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Nonequilibrium steady states, coexistence, and criticality in driven
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Nonequilibrium steady states of vibrated inelastic frictionless spheres are investigated in quasi-two-
dimensional confinement via molecular dynamics simulations. The phase diagram in the density-amplitude plane
exhibits a fluidlike disordered and an ordered phase with threefold symmetry, as well as phase coexistence
between the two. A dynamical mechanism exists that brings about metastable traveling clusters and at the
same time stable clusters with anisotropic shapes at low vibration amplitude. Moreover, there is a square bilayer
state which is connected to the fluid by BKTHNY-type two-step melting with an intermediate tetratic phase. The
critical behavior of the two continuous transitions is studied in detail. For the fluid-tetratic transition, critical
exponents of γ̃ = 1.73, η4≈ 1/4, and z = 2.05 are obtained.
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I. INTRODUCTION

The slab geometry of vibrating plates filled with inelastic
granular spheres is a particularly interesting setup in the
field of nonequilibrium statistical physics. The macroscopic
particles (typical size ∼1 mm) dissipate kinetic energy
at each collision. Fluidized states can be maintained by
energy input to the vertical particle motion via the vibrating
plates. This energy is then partly transferred to horizontal
motion in particle-particle collisions. The energy flow in
this injection, transfer, and dissipation mechanism breaks
detailed balance and the system is inherently strongly out of
equilibrium. The nonequilibrium property manifests itself in
several interesting phenomena which have been investigated
largely in the past two decades. Among these are inelastic
collapse [1–4], inhomogeneous granular temperatures [5,6],
non-Gaussian velocity distributions [7–9], segregation of
mixtures [10–12], the Kovacs memory effect [13–15], and
inelastic hydrodynamic modes [16].

Two-dimensional (2D) driven granular matter excels as a
model system for nonequilibrium statistical mechanics for
several reasons. Particle trajectories are comfortably acces-
sible in experiments by filming from the top. Moreover, the
influence of gravity is tunable via the choice of the driving
amplitude and frequency [17]. Finally, the particles can be
agitated homogeneously throughout the horizontal directions.
Any in-plane inhomogeneity thus emerges from spontaneous
symmetry breaking [18].

After some relaxation time, a nonequilibrium steady state
(NESS) is reached in which the energy injection, transfer, and
dissipation rates balance. Because of their nonequilibrium na-
ture, the involved phases in these states are no thermodynamic
phases in the strict sense. Even though these phases show in-
triguing resemblance to the corresponding equilibrium system
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[19] of colloidal particles, the NESSs usually retain residual
energy and particle flows which cannot occur in equilibrium.

The phase behavior depends decisively on parameters such
as box dimensions and roughness, filling density, driving
frequency and amplitude, and inelasticity of the particles.
Several studies have investigated the phase behavior as func-
tions of different control parameters [5,11,17,20–23]. A com-
plete phase diagram in the multidimensional parameter space,
however, is not at hand. For the parameters studied here, the
NESSs comprise isotropic fluidlike phases as well as square
and hexagonal monolayers and bilayers. With equilibrium
hard spheres, the transitions between those phases are all of
first-order type [19]. By contrast, in experiments with the
shaken granular particles, a continuous transition between an
isotropic phase and a phase with square order has been re-
ported, with diverging correlation functions and several criti-
cal exponents measured [24,25]. In molecular dynamics (MD)
computer simulations the same phases were found [23], but
divergences of the correlation functions were not reproduced.

The fact that despite extensive studies the picture of
the quasi-2D vibrated granulates is still incomplete led
us to revisit the system with MD simulations. We em-
ploy an altered approach to refine the description of
the continuous fluid-square transition and characterize it
as a Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young
(BKTHNY) type [26–29] two-step transition with an inter-
mediate tetratic phase. The tetratic phase is characterized by
(quasi-)long-range orientational but short-range positional or-
der and has also been found in equilibrium quasi-2D Hertzian
spheres [30]. Moreover, a nonequilibrium phenomenon is
described, namely, emergent particle currents at the surfaces
of threefold clusters which can lead to macroscopic cluster
propulsion.

The paper is organized as follows. In Sec. II we present
the system and model and give technical details about the
simulation and the order parameter. Sections III–V summa-
rize our main findings on the NESSs. First, we discuss the
relevant parameters for the formation of ordered phases and
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sketch the NESS phase diagram in Sec. III. Second, the fluid-
tetratic-square transition contained in the phase diagram is
thoroughly characterized in Sec. IV, including precise values
for the critical exponents. Finally, the mechanism that brings
about anisotropic shape and persistent motion of threefold
clusters is discussed in Sec. V. In Sec. VI we conclude by
comparing the phase behavior to previous studies and discuss
the nonequilibrium nature of the observed effects.

II. SYSTEM SETUP AND PARAMETERS

Computer simulations are performed in a shallow cuboidal
box of spatial dimensions L × L × h with periodic boundary
conditions applied in x and y directions. In z direction the
box is confined by two hard walls. The space in between the
walls contains N hard spheres of diameter σ at a projected
number density ρ ≡ N/L2. Gravitational acceleration g acts
on the particles in negative z direction, implying a timescale
τ0 ≡ √

σ/g. The walls oscillate in-phase with displacement
A sin(ωt ) in z direction, where A is the driving amplitude, ω is
the angular frequency of the driving, and t denotes time. All
simulations in this work are carried out with h = 1.83σ and
ωτ0 = 12. The height was chosen such that fluid, threefold,
and square phases compete. (The phases are described in de-
tail in Sec. III.) The value of ω lies within the high-frequency
regime [5], where the nucleation of the threefold cluster upon
increasing A is insensitive to ω.

The trajectories of the particles are calculated by an event-
driven MD algorithm [31]. This algorithm is appropriate
for instantaneous interaction events (collisions). In the time
intervals between events, particles move on ballistic trajec-
tories. Therefore, collision times can be calculated from the
initial configuration (positions and velocities) and scheduled
chronologically. The main loop then evolves the system in
time by processing the events in the schedule. In each event,
the velocities of the collision partners are changed and the next
collision times of these particles are calculated and inserted
into the schedule. Particle-particle and particle-wall collisions
are modeled as inelastic collisions [32] with a constant coef-
ficient of restitution e = 0.95 for the momentum transfer nor-
mal to the surfaces (where e = 1 and e = 0 would correspond
to elastic and fully inelastic collisions, respectively).

The model conserves momentum in x and y directions
(momentum in z direction changes in particle-wall collisions).
We do not include transfer of momentum tangential to the par-
ticle surfaces, i.e., the Coulomb friction coefficient vanishes.;
hence there is no coupling of rotational and translational
degrees of freedom. Our model thus depends only on a single
parameter—the coefficient of restitution—yet still features en-
ergy injection, transfer, and dissipation mechanisms. Despite
this simplification, our phase diagram qualitatively agrees
with earlier studies that do include the rotational degrees of
freedom.

Most of our analysis and the color coding of all snapshots
in this work are based on the (projected 2D) fourfold local
bond-orientational order parameter ψ

(n)
4 of a particle n. We

use a refined version [33],

ψ
(n)
4 ≡

Nn∑
m=1

wnm

Wn
e4iαnm , (1)

FIG. 1. Sketch of geometrical objects defining the 2D local
bond-orientational order parameter ψ

(n)
4 . Particle centers are depicted

as circles. Facets of the Voronoi tessellation (i.e., the perpendicular
bisections of the connections of particle centers) are drawn as dashed,
dotted, and dashed-dotted lines. Particles that share a Voronoi facet
are considered nearest neighbors. Symbols and coloring of the sketch
are described in the text.

with weight factors differing from the usual definition. Here
the sum is carried out over the Nn Voronoi nearest neighbors
of particle n, and the weight factor wnm/Wn is the length wnm

of the Voronoi facet shared by particles n and m (green dotted
line in Fig. 1) normalized by the total perimeter Wn of the
Voronoi cell of particle n (green dotted plus blue dashed-
dotted lines), and αnm (red) is the angle between the x axis and
the connection line of particles n and m. The weight factors
are included to make ψ

(n)
4 a continuous function of particle

positions and particularly robust against small distortions in
lattices by minimizing the influence of, e. g., diagonal nearest
neighbors in distorted square lattices (like the top-left particle
in Fig. 1). The modulus of ψ

(n)
4 ranges from zero for particles

with no local fourfold symmetry to 1 for particles centered in
a square of four nearest neighbors.

Unless otherwise stated, each simulation run is started
from a special configuration prepared to minimize nucleation
effects. The configuration consists of a domain of square order
with local density of 1.6σ−2 and a domain of threefold order
(local density 2.25σ−2) immersed in a fluid (local density
0.8σ−2). Velocities are initialized from Gaussian distributions
where the mean velocity of the N particles is subtracted,
yielding zero net velocity. After a relaxation period the sim-
ulations reach steady states, which are the subjects of our
investigations. We explicitly verified that all steady states are
stable when the simulation is paused and the velocities are
reset to a Gaussian distribution.

III. PHASE DIAGRAM

Various aspects of the phase diagram have been reported
previously [1,5,6,17,22,23], but a complete picture is lacking
so far. In Fig. 2(a) we present the phase diagram in the ρ-A
plane, obtained for N = 4000 particles. (The transition lines
shown here are shifted with respect to the true ones by finite-
size effects.) For the chosen parameters, the system exhibits
transitions with both first-order character as well as critical
behavior.
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(e) ρσ2 = 1.2, A = 0.1σ

(g) ρσ2 = 1.5, A = 0.03σ

(i) ρσ2 = 1.7, A = 0.05σ

(f) ρσ2 = 1.46, A = 0.03σ

(h) ρσ2 = 1.7, A = 0.03σ

(j) ρσ2 = 1.7, A = 0.03σ

FIG. 2. (a) Phase diagram in the density-amplitude plane for box height h = 1.83σ and angular frequency ωτ0 = 12. Investigated state
points are on a grid with spacings 
ρσ 2 = 0.02 and 
A = 0.002σ . The simulation at each state point was carried out with N = 4000 particles
and averaged over a time interval t = 5000τ0. The maximum density ρmaxσ

2 ≈ 2.31 is slightly larger than the density of two hexagonal close
packed layers, ρσ 2 = 4/

√
3, due to the possibility of buckling. Below the blue squares the fluidized state collapses and all particles drop to

the bottom plate. The green crosses indicate evaporation of a threefold cluster upon decreasing ρ. Between 0.02σ � A � 0.04σ the nucleation
density (gray filled triangles) of the threefold cluster upon compression differs from the evaporation density, with a hysteresis region (hatched)
between the green crosses and gray filled triangles. The purple open triangles mark the density where the threefold cluster comprises the whole
simulation box. The red stars and yellow circles indicate the continuous fluid-tetratic and tetratic-square transitions, respectively. Labels (c)–(j)
relate the state points to the snapshots in the following panels. Lines are a guide to the eye. The inset shows a wider view of the phase diagram
up to amplitude A = 1σ (where the dashed line marks the view of the main panel). (b) Sketch of the color coding of the particles in snapshots
(c)–(j). The hue is determined by the complex phase arg(ψ (n)

4 ) of the local order parameter. The color saturation indicates the modulus of ψ
(n)
4

(|ψ (n)
4 | = 0 → gray, |ψ (n)

4 | = 1 → fully saturated). (c)–(j) Top view snapshots of the simulation box at state points indicated and labeled in the
phase diagram: (c) ρσ 2 = 1.2, A = 0.004σ inelastic collapse (nonergodic). (d) ρσ 2 = 1.0, A = 0.03σ fluid phase. (e) ρσ 2 = 1.2, A = 0.1σ

fluid-threefold coexistence (circular cluster shape). (f) ρσ 2 = 1.46, A = 0.03σ fluid with square bilayer patches. (g) ρσ 2 = 1.5, A = 0.03σ

tetratic phase. The magnifier shows a connected path along grid lines, which follows two lattice sites up, two right, two down, and two left.
The fact that the path does not close, as it would in a regular lattice, indicates a dislocation defect. The other dislocations are marked in the
same way. (h) ρσ 2 = 1.7, A = 0.03σ fluid-threefold coexistence (with the cluster wetted by square bilayer phase; triangular cluster shape).
(i) ρσ 2 = 1.7, A = 0.05σ fluid-threefold coexistence (partially wetted). (j) ρσ 2 = 1.7, A = 0.03σ fluid-threefold coexistence with cluster
percolating the box in y direction [metastable; same state point as (h)]. ϕ denotes the angle between the y axis and the symmetry axis of the
lattice unit cell (see Sec. V). The big arrow indicates the direction of motion of the cluster.
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At low driving amplitudes A < 0.007σ , we observe inelas-
tic collapse [1,32] in which all spheres drop to the bottom
plate because the injected energy does not suffice to main-
tain a fluidized state. A snapshot of this state is displayed
in Fig. 2(c); as in all snapshots, the colors show the local
orientation of the square order, i.e., the complex phase of ψ

(n)
4 ,

as depicted in Fig. 2(b).
At higher A there are several fluidized states described in

the following. At low ρ, the system is in a homogeneous
unordered fluid phase, exemplarily seen in Fig. 2(d). In the
high-density limit, we find a lattice with threefold symmetry.
This lattice consists of two hexagonal layers offset against
each other such that particles of the top layer sit in the
dips of the bottom layer, as in the hexagonal close-packed
structure. In projection, one finds a honeycomb lattice with
three nearest neighbors. Because the bottom and top layer
particles are distinct in the gravitational field, this lattice
has only threefold rotational symmetry and not sixfold as
the honeycomb (see also Sec. V). The transition from the
fluid to the threefold lattice is different in the high-amplitude
regime A � 0.05σ and in the moderate-amplitude regime
0.007σ < A � 0.05σ .

In the high-amplitude regime the transition exhibits the
phenomenology of a first-order phase transition. At the evap-
oration density ρσ 2 ≈ 0.9, a cluster with threefold structure
emerges [see Fig. 2(e)] which then grows with increasing
ρ until it comprises the entire box for ρσ 2 � 2.26. This
transition scenario is stable up to at least A = 1σ , as shown
in the inset of Fig. 2(a). The relatively broad coexistence
region as compared to the thermal equilibrium system [19]
is an effect of enhanced dissipation in the dense phase and has
been reported previously [5,17,22].

In the moderate-amplitude regime, the fluid contains
patches with square bilayer structure Fig. 2(f) for ρσ 2 � 1.4.
The length scale and lifetime of these patches (as seen in
movie no. 1 in the Supplemental Material [34]) diverges
upon increasing ρ, and the system undergoes a continuous
transition. The result is the tetratic state as seen in Fig. 2(g).
This phase is distinguished from a true solid by the presence
of dislocations [marked in Fig. 2(g)] at which grid lines end.
In a second continuous transition at higher ρ, the density of
dislocations vanishes and a square bilayer solid is formed
(no snapshot shown). This two-step transition hence displays
the phenomenology of the BKTHNY theory [28,29] and is
analyzed in greater detail in Sec. IV. In contrast to the large
density difference between the fluid and the threefold phase,
we do not find any evidence of density inhomogeneities at the
fluid-tetratic or tetratic-square transitions.

At higher ρ, a first-order-type transition to the threefold
lattice is found with an evaporation density of the three-
fold cluster of ρσ 2≈1.57. Surprisingly, in the coexistence
region, the square phase is destabilized by the presence of the
threefold cluster and melts into a fluid, see Fig. 2(h). This
seemingly paradoxical topology of the phase diagram may
either be a finite-size effect due to the size of the critical
nucleus (though dilution persists in N = 16 000 simulations,
see movie no. 2 in the Supplemental Material [34]) or a
genuine nonequilibrium feature (see discussion).

From what we can tell from our simulations, the fluid-
tetratic-square transition and the density instability leading

to clusters are independent. In other words, there is no extra
critical behavior at the state points A = 0.05σ , ρσ 2 = 1.47
and A = 0.04σ , ρσ 2 = 1.53, where the critical transition lines
intersect with the evaporation line of the threefold cluster.

To check if the fluid-threefold coexistence is the true NESS
above the evaporation density, additional simulations were
performed in that region, initialized as pure square phases
(including grain boundaries to facilitate nucleation) or fluids.
Threefold clusters are indeed nucleated but at a very low
rate. In the range 0.02σ � A � 0.04σ and at ρσ 2 � 1.71,
however, we could not observe any nucleation events at all,
which is indicated in the phase diagram as a hatched hysteresis
region. The relative stability of the fluid-tetratic-square branch
and the demixed fluid-threefold state is therefore inconclusive.
(In nonequilibrium, we cannot determine the free energies of
the two branches.) The two Berezinskii-Kosterlitz-Thouless
transitions might thus lie on a metastable branch.

When avoiding nucleation, the transition lines of the
fluid-tetratic-square transition continue metastably up to A ≈
0.068σ . At lower ρ, we find the coexistence of two fluids
with distinct densities in the range 0.05σ � A � 0.068σ and a
fluid-square coexistence for A � 0.068σ , qualitatively consis-
tent with the findings of Guzmán and Soto [23]. These states
are metastable in our simulations, however.

Finally, we discuss the shape of the threefold cluster which
appears in the fluid-threefold coexistence. For large A, the
shape of the cluster is dominated by an isotropic surface
tension and thus is close to circular, Fig. 2(e). At lower A
the symmetry breaking between the top and bottom hexagonal
layers due to gravity is enhanced. This leads to a pronounced
anisotropy of the surface tension and to the emergence of three
stable and three unstable directions in the hexagonal bilayer
(see Sec. V). The three stable facets grow out to become the
three corners of a cluster with triangular shape [see Figs. 2(h)
and 2(i)]. The remaining interfaces of this cluster are of the
unstable facet type.

In finite (square) simulation boxes with periodic boundary
conditions, phase coexistence manifests in three different
topologies of clusters [35]: a threefold cluster surrounded
by fluid [Figs. 2(e), 2(h) and 2(i)], a stripe-shaped cluster
[Fig. 2(j)], and a drop of fluid within a threefold lattice (not
shown). A detailed investigation of the relative stability of
these structures has not been done here. The stripe geometry is
of particular interest, however. If the two fluid-solid interfaces
are inequivalent, which is possible due to broken parity of
the threefold lattice, the cluster may absorb new particles on
one interface [right-hand side in Fig. 2(j)] and dissolve on
the other (left), leading to the curious effect that the ordered
domain is effectively propelled forward (see movie no. 3 in the
Supplemental Material [34]). The mechanism behind this and
the dependence of the effective cluster speed on its orientation
and A is examined in Sec. V.

IV. FLUID-TETRATIC-SQUARE TRANSITION

The freezing of the fluid to the square solid proceeds
in two continuous phase transitions at two different critical
densities. At the lower density, the fluid transforms into a
tetratic state by divergence of the length and timescales of
ordered patches. In the following, we measure the emerging
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orientational order and calculate precise values for the fluid-
tetratic critical density ρ4 and the critical exponents governing
the divergences. The system is driven through the transition by
increasing ρ at several fixed A.

At first the global orientational order for several system
sizes, ranging from L = 40σ to 160σ , and A = 0.03σ is con-
sidered as an indicator for a continuous transition. The degree
of global orientation is measured via the order parameter

�4 ≡
〈∣∣∣∣∣ 1

N

N∑
n=1

ψ
(n)
4

∣∣∣∣∣
〉
, (2)

where the angle brackets denote time average. The typical
behavior of a continuous transition is observed (cf. Fig. 3): in
the fluid phase, like the one displayed in Fig. 2(d), contribu-
tions of the differently oriented particles cancel out, yielding

zero mean. When approaching the critical point, patches with
fourfold orientational order emerge, which increase in size
and eventually reach the scale of the box. In this region there
are only a few patches [see, e.g., Fig. 2(f)]. Their contributions
to �4 are unlikely to cancel completely, as would be the case
for many small patches, and therefore yield a finite average.
The effect is more prominent with smaller simulation boxes
and sets in at lower ρ. When further increasing ρ, there is
only one domain left and the whole system orders, yielding
a strong increase of �4. The resulting kink in the data is at
a density lower than ρ4, but it approaches ρ4 in the limit of
L → ∞. Note that because the tetratic phase does not exhibit
true long-range orientational order, an exponent β governing
the order parameter via �4 ∼ (−ε)β does not exist in the
infinite system [36].

Length and timescales are studied via the (fourfold) inter-
mediate scattering function [37]

F4(k, τ ) ≡ 1

N

〈
N∑

m=1

N∑
n=1

eik·[rm (t )−rn(t+τ )]ψ
(m)
4 (t )ψ̄ (n)

4 (t + τ )

〉
,

(3)

where k is a 2D wave vector, rm is the 2D projection of the
position of particle m, τ is a time difference, and the bar
denotes complex conjugation. At equal times, F4 is the static
structure factor, S4(k) ≡ F4(k, 0).

In the fluid, for ρ < ρ4, Ornstein-Zernike behavior [37]

S4(k) = χ4

1 + (ξ4k)2
(4)

at low wave numbers k ≡ |k| is observed. We determine the
static susceptibility χ4 and the orientational correlation length
ξ4 [i.e., the typical size of a patch as seen in Fig. 2(f)] by
fitting our simulation data to Eq. (4). Figure 4(a) shows S4(k)
for several densities and L = 120σ exemplarily at A = 0.03σ .
Data for other values of A ranging from 0.01σ to 0.04σ

obtained with L = 80σ show qualitatively the same behavior.
The extracted values of ξ4 are displayed in Fig. 4(b). The data

(a) (b) (c)

FIG. 4. (a) Static structure factor S4 as a function of wave number k in the critical region exemplarily at densities ρ indicated in the legend
obtained at amplitude A = 0.03σ and box size L = 120σ . Lines are fits to the Ornstein-Zernike form, Eq. (4), only valid while the finite system
is fluid for ρσ 2 � 1.464. (b) Orientational correlation length ξ4 as a function of density ρ as extracted from the data in (a). The blue line is
a fit to Eq. (5) using data of the fluid regime (red symbols with error bars). Gray symbols without error bars are ordered states. (c) Static
susceptibility χ4 as a function of ξ4 as extracted from the data in (a). The blue line is a fit to Eq. (6) using data of the fluid regime (red symbols
with error bars). Gray symbols without error bars are ordered states.
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TABLE I. Critical density ρ4, parameter b, and critical exponents
γ̃ and z of the fluid-tetratic transition for several amplitudes A
obtained from fitting Eqs. (5), (6), and (8). Simulations at A = 0.03σ

were performed with box size L = 120σ , simulations at other A were
performed with L = 80σ .

ξ4 ∝ exp(b/
√

ε) χ4 ∝ ξ
γ̃

4 τ4 ∝ ξ z
4

A/σ ρ4σ
2 b γ̃ z

0.01 1.62 ± 0.03 0.8 ± 0.4 1.62 ± 0.21 2.01 ± 0.22
0.014 1.56 ± 0.02 0.70 ± 0.15 1.73 ± 0.09 2.17 ± 0.11
0.02 1.52 ± 0.01 0.74 ± 0.14 1.76 ± 0.15 2.02 ± 0.12
0.03 1.51 ± 0.01 0.74 ± 0.05 1.79 ± 0.16 2.01 ± 0.12
0.04 1.55 ± 0.03 1.3 ± 0.4 1.8 ± 0.4 1.84 ± 0.26

exhibits divergence at ρ4 of the XY model type [27],

ξ4 ∝ exp(b/
√

ε), (5)

with constant b and reduced density parameter ε ≡ 1 − ρ/ρ4.
The finite system already orders at lower ρ, where ξ4 attains
its maximum. Fits are therefore restricted to the region ρσ 2 �
1.464 (red data points with error bars).

The divergence of χ4 is closely linked to the divergence of
ξ4, as shown in Fig. 4(c). One observes power law dependence

χ4 ∝ ξ
γ̃

4 (6)

with critical exponent γ̃ . The resulting values of b, ρ4, and γ̃

at all investigated A are displayed in Table I.
The critical slowing down of large patches is quantified by

measuring the correlation time τ4 and the dynamic critical
exponent z in the limit of low k. After an initial decay of
all but the slowest mode, the long-time asymptotics of the
intermediate scattering function F4 has an exponential tail,

F4(k → 0, τ ) = Cτ exp(−τ/τ4), (7)

with the constant prefactor Cτ < χ4 due to the initial decay.
The simulation results and fits are displayed in Fig. 5(a)
exemplarily at A = 0.03σ for L = 120σ . Again, we observe
the same qualitative behavior at all investigated A. To extract
the asymptotic exponential decay, we fit data for τ � 50τ0.
The results for τ4 are shown in Fig. 5(b) as functions of ξ4.
Again, τ4 diverges with ξ4 as

τ4 ∝ ξ z
4, (8)

which defines z (also shown in Table I). Assuming that the
values are constant along the critical line, the best estimates
averaging over the values for different A are

γ̃ = 1.73 ± 0.07, z = 2.05 ± 0.06. (9)

Finally, the fourfold correlation function g4(r) is examined
to estimate the anomalous dimension η4 of orientational order.
We define

g4(r) ≡ 1

ρN

〈
N∑

m=1

N∑
n=1

δ[r + rm(t ) − rn(t )]ψ (m)
4 (t )ψ̄ (n)

4 (t )

〉
,

(10)

which is in practice calculated via backwards Fourier trans-
forming S4(k). Plotting g4 on a double-logarithmic scale (see

20

50

100

200

200   0  50  100  150

F4(τ)~Cτe-τ/τ4

dy
na

m
ic

 s
tr

uc
tu

re
 fa

ct
or

 F
4

time τ/τ0

ρσ2=1.45
ρσ2=1.46

ρσ2=1.47
ρσ2=1.48

101

102

103

2 5 20  10

fluid

or
ie

nt
at

io
na

l c
or

re
la

tio
n 

tim
e 

τ 4
/τ

0

orientational correlation length ξ4/σ

∝ξ4
z

τ4

ordered

(a)

(b)

FIG. 5. (a) Intermediate scattering function F4 as a function of
time difference τ at fixed wave number kσ = 0.052 obtained at
several densities ρ as indicated, amplitude A = 0.03σ , and box size
L = 120σ . Symbols show simulation data, lines show fits to Eq. (7).
(b) Correlation time τ4 as a function of orientational correlation
length ξ4 obtained from the fits of F4(k, τ ) [see (a) ]. The line is a fit
to Eq. (8) using data of the fluid regime (red symbols with error bars).
Gray symbols without error bars are ordered states [cf. Fig. 4(b)].

Fig. 6) for L = 160σ , one can distinguish between short-range
exponential decay for ρσ 2 � 1.465 and quasi-long-range al-
gebraic decay g4 ∝ r−η4 for ρσ 2 � 1.47. The algebraic decay
at the transition is well described by a power law with

η4≈1/4. (11)

Now we turn to the tetratic-square transition, at which
the density of free dislocations vanishes. The length scale
associated with this density can be extracted from the decay
of the 2D pair correlation function g(x, y) towards unity.
To reduce noise, multiple samples are averaged coherently
[38,39], i.e., they are aligned such that their individual global
orientational order parameter �4 is real and positive. (Note
that this procedure is necessary rather than investigating
the radial distribution function g(r), where the azimuth φ

has been averaged over. Rapid decay of g(r) − 1 would be
insufficient to demonstrate short-range positional order, as
g(r) − 1 decays rapidly even in a solid. The same is true for
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FIG. 6. Fourfold correlation function g4 as a function of distance
r on a double-logarithmic scale at densities ranging from ρσ 2 = 1.45
to 1.5, amplitude A = 0.03σ , and box size L = 160σ . The black
straight line corresponding to a power law with exponent –1/4 is a
guide to the eye.

a naive average, where multiple configurations with different
�4 orientations are averaged over incoherently.)

Figure 7(a) shows the (coherent) direct correlation func-
tion h(x) ≡ g(x, 0) − 1 at some exemplary densities for L =
120σ . The system exhibits short-range exponential decay of
the envelope,

h(x) ∝ exp(−x/ξpos) for ρσ 2 � 1.52, (12)

where ξpos is the positional correlation length, i.e., the typical
distance of dislocations. The inset shows the fitted values
of ξpos for all obtained exponentials. With increasing ρ, ξpos

increases, implying a decrease of the number of dislocations.
Ultimately the system crosses over to algebraic quasi-long-
range behavior,

h(x) ∝ x−ηpos for ρσ 2 > 1.52, (13)

with ηpos being the anomalous dimension of positional order.
The two types of asymptotics are distinguished by plotting
h(x) on a double-logarithmic scale as done for the envelope
in Fig. 7(b). At the crossover density ρσ 2 = 1.52 the average
number of dislocations in the simulation box is of the order
of 1. Note that for ρσ 2 > 1.52 simulations are not ergodic
any more at timescales ∼ 104τ0 [as indicated by the two
curves shown for ρσ 2 = 1.54 in Fig. 7(b) corresponding to
tetratic and square initial states, respectively]. Averaging over
times with quasi-long-range behavior [dash-dotted curve in
Fig. 7(b)], the asymptotic decay of h(x) is characterized by
an exponent close to 1/4. The critical density ρpos where
dislocations become infinitely sparse is slightly higher than
the crossover density. Assuming the same magnitude of finite
size corrections for ξpos as for ξ4 at the fluid-tetratic transition
we estimate ρposσ

2 ≈ 1.55.

V. DIRECTED MOTION OF THREEFOLD CLUSTERS

Stripe-shaped threefold clusters like the one shown in
Fig. 2(j) form from compact clusters at sufficiently high
ρ. On the other hand, at ρ near the evaporation density,
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FIG. 7. (a) Scan through the 2D direct correlation function h
along the direction x of the order parameter �4 at some exemplary
densities as indicated and box size L = 120σ . Multiple samples
have been aligned and averaged over coherently, see main text. The
black straight lines show exponential fits of the maxima of h(x) to
Eq. (12). The inset shows the resulting fit values of the positional
correlation length ξpos for all obtained exponentials. (b) Maxima
of the data shown in panel (a) on a double-logarithmic scale for a
wider range of densities from ρσ 2 = 1.46 to 1.70. For ρσ 2 = 1.54
two curves are shown to illustrate non-ergodicity: the dashed and
dashed-dotted lines were obtained from tetratic and square lattice
initial configurations, respectively. Data shown for higher ρ were
obtained with square lattice initial configurations. The black straight
line (power law ∼ r−1/4) is a guide to the eye, where the exponent
1/4 is the upper bound for ηpos predicted by BKTHNY theory.1

simulation runs initialized with stripes are unstable with re-
spect to compact clusters.

The stripe structure is assumed to occur only with periodic
boundary conditions. With reflecting boundary conditions or

1By the results of Ref. [41], at melting, ηpos = 1/4 −
4π 2a−4(K/kBT )−2, where a is the lattice constant and K/kBT
is the effective (athermal) bulk modulus of the substance.
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FIG. 8. (a) Top view sketch of the threefold lattice consisting of
two hexagonal layers of particles (not to scale). The rhombus in the
center represents a unit cell of the lattice with its long diagonal being
one of the three symmetry axes (dashed-dotted lines). The orientation
of a cluster is measured by the angle ϕ between this diagonal and
the y axis of the box. Arrows at the edge show how top layer
particles are supported by bottom layer particles from the exterior
at the stable and unstable facets, respectively, and hence illustrate the
asymmetry between these facets. In the lattice displayed here, ϕ =
0 deg. This orientation has two equivalent left and right interfaces
in configurations with interfaces parallel to the y direction [as in
Fig. 2(j)], whereas a lattice rotated by ϕ = 30 deg would constitute
the maximally asymmetric case with a stable facet to the right and
an unstable facet to the left. The case ϕ = 60 deg is the same as ϕ =
0 deg mirror-inverted in y direction and therefore again symmetric
with respect to the y axis. Therefore, it is sufficient to consider
angles between 0 deg and 30 deg. (b) Sketch of the calculation of
the x coordinate of the center of mass xcom with periodic boundary
conditions via mapping of the x coordinates of the particles onto the
unit circle in the complex plane. Particles are displayed as red (light
gray) circles; the average of the mapped coordinate is depicted as
blue (dark gray) circle. Symbols are declared in the text.

in infinite systems, compact cluster shapes would be prefer-
able. Nevertheless, it is useful to study this topology, as it
allows precise control of the fluid-threefold interfaces: they
are straightened to exclude curvature effects and their length
is set by the box dimension. Even the orientation of the lattice
grid lines of the cluster is locked via the periodic boundaries
and is therefore constant during each simulation run.

To shed light on the mechanism of particle attachment
at the interfaces and implications for the shape of compact
clusters, we initialize configurations with percolating clusters
in y direction [as in Fig. 2(j)]. (In principle these clusters could
also percolate the box in x direction.) Box dimensions are
slightly adjusted for the unit cell of the cluster to fit in. An-
tipodal facets of the threefold cluster phase are inequivalent,
as illustrated in Fig. 8(a). Top layer particles (red/light gray)
at stable facets are supported by two bottom layer particles
(blue/dark gray) from the exterior. A top layer particle at an
unstable facet, however, is supported only by a single bottom
layer particle.

We initialize clusters with different orientations ϕ [as
depicted in Fig. 2(j)] of the lattice structure with respect to
the interface and calculate their drift speed as a measure
for differences in the stabilities of the interfaces. With the
threefold cluster being denser than the fluid, the drift of the

cluster can be tracked through the x coordinate of the center
of mass xcom. As the system has periodic boundary conditions,
we identify xcom by mapping the x axis to the unit circle
as described in the following and illustrated in Fig. 8(b).
First, the x coordinates xn of the particles are mapped to
complex numbers ζn = e2π ixn/L. These are averaged in the
complex plane via ζ̄ = 1

N

∑N
n=1 ζn and the complex phase of

the average is mapped back to obtain xcom = L
2π

arg(ζ̄ ).
Note that the motion of xcom indicates density waves

through the periodic copies of the box, even though there is no
net in-plane momentum. We initialize the simulation with zero
total momentum and the dynamics conserve momentum in x
and y direction. Indeed, the mean velocity of the particles due
to rounding errors in the simulations is lower than 10−10σ/τ0

throughout the simulations and is therefore not accountable
for the measured directed cluster motion.

The center-of-mass motions for different cluster orienta-
tions 0 deg � ϕ � 30 deg are shown in Fig. 9(a). From these
the average cluster speeds are calculated by measuring the
end-to-end distance and dividing by the time interval [see
Fig. 9(b)]. As expected, one observes zero cluster speed
for symmetric interfaces, i.e., when left and right interface
both are halfway between the stable and unstable facets. For
nonzero angles, the cluster starts to move in the direction
where the interface is composed predominantly of the stable
facet. The cluster speed increases with increasing asymmetry
between the interfaces. For angles greater than 20 deg the
speed decreases again, although the cluster becomes even
more asymmetric here.

The mechanism of the advancing cluster relies on particle
exchange with wetting films of square symmetry on its bound-
ary. Particles are absorbed in a zipperlike fashion at the front
interface and detach from the rear interface. The effect of this
process is a translation of the cluster in the positive x direction
(see movie no. 4 in the Supplemental Material [34]). When
approaching ϕ = 30 deg, however, the right interface becomes
parallel to the stable facet and lacks the kinks necessary for the
zipper mechanism to function. This explains the decrease of
the cluster speed at these angles.

We also measure the cluster speed as a function of A as
shown in Figs. 9(c) and 9(d). Here one can see that the cluster
speed decreases with increasing A. This is paralleled by the
clusters becoming more circular in the nonpercolated config-
urations [cf. Figs. 2(e), 2(h) and 2(i)] and hence confirms that
the mechanism that leads to the faceted cluster shape is the
same as the one driving the cluster propulsion. Two reasons
for the decreased cluster speed are identified. First, the square
film is thinner at higher A and therefore the zipper mechanism
does not work as efficiently. Second, the decreasing influence
of gravity as compared to the driving reduces the asymmetry
between the two types of facets.

VI. DISCUSSION AND CONCLUSION

The phase diagram of the vibrated quasi-2D granular
sphere system exhibits a first-order transition to a threefold
lattice as well as a continuous fluid-square transition with
intermediate tetratic phase. The densities on the fluid and
threefold side of the first-order transition are consistent with
values reported for simulations at A = 0.15σ by Melby et al.
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FIG. 9. (a) x coordinate of the center of mass xcom as a function of time t for individual runs at density ρσ 2 = 1.7, amplitude A = 0.04σ ,
and different cluster orientations ϕ as indicated. Black straight lines show end-to-end motion at each ϕ as used to extract the average velocity.
(b) Cluster speed vcom of the center of mass as a function of angle ϕ obtained from the end to end distance of motion as displayed in (a)
and averaged over four individual runs each. Lines are guides to the eye. By symmetry arguments, it is sufficient to consider the range
0 deg � ϕ � 30 deg, see inset. (c) Same as (a) but for fixed angle ϕ = 20 deg and different A as indicated. (d) Same as main panel of (b) but
for the center of mass motions displayed in (c).

[17]. The critical amplitude for the inelastic collapse —
best compared in terms of the dimensionless acceleration
� = Aω2/g = 1.01 ± 0.14—is also in fair agreement with
previous studies (see, e. g., [1,2]). All of these previous studies
involve tangential friction. Therefore, the consistency with our
results demonstrates that tangential friction is not essential for
the phase behavior in fluidized granulates.

The fourfold ordering transition found in experiments
[24,25] and simulations [23] is consistent with the topology
of the phase diagram presented here. Quantitative agreement
between simulation and experiment is not expected due to
the subtle role of roughness of particle surfaces [23]. Our
study departs from the earlier studies in two ways. First,
instead of the driving amplitude A, we control the transition
via the global density ρ; second, the earlier studies examine
configurations with a fluid-fluid phase separation in which
the denser of the two fluids undergoes an ordering transition
by increasing A. Due to the phase separation, the density of
the fluid is not strictly fixed either. For our set of param-
eters, there is no stable fluid-fluid phase separation, which
considerably simplifies the analysis and permits direct control
of the density. Therefore, our approach yields the critical
exponents associated with the control parameter ρ without

admixture of A. We expect that the tetratic phase is also
observable in experiment. The positional correlation length
is ∼3 particles when the tetratic first forms, which indicates
that short-range order will be detectable even in very small
systems.

For the fluid-tetratic transition, precise values for b and ρ4

were calculated. We precisely measured the critical exponents
γ̃ = 1.73 ± 0.07 and z = 2.05 ± 0.06 and find η4 ≈ 1/4. At
a higher density ρpos, there is a tetratic-solid transition which
is also of Berezinskii-Kosterlitz-Thouless type. Surprisingly,
all of the critical properties we measure are consistent with
equilibrium BKTHNY theory for two-step melting in two
dimensions, which predicts critical exponents of γ̃ = 7/4,
η4 = 1/4 [27], and z = 2 [26]. The observed asymptotic
behavior at melting is consistent with the BKTHNY bound for
square lattices of ηpos � 1/4. All critical properties are thus
remarkably close to the equilibrium predictions, despite the
strong driving and irreversibility.

The phenomenological resemblance of the phase behavior
to equilibrium systems appears to call for a thermodynamic
description by an extension of equilibrium statistical mechan-
ics to NESSs. However, there are also important deviations
from equilibrium behavior. In the moderate-amplitude regime,

022902-9



THOMAS SCHINDLER AND SEBASTIAN C. KAPFER PHYSICAL REVIEW E 99, 022902 (2019)

the evaporation density of the threefold cluster is larger
than the density of the fluid coexisting with it. A detailed
investigation of coexistence density and evaporation density
as a function of system size could clarify the origin of this
anomaly. If the dilution is found also in the infinite size
limit, this would imply that pressure is nonmonotonic as a
function of ρ, which is at odds with the postulates of equilib-
rium statistical mechanics. Therefore, the dilution would be
a nonequilibrium effect caused by the persistent energy flows
and dissipation. Similar effects have been observed for active
Brownian particles with hydrodynamic interactions [40]. We
leave this point to a future study.

As a final nonequilibrium effect, traveling density waves
and nontrivial particle currents associated with directed mo-
tion of stripe-shaped threefold clusters were found. The same
mechanism is responsible for the faceting of the freestanding
threefold cluster at low A. These freestanding clusters, how-
ever, do not exhibit directed motion and drift only diffusively.

Future studies should clarify the underlying symmetry break-
ing in the microscopic dynamics and characterize the resulting
energy and particle currents. The absence of rotational degrees
of freedom makes this model a good starting point for tracking
energy flows.
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