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Dynamic characteristics of a deformable capsule in a simple shear flow
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The dynamic characteristics of a two-dimensional deformable capsule in a simple shear flow are studied with
an immersed boundary-lattice Boltzmann method. Simulations are conducted by varying the Reynolds number
(Re) from 0.0125 to 2000 and the dimensionless shear rate (G) from 0.001 to 0.5. The G-Re plane can be divided
into four regions according to the deformation dependence on the parameters considered: viscous dominant,
inertia dominant, transitional, and anomalous regions. There are four typical dynamic behaviors over the G-
Re plane: steady deformation, prerupture state, quasisteady deformation, and continuous elongation. Analysis
indicates that the pressure distribution and its variations due to the interplay of the fluid inertia force, the viscous
shear stress, and the membrane elastic force determines the complex behaviors of the capsule. The effects of the
bending rigidity and the internal-to-external viscosity ratio on the dynamics of the capsule are further studied.
It is found that the capsule experiences smaller deformation when the higher bending rigidity is included, and
the low bending rigidity does not have a remarkable influence on the capsule deformation. The capsule normally
experiences smaller deformation due to the increase of the internal-to-external viscosity ratio.
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I. INTRODUCTION

The dynamics of a capsule enclosed by a thin elastic
membrane has received rapidly growing interest due to its
wide applications in many fields such as cosmetics and the
pharmaceutical industry [1–3]. A typical example of a capsule
is a red blood cell (RBC) which is composed of a lipid bilayer
membrane encapsulating a Newtonian hemoglobin solution
[4], and deformation of the RBC can significantly affect the
rheology of blood and the oxygen load release [5]. Therefore,
it is desirable to understand the dynamics of a capsule in flow.

A capsule immersed in a viscous shear flow can exhibit
complex behaviors (e.g., tank-treading, tumbling, and swing-
ing movements) [4,6–8]. The dynamics of a capsule in a
viscous shear flow is determined by the interplay of the fluid
inertia force, the viscous shear stress, and the membrane elas-
tic force and has been studied by utilizing theoretical, exper-
imental, and numerical methods [9–18]. Previous numerical
investigations have mainly focused on the deformation of a
capsule at low and moderate Reynolds numbers (e.g., Re �
100) [19–21]. The fluid inertia effects on the dynamics of a
capsule in a shear flow at Reynolds numbers up to 100 were
studied by Sui et al. [19] and Song et al. [20]. It was found
that the fluid inertia has significant effects on the capsule tran-
sient deformation and duration as well as the flow structure
around and inside the capsule when the Reynolds number
is larger than 1. Krüger et al. [22] also reported a similar
conclusion for the suspension of capsules. Bai et al. [21]
studied a viscoelastic capsule deformation in a shear flow at
Reynolds numbers ranging from 0.1 to 10. They found that the
inertia can significantly affect the transient and steady-state
deformation of the capsule if the Reynolds number is larger
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than 0.1. Despite these studies, the underlying mechanism of
the inertia effect leading to larger capsule deformation is still
not well understood. In addition, the capsule dynamics in a
shear flow at high Reynolds numbers (e.g., Re > 100) has
seldom been investigated. As stated in Refs. [23,24], Reynolds
numbers up to O(103) may induce fragments of RBCs ex-
posed to high shear stress (e.g., 250 Pa or higher) leading
to the phenomenon of hemolysis (rupturing of the cell and
release of the contents). It would be helpful to understand the
mechanism behind hemolysis by investigating the dynamics
of a capsule at high Reynolds numbers. In this paper, we study
the dynamics of a two-dimensional (2D) capsule in a simple
shear flow at Reynolds numbers ranging from 0.0125 to 2000
and dimensionless shear rates ranging from 0.001 to 0.5.

The organization of the paper is as follows. Section II
describes the physical problem, mathematical formulation,
and numerical method. The numerical results and discussion
are presented in Sec. III. Finally, concluding remarks are
provided in Sec. IV.

II. PHYSICAL PROBLEM AND
MATHEMATICAL FORMULATION

In this paper, we numerically investigate the dynamics of a
2D capsule with an initial diameter of 2a in an incompressible
shear flow (as demonstrated by Fig. 1). A linear shear flow is
applied between the top and bottom walls. Due to the interplay
of the viscous shear stress, the fluid inertia, and the capsule
elastic stress, the capsule in the computational domain experi-
ences transient deformation, and develops into an equilibrium
configuration, an unsteady pattern, or an extremely stretched
state depending on the values of the Reynolds number and the
dimensionless shear rate.

In this work, the liquid within the capsule and the ambient
fluid are assumed to be incompressible, and their dynamic
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FIG. 1. Schematic illustration of a capsule in a simple shear flow.

viscosities are respectively λμ and μ, where λ is the internal-
to-external viscosity ratio. The dynamics of the fluids are gov-
erned by the Navier-Stokes equations ∇ · u = 0 and ∂ (ρu)

∂t +
∇ · (ρuu) = −∇p + μ̂∇2u, where ρ is the fluid density, u is
the fluid velocity, p is the pressure, and μ̂ = λμ for the inter-
nal fluid and μ for the external fluid. The capsule is modeled
as a membrane, and the equation describing the development
of the force on the membrane is F = − ∂

∂s (τ t + qn), where τ

is the in-plane tension, q is the transverse shear tension, s is
the arc length coordinate, t is the unit tangent vector pointing
to the direction of the increasing s, and n is the unit normal
vector pointing to the external fluid. The in-plane tension τ

is obtained by τ = Es(| ∂X
∂s0

| − 1), where Es is the stretching
coefficient of the capsule membrane, and X is the position
vector of a point on the capsule membrane. The transverse
shear tension q is determined by q = d{Eb[ε(s) − ε0(s)]}/ds,
where Eb is the bending coefficient, ε(s) is the instantaneous
membrane curvature, and ε0(s) is the initial curvature of
membrane at the minimum bending energy configuration [25].
Although we recognize the limitation of the current model
(i.e., 2D and Hookean membrane), we nevertheless feel that
the results obtained by this simple model will be of help in
understanding the capsule dynamics, because based on the
previous studies (e.g., Refs. [26–28]), the results obtained
by using the 2D model show some features common with
the three-dimensional (3D) simulations. In this work, we
choose the flow shear rate (i.e., k), density, and the radius
of the capsule to nondimensionalize the governing equations
and obtain four dimensionless parameters: Reynolds number
Re = ρ(2a)2k/μ, dimensionless shear rate G = μka/Es, di-
mensionless bending modulus eb = Eb/(a2Es), and viscosity
ratio λ. Here k is defined by U/H as shown in Fig. 1. Note that
Re measures the ratio of the fluid inertia to the shear stress
and G represents the ratio of the shear force to the membrane
elastic force. Therefore, Re G can be used to measure the ratio
of the inertia force to the elastic force.

In this work, the multiple-relaxation-time lattice Boltz-
mann method combined with the immersed boundary method
[5,29–33] is used to solve the fluid-structure system. In this
method, the discrete lattice Boltzmann method is utilized
for simulating fluid dynamics, and the immersed boundary
method is employed to deal with the effects of immersed
boundary by spreading the stress exerted by the boundary onto
the collocated fluid nodes near the boundary. The details of
this method and its validation can be found in our previous
work [5,29–31].
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FIG. 2. The contours of the mean Dxy on the G-Re plane. Insets
(a) and (b) are profiles of the capsule at nondimensional time
kt = 12, and 60 for high Re and low G. Inset (c) shows the time
histories of Dxy at low Re and G = 0.32.

III. RESULTS AND DISCUSSION

Simulations are conducted by varying Re from 0.0125 to
2000 and G from 0.001 to 0.5. The computational domain
ranges from 0 to 20a in both x and y directions (i.e., H =
10a). The mesh spacing is �x = �y = 0.05a. According to
Refs. [5,19,34], such a computational domain is reasonable
for this application. Validations have been performed to en-
sure that the numerical results are independent of mesh size.
To measure the capsule deformation, the Taylor shape param-
eter Dxy is introduced [5,19,34], Dxy = (L − W )/(L + W ),
where L and W are the length and width of the capsule in the
shear plane, respectively. In the present research, Dxy ranges
from 0 (nondeformation) to 1 (zero volume).

A. Effects of G and Re on the mean Dxy and
the dynamic behaviors of the capsule

The effects of G and Re on the mean Dxy and the dynamic
behaviors of the capsule are studied in this section. It should
be noted that the bending rigidity is neglected (i.e., eb = 0)
and the viscosity ratio of the internal to external fluids is set to
be 1 (i.e., λ = 1). The effects of bending rigidity and viscosity
ratio on the capsule dynamics are studied in Secs. III B and
III C, respectively.

1. Effects of G and Re on the mean Dxy

The contours of mean (time-averaged) Dxy on the G-Re
plane are shown in Fig. 2, where the G-Re plane is divided into
four regions based on the relationship between Dxy and G-Re:
viscous dominant (A), transitional (B), inertia dominant (C),
and anomalous (D) regions.

It is found that the increase of Re or G contributes to the
increase of Dxy, except the region D which will be further
discussed later. In region A (i.e., Re � 0.3, G < 0.2), Dxy

is independent of the Reynolds number, which is consistent
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FIG. 3. The contours of the pressure coefficient at kt = 60 and G = 0.32 at different Reynolds numbers: (a) 0.001, (b) 0.0025, (c) 0.005,
(d) 0.01, (e) 0.025, (f) 0.05, (g) 0.1, (h) 0.25, (i) 0.5, and (j) 1.0.
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with investigations presented in Refs. [5,34]. This is under-
standable because at low Reynolds numbers the effects of the
inertia force on the fluid motion are negligible, and the shear
force to the capsule elastic force ratio, measured by G, is the
only parameter governing the capsule deformation. In region
C (i.e., Re � 100), Dxy is proportional to Re G. This is due
to the fact that at high Reynolds numbers, the fluid-structure
system is determined by the fluid inertia to the capsule elastic
force ratio, measured by Re G. Insets (a) and (b) in Fig. 2 show
the capsule profiles for three cases: (i) Re = 500, G = 0.004;
(ii) Re = 1000, G = 0.002; and (iii) Re = 2000, G = 0.001,
where the values of Re G are the same. It can be found that
the capsule profiles for three cases are the same at kt = 60,
even though at the transient stage (e.g., kt = 12) the capsule
deformation at Re = 2000 is quite different from those at
the other two Reynolds numbers further confirming that the
deformation of the capsule is determined by Re G at higher
Reynolds numbers. Region B is a transitional region where
both the fluid viscous and inertia forces have an interplay
effect on the capsule deformation. It is also interesting to
observe a special region: region D (i.e., G � 0.2, Re � 2.0)
where Dxy experiences a different trend from that at lower G.

To further illustrate the capsule behavior in region D, the
time histories of Dxy at G = 0.32 and Re = 0.0125, 0.05
and 0.5 are shown in inset (c) in Fig. 2. It is found that
Dxy drops slightly and then rises with the increase of the
Reynolds number. In addition, Dxy is unsteady at Re = 0.5
for G > 0.2. This phenomenon of periodic oscillation of Dxy

has been attributed to be a “numerical artifact” as discussed
in Ref. [28]. To explain the behaviors of Dxy in region D, the
distribution of the pressure coefficient [scaled by 0.5ρ(2aκ )2]
contours at G = 0.32 and Re ranging from 0.001 to 1.0 at
nondimensional time kt = 60 are shown in Fig. 3. At Re =
0.001, a lower pressure center is observed outside the capsule
tip exerting a stretching force on the capsule. When Re is
increased (e.g., from 0.001 to 0.025), the pressure difference
across the capsule tip drops leading to a decreasing stretch-
ing force. This explains the observation that Dxy decreases
with the increase of Re when 0.001 � Re � 0.025. When
Re > 0.025, the lower pressure center moves inside the cap-
sule, and the stretching force becomes the compressing force
which causes a further decrease of Dxy. When Re is further
increased (e.g., from 0.05 to 1.0), the low pressure in the
internal region increases, which results in the decreasing
compressing force on the capsule. This provides a reasonable
explanation for the increase of Dxy when Re is increased from
0.05 to 0.1.

To further explain the inertia effect leading to larger cap-
sule deformation, the contours of the pressure coefficient
at kt = 2, G = 0.01, and Re = 50, 100, 250, and 1000 are
shown in Fig. 4. Here kt = 2 is used, because the difference
between all cases discussed is obviously initiated at this
instant. For all Reynolds numbers, it is observed that there
are two low pressure centers located near the capsule tips,
which are caused by the effect similar to the flow around
an exterior corner, and biased from the direction of the long
axis of the capsule, leading to an anticlockwise moment. This
anticlockwise moment exerts a resistance to the long-term
elongation of the capsule. When Re increases, the pressure
increases which reduces the resistance, and thus leads to a
larger deformation.
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FIG. 4. The contours of the pressure coefficient at kt = 2 and
G = 0.01 at different Reynolds numbers: (a) 50, (b) 100, (c) 250,
(d) 1000.

2. Dynamic behaviors of the capsule

The dynamics of the capsule can be classified into four
regimes as shown in Fig. 5. Please note that these four
regimes are independent of the four regions discussed in
Sec. III A 1. The first regime is steady deformation, where
the capsule exhibits a steady shape. This regime occurs in
the low Dxy region (i.e., small deformation). The critical Dxy

below which the steady deformation occurs depends on Re.
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FIG. 5. The dynamic behaviors of the capsule at different
Reynolds numbers and dimensionless shear rates. �, steady defor-
mation; �, prerupture state; �, quasisteady deformation; �, contin-
uous elongation. Insets: streamline patterns around the capsule at
(a) Re = 0.5, G = 0.5, kt = 68; (b) Re = 25, G = 0.16, kt = 10;
(c) Re = 100, G = 0.04, kt = 22; (d) Re = 100, G = 0.04, kt = 60;
and (e) Re = 1000, G = 0.01, kt = 20.
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Specifically, the critical Dxy is about 0.6 when Re � 100, and
drops to below 0.45 when Re approaches 2000. The second
regime is prerupture state which occurs at high G and low
and moderate Re regions where Dxy is larger than 0.62. The
sharp capsule tips with very high curvatures appear in this
regime as demonstrated by insets (a) and (b) (marked by blue
circles) in Fig. 5. Similar sharp tips have also been observed
in previous experimental and numerical studies [35,36]. The
high curvatures of the capsule tips caused the rupture of the
capsule [35] and the divergence of the simulation [36]. In the
present study, the high curvatures of the capsule tips do not
lead to the divergence of the simulations, and they lead to two
typical capsule behaviors: (i) tip oscillation and (ii) wrinkling
surface. The third regime is quasisteady deformation which
occurs at large Re where 0.45 < Dxy < 0.95. In this regime,
the capsule vibrates along its long axis direction at a very low
frequency or experiences tip-oscillation motion over its long
axis, which may be caused by the fluid-structure dynamics
between the capsule and the fluid enclosed, as shown by
insets (c)–(e) in Fig. 5. Specifically, insets (c) and (d) show
the unsteady behavior associated with the secondary eddies
inside the capsule (marked by blue arrows) for Re = 100 and
G = 0.04. This observation is different from that reported
in Ref. [19] which predicted a steady state for this case. As
demonstrated by inset (e), the capsule is stretched into a
dumbbell shape, and similar behavior has also been observed
in the experimental study by Ref. [23]. This shape was
indicated as the deformation stage preceding the rupture of
the capsule, which agrees with the present study. The last
regime is a continuously elongated state which occurs at large
Re and large G where Dxy is larger than 0.9.

B. The effects of bending rigidity on the capsule dynamics

The effects of bending rigidity on the capsule dynam-
ics are studied here. The dimensionless bending modulus
eb can be quite small (in the order of 10−4 to 10−3)
for problems involving the capsule deformation in bio-
logical systems. For example, for a RBC with the di-
ameter of 7.8 μm, the elastic and bending moduli are

respectively (6.0 × 10−6)–(1.2 × 10−4) N m−1 and 2.4 ×
10−19 N m [37,38], and the dimensionless bending modulus
eb ranges from 0.000 13 to 0.0026. Here eb = 0.000 625 and
0.002 are used to study the effects of the low bending rigidity
on the capsule deformation. In addition, it can be expected
that the higher bending rigidity (i.e., eb is higher than 10−3)
would alter the capsule deformation, and eb = 0.05 and 0.1
are used to study the effects of the higher bending rigidity
on the capsule deformation. The internal-to-external viscosity
ratio is set to be 1 (i.e., λ = 1).

Figure 6(a) shows the relationship between the mean Tay-
lor shape parameter Dxy and the dimensionless shear rate G
at eb = 0, 0.000 625, 0.002, 0.05, and 0.1 and Re = 1.0. It
is found that the capsule experiences smaller deformation
when the higher bending rigidity (i.e., eb = 0.05 and 0.1)
is included, and Dxy decreases with the increase of eb. In
contrast, the capsule almost experiences the same deforma-
tion as that of eb = 0 (i.e., neglecting the bending effect)
when the low bending rigidity is included. This means the
low bending rigidity does not have a significant influence
on the mean Taylor shape parameter Dxy of the capsule.
In addition, the bending rigidity also changes the dynamic
state of the capsule. For example, as shown in Fig. 6(b),
Dxy reaches steady state at eb = 0.000 625, 0.05, and 0.1 for
G = 0.32, while Dxy experiences oscillation at eb = 0. This
means including the bending rigidity is helpful to stabilize the
behavior of the capsule at low Reynolds numbers. However,
when G increases to 0.5, the oscillation occurs again at eb =
0.000 625, showing that incorporating a low bending modulus
which is in the range of red blood cells does not change the
physics discussed in Sec. III A, but does change the regime
boundaries.

C. The effects of viscosity ratio on the capsule dynamics

In this section, the effects of the viscosity ratio λ on
the deformation of the capsule at two different Reynolds
numbers (i.e., 1.0 and 250.0, which are respectively located
in the viscosity-dominated and inertia-dominated regimes) are
studied, and four different values of G are selected for each Re
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FIG. 7. The relationship between the Taylor shape parameter Dxy and the dimensionless shear rate G at different viscosity ratios and
Re = (a) 1.0 and (b) 250.

(G = 0.005, 0.04, 0.24, and 0.32 for Re = 1.0 and G = 0.005,
0.01, 0.02, and 0.04 for Re = 250.0). The bending stiffness is
neglected here.

Figure 7 shows the relationship between the Taylor shape
parameter Dxy and the dimensionless shear rate G at viscosity
ratios λ = 0.5, 1.0, and 2.0 and Re = 1.0 and 250.0. It is
found that incorporating the viscosity difference between the
exterior and interior regions of the capsule does not sig-
nificantly change the deformation of the capsule, and thus
the physics discussed in Sec. III A is repeatable within the
ratios considered. In addition, Dxy generally decreases with
the increase of the viscosity ratio λ, and the viscosity ratio λ

has smaller effects on Dxy at smaller deformation regime than
at larger deformation regime. This trend is consistent with
the 3D studies by Ramanujan and Pozrikidis [39] and Foessel
et al. [40].

D. Discussion

The Reynolds numbers considered in the present research
are in the range of many biological and engineering systems.
The results obtained in this paper can be used to explain
phenomena observed in reality and give guidance to practical
applications. For example, drug delivery by a capsule is a
promising method to treat diseases such as cancer [41]. It
is necessary to choose a capsule with the proper membrane
characteristics to prevent vascular occlusion, especially in
blood vessels with a clot. The shear rate in an artery with
a clot can reach 425 000 s−1 [42], and the corresponding
shear Reynolds number is approximately 4 for a capsule with
a diameter of 10 μm. In this case, it would be preferable
to choose a capsule with the smaller modulus to prevent
blockage of the blood vessel.

IV. CONCLUDING REMARKS

In summary, we have numerically studied the capsule
deformation in a simple shear flow with the immersed
boundary–lattice Boltzmann method by varying the Reynolds
number from 0.0125 to 2000 and dimensionless shear rate
from 0.001 to 0.5. It is found that the Taylor shape parameter

Dxy is independent of the Reynolds number at low Reynolds
numbers (Re � 0.3) and small dimensionless shear rate G
(G < 0.2), and is approximately proportional to Re G at
higher Reynolds numbers (Re � 100). It is also observed that
Dxy experiences a different trend at G � 0.2 and Re � 2.0
where Dxy first decreases and then increases when Re ranges
from 0.0125 to 2.0, which is caused by the migration of the
low pressure center from the external region of the capsule tip
to the internal region and the increase of the low pressure in
the internal region. In addition, the dynamics of the capsule
can be classified into four regimes depending on the values of
Re, G, and Dxy. In the low Dxy region (e.g., Dxy � 0.6 at Re �
100, and the critical value of Dxy drops to below 0.45 when
Re increases to 2000), the capsule exhibits a steady shape. At
low and moderate Re (e.g., Re � 100) and high G (e.g., G �
0.16), the sharp tips with very high curvatures appear, and two
behaviors (tip oscillation and wrinkling surface) occur due
to the high curvatures. At Re � 25 and 0.45 < Dxy < 0.95,
the capsule vibrates along its long-axis direction at a very
low frequency or experiences tip-oscillation motion over its
long axis. In the large Re and large G region (e.g., Re G �
40) and, the capsule continuously elongates. In addition, the
resistance due to two low-pressure regions near the capsule
tips and biased from the capsule long axis decreases when the
Reynolds number increases, which is a reasonable explanation
of the inertia effect at large Reynolds numbers. The effects
of the bending rigidity and viscosity ratio of the internal to
the external fluids on the dynamics of the capsule are also
studied. It is found that the capsule tends to experience smaller
deformation when the high bending rigidity is included, but
the low bending rigidity does not have a significant influence
on the time-averaged Dxy of the capsule. The bending effects
tend to stabilize the capsule behaviors, but the oscillation
of the capsule may occur again with the increase of G.
The capsule normally experiences smaller deformation due
to the increase of the viscosity ratio of the internal to the
external fluids. The results in present research are helpful to
explain the mechanism of the deformation of droplets, blood
cells, emulsions, and capsules, especially at relatively high
Reynolds numbers (e.g., Re � 100).
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