating factor. Unlike in isotropic turbulence,
forcing is not applied in low-Rm MHD turbulence simulations
to avoid interference with the physics of the Lorentz force,
which acts at all scales. The turbulence field is initialized
with a model energy spectrum, and is then allowed to take on
Navier-Stokes dynamics during its decay. The magnetic field
is applied to an initially isotropic turbulence state when the
non-Gaussian feature of the velocity field is well developed.
More details of the simulations can be found in Zhai and
Yeung [21].

One key element of the analysis is to compare cancellation
exponents κ obtained from 1D, 2D, and 3D measures. As a
result, the meanings of Qi(l ) and Q(L) in Eq. (1) depend on
the dimensionality of the measure: Qi(l ) can come from line
segments (1D), square areas (2D), and cubes (3D), all with
edge length of l; Q(L) can come from box length L, side area
L2, and volume L3. The use of 2D domain decomposition [29]
in the simulations poses computational challenges for 2D and
3D measures because data needed for evaluating Eq. (1) may
be distributed among multiple processors, but strategies such
as prefix sums [30] have been adopted to reduce computation
and communication loads. To allow for direct comparisons
with experiments [3], 2D measures are recovered through
the application of the Stokes theorem. Taking the vorticity
component as an example, the circulation �A(l ) of the velocity
field v around a closed loop s surrounding an area A = l2 is

�A(l ) =
∮

vds =
∫

A
ω · n dA. (6)

If the circulation scales as 〈|�A(l )|q〉 ∼ lαq (where q is any
real number), it is shown in Ref. [3] that αq = (2 − κ )q −
(D − Dq)(q − 1), where the space dimension D = 3 and Dq

is the generalized dimension [15,31]. For q = 1, clearly κ =
2 − α1.

III. CANCELLATION EXPONENTS IN HOMOGENEOUS
ISOTROPIC TURBULENCE

Since cancellation exponents are simply the scaling ex-
ponents of the partition function, it is instructive to plot
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FIG. 3. (a) Partition function and (b) cancellation exponent κ

[see Eqs. (2) and (3)] for measures of 1D (�), 2D (�), and 3D (©).
Horizontal dashed line marks 2/3, and solid line marks 0.639 as a
result of log-normal correction for intermittency with the exponent
μ = 0.25. Data are ensemble averaged at Rλ = 650, 40963.

both quantities side by side, as shown in Fig. 3 for vorticity
measured in 1D and 2D cuts as well in 3D in homogeneous
isotropic turbulence at Rλ = 650. In the spirit of the inertial
range, the scaling of the partition function is sought in a
certain range of scales. Instead of fitting straight lines in
the log-log plots of χ (l ), the plateau regions in the local
slopes −d log [χ (l )]/d log (l ) are used to obtain the value
of cancellation exponent. For small values of l/η, viscosity
smooths the signals and weakens sign cancellations rendering
χ (l ) close to 1, as confirmed in Fig. 3(a). Figure 3(b) shows
that plateaus indeed exist for 2D and 3D measures at around
50 < l/η < 400, which is consistent with the inertial range
identified in previous work [32]. Furthermore 2D and 3D
measures give similar values of κ ≈ 2/3, larger than what
one may infer from the 1D measure, which does not show
a convincing scaling in the first place.

The relationship between cancellation exponent and other
scaling exponents in turbulence [3,17] can be used to explain
the value of 2/3. Following Vainshtein et al., [3], we consider
the generalized structure function at order q where q is any
real number. In the inertial range, 〈|�u|q〉 ∼ lζq and the scal-
ing exponent ζq is related to the cancellation exponent κ by

ζq = (1 − κ )q − (D − Dq)(q − 1), (7)

where the dimension of space D = 3 and Dq is the generalized
dimension [15,31]. For q = 1, we have

ζ1 = 1 − κ. (8)

If the effects of intermittency were neglected, Kolmogorov’s
hypothesis [33] gives ζ1 = 1/3 and thus κ = 2/3; whereas
the refined similarity hypothesis [34] gives ζ1 = 0.361 and
κ = 0.639 (using log-normal correction with intermittency
exponent μ = 0.25 [35]). We use log-normality as an ex-
ample of intermittency models without necessarily endors-
ing it. It is clear from Fig. 3(b) that cancellation exponents
κ ≈ 2/3 measured in 2D and 3D are in good agreement
with the relations above, but not for the 1D measure. In
short, our data suggest that cancellation exponents obtained

)b()a(

η/lη/l

κ

FIG. 4. Cancellation exponent κ of (a) longitudinal velocity gra-
dients and (b) transverse velocity gradients for measures of 1D (�),
2D (�), and 3D (©). Horizontal dashed and solid lines mark 2/3
and 0.639, respectively, as in Fig. 3. Data are ensemble averaged at
Rλ = 650, 40963.

from 2D and 3D measures are consistent with theoretical
expectations.

To see whether measurements of different dimensions have
an effect on other small-scale quantities, we perform similar
calculations for longitudinal and transverse velocity gradients
and show the cancellation exponents in Fig. 4. While trans-
verse velocity gradients behave similarly to vorticity, longitu-
dinal velocity gradients are seen to have the same cancellation
exponents κ ≈ 2/3 for all three dimensions. To interpret the
value of 2/3 of the longitudinal velocity gradient using 1D
measures, we note [4] that the Hölder exponent α (for the first-
order structure function) of the velocity increment is related
to the cancellation exponent of the velocity derivative κ1 as
κ1 = 1 − α. Again by the Kolmogorov hypothesis [33], the
Hölder exponent α = 1/3 and κ1 = 2/3. Figure 4(a) suggests
that this relation holds in 2D and 3D. The close similarity
of cancellation exponents in transverse velocity gradients
[Fig. 4(b)] and in vorticity (Fig. 3) is perhaps not surprising, as
vorticity is composed of algebraic combinations of transverse
velocity gradients.

It is helpful now to comment on the past data. Table II
lists the cancellation exponents κ of vorticity measured in
past experiments with a brief summary of the experimental
method. The lower value of κ = 0.45 is likely due to the use of
the 1D measure, as reproduced in Fig. 3. The data for κ = 0.6
comes from atmospheric flow measurements where velocity
differences over variable sampling time interval (i.e., �u/�t)
were actually measured [1]. Yet, the data were interpreted as

TABLE II. Cancellation exponent κ for vorticity obtained from
past experiments, using 1D (D = 1) and 2D (D = 2) measurements.

D κ Experimental method

1 0.45 1D cuts of one vorticity component
behind cylinder wake [1]

1 0.6 Velocity difference over variable time interval
�u/�t in atmospheric flow [1,17]

2 0.85 2D circulation data behind cylinder wake [3,18]
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FIG. 5. Reynolds number dependence of cancellation exponents for vorticity (a)–(c), longitudinal velocity gradients (d)–(f), and transverse
velocity gradients (g)–(i). From left to right, different columns denote measures in 1D, 2D, and 3D; with Reynolds number Rλ increasing in
the direction of the arrow for 140, 240, 400, 650, and 1300. Horizontal dashed and solid lines mark 2/3 and 0.639, respectively, as in Fig. 3.

vorticity statistics by Vainshtein et al. [17], who considered
the one-dimensional case and invoked Taylor’s hypothesis.
Strictly speaking, the κ = 0.6 result is a confirmation of the
relation between the Hölder exponent of a signal and its
derivative [4], similar to results of κ ≈ 2/3 in longitudinal
velocity gradients in Fig. 4(a), rather than vorticity. The
κ = 0.85 result measured from 2D circulation data behind
a cylinder wake [18] is qualitatively consistent with larger
cancellation exponents by 2D and 3D measures from our
numerical simulations (Fig. 3), but our numerical simulations
do not have the anisotropy of the cylinder wake.

We also study the Reynolds number dependence of can-
cellation exponents. Figure 5 shows cancellation exponents
computed for vorticity and longitudinal and transverse ve-
locity gradients using 1D, 2D, and 3D measures, from Rλ =
140 to 1300. A more extensive scaling range appears at the
higher Reynolds number, as one should expect, and coincides
with the inertial range reported previously [32]. The general
observation is that 2D and 3D cancellation exponents for
vorticity and transverse velocity gradients give similar values
but larger than the 1D measure, which does not show convinc-
ing plateaus. In contrast, for longitudinal velocity gradients,
measures of different dimensions give similar cancellation
exponents. We note that the plateau is not perfect, but the
values vary somewhat around κ ≈ 2/3, perhaps due to a
conspicuous bottleneck effect [36].

IV. CANCELLATION EXPONENT IN LOW-Rm

MHD TURBULENCE

The results so far suggest that 1D measures of cancellation
exponents of vorticity take smaller values than those obtained
from 2D and 3D measures, and the question is why. Vainshtein
et al. [3] argued that the 1D measure is “blind” to certain
types of geometric structures. Martin et al. [7] also argued that
coherent turbulence structures are “smooth regions embedded
in a highly fluctuating field” and as a result “their presence
and characteristics will influence the statistical properties of
the scale-dependent changes of the sign.” Both arguments
suggest a connection between cancellation exponents and the
structures of turbulent motions.

Consider a turbulent structure of any sign-oscillating quan-
tity that has considerable coherency in one dimension (say,
the x direction). Such a structure can be a 1D filament or
a flat sheet that extends in the x direction. It is expected
that signals of the same sign are embedded in the coherent
structure, whereas signals of opposite signs can be found in
the neighborhood of the structure (if signals of the same sign
are found in the neighborhood as well, the increased degree
of coherency would extend beyond one dimension). When a
1D measure is used to quantify sign oscillations along the
coherent structure, the persistence of the same sign reduces
sign cancellations, leading to a smaller cancellation exponent.
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FIG. 6. (a)–(d) Visualization of normalized enstrophy density �/〈�〉 = 5 in MHD turbulence with the magnetic field along the x direction
(vertical). (e)–(h) Cancellation exponent of the x-component vorticity ωx . (i)–(l) Averaged cancellation exponent of ωy and ωz. Measures used
are 1D (�), 2D (�), and 3D (©). From top to bottom, t/(L/U ) = 0, 12, 24, and 36.

In contrast, 2D and 3D measures have more room in other
dimension(s) for cancellation to take place, thus resulting in
larger cancellation exponents.

Following this reasoning, the prevalence of vortex fila-
ments in high Reynolds number isotropic turbulence may
be thought to lead to differences in cancellation exponents
measured in 1D versus higher dimensions. However, sign
oscillation measures are taken along the coordinate axis while
vortex filaments are randomly oriented in space. As a result
there is only a fraction of coherent filaments that align with
the grid axis in any realization and affect the cancellation
exponent in the way described above. It is not clear if the use

of many more realizations will solve this problem, but we can
clarify if our reasoning is right. To this end, we consider low-
Rm MHD turbulence in which the vortex structures are forced
to be along a chosen coordinate axis—since vortical structures
are known to grow preferentially along the magnetic field
direction [37,38].

As noted earlier in Sec. II, if we assume Rm � 1, the
induced secondary magnetic field is much weaker than the
uniform mean magnetic field B0, and we only need to focus
on how the velocity field is affected by the magnetic field. As
the magnetic field is applied to isotropic turbulence, integral
length scales grow strongly along the magnetic field direction
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while the small scales of turbulence depart from local isotropy.
Specifically, the velocity gradients are weakened in the di-
rection of the magnetic field while the vorticity component
becomes stronger and elongated. Zhai and Yeung [21] have
shown that an elongated domain is critical for alleviating con-
finement effects that arise from the use of periodic domains.
Yet to focus on how elongated vortical structures affect the
cancellation exponents measured in different dimensions, we
use results on cubic domains of size (2π )3 on 20483 grids,
with the magnetic field in the x direction.

Figure 6 shows the evolution of normalized enstrophy
density � = |ω|2 as well as the cancellation exponents of
ωx and the average of exponents of ωy and ωz. Time is
normalized by the ratio between integral length scale L and
root-mean-square velocity U , both computed at the instant of
the application of the magnetic field (top row). At t/(L/U ) =
0, small vortex filaments are space filling, and similar values
of cancellation exponents for ωx and averaged ωy and ωz

confirm that isotropy holds to an acceptable level. At this low
Rλ = 98, cancellation exponents are qualitatively similar to
those observed at Rλ = 140 for forced isotropic turbulence
(compare the first row for vorticity in Fig. 5). As turbulence
decays, vortical structures become increasingly elongated
along the magnetic field direction (x direction). Moreover
as the flow evolves, the range of scales (measured by the
ratio l/η) decreases because η increases in time. The most
notable change is that the 1D result of cancellation exponent
for ωx becomes significantly smaller than those for 2D and
3D measures (middle column). Yet the lack of any plateau in
κ suggests that ωx is not sign-singular. For completeness, we
note in the right column that for ωy and ωz, a clear plateau is
only seen for the 1D measure at intermediate and large scales.
The inflections of the curves by 2D and 3D measures mimic
those in Fig. 5, but better-defined plateaus may form at higher
Reynolds numbers.

The example of low-Rm MHD turbulence confirms that
increased degree of coherence in turbulent structures can
effectively reduce sign cancellations when the 1D measure
along a specific direction is used. The coherent structures in
low-Rm MHD turbulence are sheets elongated preferentially
along one direction, whereas they are filaments for vorticity in
isotropic turbulence. To examine the degree of coherency in
one dimension for longitudinal and transverse velocity gradi-
ents in isotropic turbulence, we show in Fig. 7 the probability
density functions (PDFs) of the interval length L over which
two one-dimensional signals retain their sign in one direction.
The PDF of L/L0 (the interval length normalized by the
domain size L0) in Fig. 7(a) shows that at higher Reynolds
number, it is less likely for both longitudinal and transverse
velocity gradients to maintain the same sign over extended
scales, which is in agreement with the notion that turbulence
tends to rupture coherent structures. When normalized on
the length L/η, as Fig. 7(b) shows, it is more likely for
transverse velocity gradients to form longer coherent struc-
tures than longitudinal gradients. Therefore, as longitudinal
velocity gradients are more fragmented, the less coherent
structures in 1D longitudinal velocity gradients have mini-
mal effects on cancellation exponents measured in 1D, 2D,
and 3D.

)b()a(

L/L0 L/η

FIG. 7. PDFs of the interval length of two signals over which the
signal retains the same sign in one dimension. Solid curves denote
longitudinal velocity gradients and dashed curves denote transverse
velocity gradients. Arrows point along increasing Rλ = 140 (red),
400 (blue), and 1300 (green). In (a) L is normalized by the domain
length L0 while in (b) it is normalized by the Kolmogorov length
scale η.

V. DISCUSSION AND CONCLUSIONS

We have revisited the concept of cancellation exponents
using high-resolution DNS of homogeneous isotropic turbu-
lence up to Rλ = 1300 on 81923 grids. A highlight of this
work is the computation of cancellation exponents in 1D and
2D cuts and their comparisons with those of the full 3D quan-
tities. The 3D measures are hardly available in experiments.
This work has allowed us to resolve conflicts in previous data
and finally allow a direct assessment on whether measures
of dimensions higher than unity are needed to measure can-
cellation exponents for turbulence processes [3]. Specifically,
our results show that the answer depends on the quantity
in question. For vorticity and transverse velocity gradients,
2D and 3D measures of cancellation exponents are close to
κ ≈ 2/3, and larger than the 1D measure. However, longitu-
dinal velocity gradients have similar cancellation exponents
of κ ≈ 2/3 regardless of the dimensionality of the measure.
By invoking connections to exponents of generalized structure
functions [3], we show that for vorticity the cancellation
exponent should indeed be close to 2/3; this reveals that the
1D measure is not sufficient. Results from simulations provide
more insight on past experimental work. In particular, in past
experiments that quantify sign-oscillations in vorticity, the
lower value of κ = 0.45 is likely due to the fact that the 1D
measure was used; on the other hand, a value of κ = 0.6, close
to 2/3, obtained for longitudinal velocity gradients suggests
that it is not as sensitive to the dimensionality. The suspected
reason for the discrepancies for quantities in different direc-
tions, as well as 1D, 2D, and 3D measures, is the existence of
persistent coherent structures.

To better understand the reasons underlying these differ-
ences, we have analyzed cancellation exponents of vorticity
in low-Rm MHD turbulence. Compared to forced isotropic
turbulence where vortex filaments are randomly oriented in
space, in low-Rm MHD turbulence vortical structures grow
preferentially along the magnetic field direction. As a result,
better alignment of elongated coherent structures with the
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direction of 1D measure allows us to assess whether increased
degree of coherency leads to weakened sign-cancellation.
Quantitatively, 1D measures of cancellation exponents are
substantially reduced as elongated coherent vortical structures
grow in the form of 1D filaments or 2D sheets, as confirmed
by qualitative visualizations. It is thus very plausible that in
homogeneous isotropic turbulence, elongated vortical struc-
tures in the form of filaments are responsible for smaller
cancellation exponents measured in 1D. In comparison, struc-
tures of longitudinal velocity gradients are more fragmented,
leading to similar cancellation exponents regardless of the
dimensionality of the measure.

We briefly discuss two implications of this work. First,
our results suggest that 1D measures can give misleading
results for certain oscillatory quantities in 3D. In comparison,
measurements in 2D and 3D yield more robust results that
are less biased by the presence of structures with an increased
degree of spatial coherence. As a result, interpretation of ex-
perimental results obtained using 1D measures requires extra
caution [14], and higher order measures should be preferred
as a rule. The reason may well be that longitudinal gradients
contain purely 1D information (of u and x), in contrast to
transverse gradients and vorticity components which contain

data from at least in two dimensions. Second, the demon-
strable correlation between the structures and cancellation
exponents allows the use of the cancellation exponent as a
convenient tool to monitor geometrical changes. For exam-
ple, we may expect that it may be useful for monitoring
the variations in cancellation exponents when geometrical
changes in magnetospheric substorms [9] and solar flares
[11] occur.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with Kartik
P. Iyer. The authors also thank the reviewers for their com-
ments and suggestions. This work is supported by Grants
No. 1036170 and No. 1640771 under the Petascale Resource
Allocations Program, and Grant No. 1510749 under the Fluid
Dynamics Program, both funded by the National Science
Foundation (NSF). The computations and data analyses re-
ported in this paper were performed using BlueWaters at the
National Center for Supercomputing Applications (NCSA),
University of Illinois at Urbana-Champaign, and the Texas
Advanced Computation Center (TACC) of the University of
Texas at Austin under the XSEDE program supported by NSF.

[1] E. Ott, Y. Du, K. R. Sreenivasan, A. Juneja, and A. K. Suri,
Sign-Singular Measures: Fast Magnetic Dynamos, and High-
Reynolds-Number Fluid Turbulence, Phys. Rev. Lett. 69, 2654
(1992).

[2] Y. Du, T. Tél, and E. Ott, Characterization of sign singular
measures, Physica D 76, 168 (1994).

[3] S. I. Vainshtein, K. R. Sreenivasan, R. T. Pierrehumbert, V.
Kashyap, and A. Juneja, Scaling exponents for turbulence and
other random processes and their relationships with multifractal
structure, Phys. Rev. E 50, 1823 (1994).

[4] A. L. Bertozzi and A. B. Chhabra, Cancellation exponents and
fractal scaling, Phys. Rev. E 49, 4716 (1994).

[5] L. Sorriso-Valvo, V. Carbone, A. Noullez, H. Politano, A.
Pouquet, and P. Veltri, Analysis of cancellation in two-
dimensional magnetohydrodynamic turbulence, Phys. Plasmas
9, 89 (2002).

[6] J. P. Graham, P. D. Mininni, and A. Pouquet, Cancellation
exponent and multifractal structure in two-dimensional magne-
tohydrodynamics: Direct numerical simulations and Lagrangian
averaged modeling, Phys. Rev. E 72, 045301 (2005).

[7] L. N. Martin, G. De Vita, L. Sorriso-Valvo, P. Dmitruk, G.
Nigro, L. Primavera, and V. Carbone, Cancellation properties
in Hall magnetohydrodynamics with a strong guide magnetic
field, Phys. Rev. E 88, 063107 (2013).

[8] V. Carbone and R. Bruno, Sign singularity of the magnetic
helicity from in situ solar wind observations, Astrophys. J. 488,
482 (1997).

[9] G. Consolini and A. T. Lui, Sign-singularity analysis of current
disruption, Geophys. Res. Lett. 26, 1673 (1999).

[10] V. Carbone, S. Perri, E. Yordanova, P. Veltri, R. Bruno, Y.
Khotyaintsev, and M. André, Sign-Singularity of the Reduced
Magnetic Helicity in the Solar Wind Plasma, Phys. Rev. Lett.
104, 181101 (2010).

[11] L. Sorriso-Valvo, G. De Vita, M. D. Kazachenko, S. Krucker, L.
Primavera, S. Servidio, A. Vecchio, B. T. Welsch, G. H. Fisher,
F. Lepreti, and V. Carbone, Sign singularity and flares in solar
active region NOAA 11158, Astrophys. J. 801, 36 (2015).

[12] P. De Michelis, G. Consolini, and A. Meloni, Sign Singularity in
the Secular Acceleration of the Geomagnetic Field, Phys. Rev.
Lett. 81, 5023 (1998).

[13] P. R. Imazio and P. D. Mininni, Cancellation exponents in
helical and non-helical flows, J. Fluid Mech. 651, 241 (2010).

[14] E. Horne and P. D. Mininni, Sign cancellation and scaling in
the vertical component of velocity and vorticity in rotating
turbulence, Phys. Rev. E 88, 013011 (2013).

[15] B. B. Mandelbrot, Intermittent turbulence in self-similar cas-
cades: Divergence of high moments and dimension of the
carrier, J. Fluid Mech. 62, 331 (1974).

[16] K. R. Sreenivasan, Fractals and multifractals in fluid turbulence,
Annu. Rev. Fluid Mech. 23, 539 (1991).

[17] S. I. Vainshtein, Y. Du, and K. R. Sreenivasan, Sign-singular
measure and its association with turbulent scalings, Phys. Rev.
E 49, R2521 (1994).

[18] K. R. Sreenivasan, A. Juneja, and A. K. Suri, Scaling Prop-
erties of Circulation in Moderate-Reynolds-Number Turbulent
Wakes, Phys. Rev. Lett. 75, 433 (1995).

[19] P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan, Extreme events
in computational turbulence, Proc. Nat. Acad. Sci. 112, 12633
(2015).

[20] V. Nikora, D. Goring, and R. Camussi, Intermittency and in-
terrelationships between turbulence scaling exponents: Phase-
randomization tests, Phys. Fluids 13, 1404 (2001).

[21] X. M. Zhai and P. K. Yeung, The evolution of anisotropy in
direct numerical simulations of MHD turbulence in a strong
magnetic field on elongated periodic domains, Phys. Rev. Flu-
ids. 3, 084602 (2018).

023102-8

https://doi.org/10.1103/PhysRevLett.69.2654
https://doi.org/10.1103/PhysRevLett.69.2654
https://doi.org/10.1103/PhysRevLett.69.2654
https://doi.org/10.1103/PhysRevLett.69.2654
https://doi.org/10.1016/0167-2789(94)90257-7
https://doi.org/10.1016/0167-2789(94)90257-7
https://doi.org/10.1016/0167-2789(94)90257-7
https://doi.org/10.1016/0167-2789(94)90257-7
https://doi.org/10.1103/PhysRevE.50.1823
https://doi.org/10.1103/PhysRevE.50.1823
https://doi.org/10.1103/PhysRevE.50.1823
https://doi.org/10.1103/PhysRevE.50.1823
https://doi.org/10.1103/PhysRevE.49.4716
https://doi.org/10.1103/PhysRevE.49.4716
https://doi.org/10.1103/PhysRevE.49.4716
https://doi.org/10.1103/PhysRevE.49.4716
https://doi.org/10.1063/1.1420738
https://doi.org/10.1063/1.1420738
https://doi.org/10.1063/1.1420738
https://doi.org/10.1063/1.1420738
https://doi.org/10.1103/PhysRevE.72.045301
https://doi.org/10.1103/PhysRevE.72.045301
https://doi.org/10.1103/PhysRevE.72.045301
https://doi.org/10.1103/PhysRevE.72.045301
https://doi.org/10.1103/PhysRevE.88.063107
https://doi.org/10.1103/PhysRevE.88.063107
https://doi.org/10.1103/PhysRevE.88.063107
https://doi.org/10.1103/PhysRevE.88.063107
https://doi.org/10.1086/304670
https://doi.org/10.1086/304670
https://doi.org/10.1086/304670
https://doi.org/10.1086/304670
https://doi.org/10.1029/1999GL900355
https://doi.org/10.1029/1999GL900355
https://doi.org/10.1029/1999GL900355
https://doi.org/10.1029/1999GL900355
https://doi.org/10.1103/PhysRevLett.104.181101
https://doi.org/10.1103/PhysRevLett.104.181101
https://doi.org/10.1103/PhysRevLett.104.181101
https://doi.org/10.1103/PhysRevLett.104.181101
https://doi.org/10.1088/0004-637X/801/1/36
https://doi.org/10.1088/0004-637X/801/1/36
https://doi.org/10.1088/0004-637X/801/1/36
https://doi.org/10.1088/0004-637X/801/1/36
https://doi.org/10.1103/PhysRevLett.81.5023
https://doi.org/10.1103/PhysRevLett.81.5023
https://doi.org/10.1103/PhysRevLett.81.5023
https://doi.org/10.1103/PhysRevLett.81.5023
https://doi.org/10.1017/S0022112010000819
https://doi.org/10.1017/S0022112010000819
https://doi.org/10.1017/S0022112010000819
https://doi.org/10.1017/S0022112010000819
https://doi.org/10.1103/PhysRevE.88.013011
https://doi.org/10.1103/PhysRevE.88.013011
https://doi.org/10.1103/PhysRevE.88.013011
https://doi.org/10.1103/PhysRevE.88.013011
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1146/annurev.fl.23.010191.002543
https://doi.org/10.1146/annurev.fl.23.010191.002543
https://doi.org/10.1146/annurev.fl.23.010191.002543
https://doi.org/10.1146/annurev.fl.23.010191.002543
https://doi.org/10.1103/PhysRevE.49.R2521
https://doi.org/10.1103/PhysRevE.49.R2521
https://doi.org/10.1103/PhysRevE.49.R2521
https://doi.org/10.1103/PhysRevE.49.R2521
https://doi.org/10.1103/PhysRevLett.75.433
https://doi.org/10.1103/PhysRevLett.75.433
https://doi.org/10.1103/PhysRevLett.75.433
https://doi.org/10.1103/PhysRevLett.75.433
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1063/1.1360193
https://doi.org/10.1063/1.1360193
https://doi.org/10.1063/1.1360193
https://doi.org/10.1063/1.1360193
https://doi.org/10.1103/PhysRevFluids.3.084602
https://doi.org/10.1103/PhysRevFluids.3.084602
https://doi.org/10.1103/PhysRevFluids.3.084602
https://doi.org/10.1103/PhysRevFluids.3.084602


CANCELLATION EXPONENTS IN ISOTROPIC … PHYSICAL REVIEW E 99, 023102 (2019)

[22] J. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, The
structure of intense vorticity in isotropic turbulence, J. Fluid
Mech. 255, 65 (1993).

[23] P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan, Ten Chapters
in Turbulence (Cambridge University, New York, 2012).

[24] V. Eswaran and S. B. Pope, An examination of forcing in direct
numerical simulations of turbulence, Comput. Fluids 16, 257
(1988).

[25] D. A. Donzis and P. K. Yeung, Resolution effects and scaling in
numerical simulations of passive scalar mixing in turbulence,
Physica D 239, 1278 (2010).

[26] R. S. Rogallo, Numerical experiments in homogeneous tur-
bulence. NASA Tech. Memo. 81315, NASA Ames Research
Center, 1981 (unpublished).

[27] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds
number isotropic turbulence by direct numerical simulation,
Annu. Rev. Fluid Mech. 41, 165 (2009).

[28] P. K. Yeung, K. R. Sreenivasan, and S. B. Pope, Effects of finite
spatial and temporal resolution in direct numerical simulations
of incompressible isotropic turbulence, Phys. Rev. Fluids. 3,
064603 (2018).

[29] D. A. Donzis, P. K. Yeung, and D. Pekurovsky, Turbulence sim-
ulations on O(104) processors, in Proceedings of the TeraGrid
’08 Conference, Las Vegas, 2008 (unpublished).

[30] K. P. Iyer, Studies of turbulence structure and turbulent mixing
using Petascale computing, Ph.D. thesis, Georgia Institute of
Technology, 2014.

[31] H. Hentschel and I. Procaccia, The infinite number of general-
ized dimensions of fractals and strange attractors, Physica D 8,
435 (1983).

[32] K. P. Iyer, K. R. Sreenivasan, and P. K. Yeung, Reynolds
number scaling of velocity increments in isotropic turbulence,
Phys. Rev. E 95, 021101 (2017).

[33] A. N. Kolmogorov, The local structure of turbulence in an
incompressible fluid with very large Reynolds numbers, Dokl.
Akad. Nauk SSSR 30, 301 (1941), reprinted as Proc. Roy. Soc.
London A 434, 9 (1991).

[34] A. N. Kolmogorov, A refinement of previous hypotheses con-
cerning the local structure of turbulence in a viscous incom-
pressible fluid at high Reynolds number, J. Fluid Mech. 13, 82
(1962).

[35] K. R. Sreenivasan and P. Kailasnatth, An update on the in-
termittency exponent in turbulence, Phys. Fluids A 5, 2766
(1993).

[36] D. A. Donzis and K. R. Sreenivasan, The bottleneck effect and
the Kolmogorov constant in isotropic turbulence, J. Fluid Mech.
657, 171 (2010).

[37] O. Zikanov and A. Thess, Direct numerical simulation of forced
MHD turbulence at low magnetic Reynolds number, J. Fluid
Mech. 358, 299 (1998).

[38] K. S. Reddy and M. K. Verma, Strong anisotropy
in quasi-static magnetohydrodynamic turbulence for
high interaction parameters, Phys. Fluids 26, 025109
(2014).

023102-9

https://doi.org/10.1017/S0022112093002393
https://doi.org/10.1017/S0022112093002393
https://doi.org/10.1017/S0022112093002393
https://doi.org/10.1017/S0022112093002393
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/j.physd.2009.09.024
https://doi.org/10.1016/j.physd.2009.09.024
https://doi.org/10.1016/j.physd.2009.09.024
https://doi.org/10.1016/j.physd.2009.09.024
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1103/PhysRevFluids.3.064603
https://doi.org/10.1103/PhysRevFluids.3.064603
https://doi.org/10.1103/PhysRevFluids.3.064603
https://doi.org/10.1103/PhysRevFluids.3.064603
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1103/PhysRevE.95.021101
https://doi.org/10.1103/PhysRevE.95.021101
https://doi.org/10.1103/PhysRevE.95.021101
https://doi.org/10.1103/PhysRevE.95.021101
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1063/1.858877
https://doi.org/10.1063/1.858877
https://doi.org/10.1063/1.858877
https://doi.org/10.1063/1.858877
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654

