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Wrinkling and folding patterns in a confined ferrofluid droplet with an elastic interface
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A thin elastic membrane lying on a fluid substrate deviates from its flat geometry on lateral compression. The
compressed membrane folds and wrinkles into many distinct morphologies. We study a magnetoelastic variant of
such a problem where a viscous ferrofluid, surrounded by a nonmagnetic fluid, is subjected to a radial magnetic
field in a Hele-Shaw cell. Elasticity comes into play when the fluids are brought into contact, and due to a
chemical reaction, the interface separating them becomes a gel-like elastic layer. A perturbative linear stability
theory is used to investigate how the combined action of magnetic and elastic forces can lead to the development
of smooth, low-amplitude, sinusoidal wrinkles at the elastic interface. In addition, a nonperturbative vortex sheet
approach is employed to examine the emergence of highly nonlinear, magnetically driven, wrinkling and folding
equilibrium shape structures. A connection between the magnetoelastic shape solutions induced by a radial
magnetic field and those produced by nonmagnetic means through centrifugal forces is also discussed.
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I. INTRODUCTION

The study of the formation of wrinkled and folded patterns
in thin elastic membranes resting on a fluid or on a very soft
gel-like substrate has received much attention in recent years
[1–4]. Laboratory experiments, numerical simulations, and
analytical studies [5–9] show that when an elastic membrane
lies on a flat surface of a liquid, the membrane assumes dif-
ferent shapes when compressed laterally. The pattern-forming
structures result from the balance of elastic and hydrodynamic
forces acting on the membrane. For low compressions, small-
amplitude sinusoidal undulations arise at the membrane, cre-
ating a periodic wrinkling pattern. If the wrinkled surface is
compressed further, then a different type of pattern emerges:
The wrinkles increase their amplitude, and the smooth wrin-
kling is replaced by more convoluted localized structures in
the form of a single or multiple folds. If the compression pro-
cess continues, then the elastic membrane eventually makes
contact with itself, giving rise to teardroplike-shaped folds. It
has been recently shown that the fluid-supported elastic sheet
problem admits a vast array of multifold states [9] containing
both identical and dissimilar folds (for a representative collec-
tion of such deformed structures, see, for instance, Figs. 4 and
6 in Ref. [9]).

It is worth noting that, in addition to its intrinsic scientific
and academic value, these wrinkling and folding phenomena
[1–9] have a large number of practical applications, being ob-
served in various contexts and length scales ranging from the
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folding of geological layers [10] to patterns in cell membranes
and biological tissues [11–13].

A related fluid-structure system that also involves the inter-
play of elastic and hydrodynamic forces is the one that deals
with elastic capsules (closed monolayers) or elastic vesicles
(closed bilayers) [14,15]. Such types of closed membrane
arrangements consist of a thin elastic shell enclosing a fluid
inside. Interfacial instabilities can be triggered when elastic
capsules and vesicles are subjected to external forces. For
example, a possible route to exert forces on such closed elastic
membranes is through the use of external magnetic fields.
This specific shape changing technique requires the presence
of a magnetizable material inside the elastic structure. Under
such circumstances, the sealed membrane would acquire a
magnetic dipole moment, which can be properly manipulated
by external magnetic fields.

Experiments using a magnetic field to probe the shape
of vesicles filled with a magnetic fluid (a ferrofluid) were
performed by Bacri et al. more than two decades ago [16].
Ferrofluids [17–20] are stable colloidal suspensions composed
of minute, nanometersized magnetic particles dispersed on a
nonmagnetic carrier fluid. When a magnetic field is applied,
the magnetic forces in the ferrofluid compete with the bending
stiffness of the elastic membrane, and the equilibrium shapes
of the vesicle are altered. In particular, the external magnetic
field tends to elongate the original nearly spherical elastic
structure along the field direction, which assumes a prolate
shape [16].

Recently, numerical simulations and analytical calcula-
tions have been employed to investigate theoretically the
deformation of ferrofluid-filled elastic capsules in uniform
external magnetic fields [21]. Spheroidal shapes (prolate
spheroids) have been found at small and moderate magnetic
fields, whereas elongated shapes presenting conical tips have
been detected at high magnetic fields. It has also been found
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that the capsule can develop wrinkling-type instabilities if
circumferential compressive stresses arise as a result of the
stretching along the direction of the applied magnetic field.

The magnetic closed membrane structures studied experi-
mentally in Ref. [16] and theoretically in Ref. [21], and the
encapsulation of magnetic fluids in elastic shells [22] have
been proven useful tools in order to allow magnetic tuning
of the shapes of giant liposomes (or magnetoliposomes) [23],
as well as on probing mechanical and rheological properties
of living cells [24] and developing tissues [25].

In spite of the practical usefulness and scientific relevance
of the fluid-structure problems involving the interplay of
hydrodynamic, elastic, and magnetic forces, the deformed in-
terface morphologies of the ferrofluid-filled elastic membrane
systems studied in Refs. [16,21–25] are not as complex and
visually striking as the aforementioned wrinkling and folding
patterns investigated in Refs. [1–9]. Therefore, a study of the
development of sizable wrinkling and folding instabilities in a
ferrofluid system that involves the interplay of magnetic and
elastic effects is still lacking. This work aims to begin filling
this gap in the literature.

Given the complexity of such magnetoelastic pattern-
forming situation, in this paper we begin to tackle the prob-
lem by considering a simplified theoretical description. First,
instead of dealing with the much more complicated, three-
dimensional (3D) ferrohydrodynamic fluid-structure problem,
we focus on an effectively 2D situation and consider the flow
of a viscous ferrofluid droplet, surrounded by a nonmagnetic
fluid of negligible viscosity, between two closely spaced glass
plates of a Hele-Shaw cell [26–28]. To try to induce changes
at the two-fluid interface, we consider the action of a radial
magnetic field, applied in the plane of the Hele-Shaw cell
[29,30]. Such a radial magnetic field configuration has already
been utilized as an experimental tool to examine the formation
of interfacial patterns in free surface flows of both miscible
and immiscible thin ferrofluid films [31,32]. In addition, as
in Refs. [33–38], we consider that the fluid-fluid interface
is elastic and has a constant bending rigidity. Experiments
in Hele-Shaw cells [39] have shown that such an elastic
interface can be produced when the fluids are brought into
contact, and a micellar chemical reaction occurs, so that the
fluid-fluid boundary becomes an elastic gel-like layer. In this
confined geometric setting, the traditional Saffman-Taylor,
viscous fingering instability [28] is supplemented by magnetic
and elastic interactions, and in principle the ferrofluid droplet
could evolve into intricate interfacial patterns containing wrin-
kles and folds, hopefully as interesting and elaborate as those
that arise in Refs. [1–9].

Broadly speaking, our magnetoelastic problem serves as
a Hele-Shaw flow sort of counterpart to the compressed,
fluid-supported elastic sheet problem studied in Refs. [1–9].
However, we stress that even though our current study is mo-
tivated by the wrinkling and folding phenomena that emerge
in elastic sheets under compression, a direct equivalence
between these two distinct physical problems should not be
implied. As a matter of fact, even the theoretical approaches
employed to gain access to the complex wrinkling and folding
structures are different: While in Refs. [1–9] Lagrangian and
Hamiltonian approaches are used by considering compressed
membranes subjected to some constraints, here we utilize an

FIG. 1. Schematic illustration (top view) of a magnetic field–
induced flow in a Hele-Shaw cell. The cell contains an initially
circular viscous ferrofluid droplet of radius R (dashed curve) and
viscosity η, surrounded by a nonmagnetic fluid with negligible vis-
cosity. The fluid-fluid interface is elastic and has a constant bending
rigidity ν. The system is subjected to an in-plane external magnetic
field H pointing radially outward. The interplay of magnetic and
elastic forces deforms the interface (solid curve), and the interface
perturbation amplitude is denoted by ζ = ζ (θ, t ), where θ is the
azimuthal angle and ζ � R.

unconstrained vortex sheet formalism [40,41]. This issue will
be further discussed in Sec. III.

The rest of this work is outlined as follows. A perturbative
linear stability analysis of the system is presented in Sec. II,
unveiling how the combined action of magnetic and elastic ef-
fects determine the stability properties of the interface at early
stages of the dynamics. Section III indicates how a vortex
sheet formalism for Hele-Shaw problems [42,43] can be used
to access fully nonlinear, stationary, interface shape solutions,
which are obtained when magnetic and elastic forces are
exactly matched at the two-fluid interface. A representative
collection of such equilibrium shape solutions is presented,
revealing the formation of suggestive wrinkling and folding
patterns. A parallel between the radial magnetic field-induced
shape solutions, and those generated by nonmagnetic means
via centrifugal forces is also examined. Finally, our main
conclusions and perspectives are summarized in Sec. IV.

II. LINEAR DYNAMICS OF INTERFACIAL
PERTURBATIONS

In this section, we describe analytically and perturbatively
the early time dynamics of the interface separating a viscous
ferrofluid droplet, surrounded by nonmagnetic fluid of neg-
ligible viscosity, considering that they are confined to flow
in the narrow gap separating the two parallel glass plates of
a Hele-Shaw cell. A top view of the system is represented
in Fig. 1. The ferrofluid (nonmagnetic fluid) viscosity is
denoted by η1 = η (η2 � η), and the Hele-Shaw cell gap
thickness is represented by b. The fluids are Newtonian and
incompressible. The fluid-fluid interface is elastic and has a
constant bending rigidity given by ν. The system is subjected
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to an externally applied radial magnetic field [29,30]

H = H0

L
r êr, (1)

where H0 is a constant, L is a characteristic length, r is
the radial distance from the origin of the coordinate system
(located at the center of the cell), and êr is a unit vector in the
radial direction. Such a magnetic field is produced by a pair
of identical Helmholtz coils whose electric currents are equal
and flow in opposite directions [31,32]. The Hele-Shaw cell
is located at the mid-distance between the coils, such that the
radial magnetic field is coplanar to it. A magnetic body force
∼ ∇H , where H = |H| is the local magnetic field intensity,
acts on ferrofluid pointing in the outward radial direction.

Notice that the consideration of the in-plane radial mag-
netic field given by Eq. (1) is not simply an academic exercise
but something that can be implemented in practice. At first
glance, from Eq. (1) and by inspecting Fig. 1 one might think
that such a magnetic field configuration does not fulfill the
condition of the closure of magnetic field lines (see center
of the droplet in Fig. 1). However, it should be stressed that,
within the Hele-Shaw cell, the radial magnetic field expressed
by Eq. (1) is a 2D limit of a fully 3D magnetic field (the so-
called magnetic quadrupole field). This 3D field is created by
the two Helmholtz coils having opposite flowing currents, as
mentioned earlier. Such a quadrupole magnetic field is indeed
divergenceless, and the condition for the closure of the field
line is obeyed. Incidentally, this magnetic quadrupole field
configuration is of significant practical relevance and has been
extensively used to produce magneto-optical traps (MOPs) for
neutral atoms and molecules (see, for instance, Refs. [44,45]).
At the mid-distance between the coils (where the thin Hele-
Shaw cell is located), and for small radial distances, the 3D
magnetic quadrupole field reduces to the purely radial 2D field
given by Eq. (1) (see Eqs. (A6)–(A9) in Ref. [46]). Within
the Hele-Shaw cell, where transversal distances [z ∼ O(b)]
are much smaller than typical radial lengths [r ∼ O(R)], and
the radial component of the quadrupole field is much larger
than its transversal counterpart. Under such circumstances,
the in-plane field acting in the Hele-Shaw cell is given by
Eq. (1). As pointed out in Sec. I, experimental realizations
of this radial magnetic setup in ferrofluid systems have been
presented in Refs. [31,32].

Since the applied radial magnetic field [Eq. (1)] presents
a natural nonzero gradient, we take it as the main local field
contribution to the magnetic body force. In our analysis we
have not considered the influence of the demagnetizing (or
induction) field [17–20]. Within the scope of our problem (in-
plane applied magnetic field and relatively low values of the
magnetic susceptibility) demagnetizing effects can be safely
neglected.

It should be pointed out that a small change in radial
magnetic field setup leads to the action of a completely
different magnetic field configuration: By using the very same
Helmholtz coils apparatus mentioned above, but making the
electric currents to flow in the same direction, one obtains a
uniform magnetic field which is perpendicular to the Hele-
Shaw cell plates [17,18]. The perpendicular magnetic field
arrangement has been widely used in Hele-Shaw flow studies
of a very popular pattern formation problem in ferrofluids,

known as the labyrinthine instability problem [47–50], where
eye-catching and impactful multiply branched structures
arise.

Here we underline in a bit more detail the demagnetizing
field approximation in confined ferrofluids and the reasons for
disregarding demagnetizing field effects in our current radial
magnetic field problem in Hele-Shaw cells. In ferrohydrody-
namics [17–20,51,52], it is well know that the magnetic body
force can be formally expanded in terms of the ferrofluid
volume fraction. In fact, the demagnetization expansion is
based on an expansion of the magnetic field in terms of the
volume fraction and is always valid, provided the volume
fraction is not too high (i.e., the magnetic suspensions cannot
be too concentrated). This is precisely the regime we consider
in this work. In such expansion, the magnetic field strength
contributes up to all orders. In this context, the magnetic
body force in ferrofluids contains terms produced by the
externally applied field, supplemented by correction terms
related to the demagnetizing field. The demagnetizing field
corrections are proportional to (b/R)χ2NB [17–20,47–52],
where R is the radius of the initially circular ferrofluid droplet,
b is the already-defined Hele-Shaw cell gap spacing, χ is
the magnetic susceptibility of the ferrofluid, and NB is a
dimensionless magnetic Bond number of the system [in our
case, a magnetoelastic number defined by Eq. (11)]. Since
within the Hele-Shaw cell approximation, b � R, the ratio
b/R can be arbitrarily small [∼O (10−3)] [26–28,47–50]. In
addition, the magnetic susceptibility used in this work varies
in the range 10−1 < χ < 1, while 10 < NB < 103. For the
circumstances of our current work, (b/R)χ2NB is of order
10−2. Consequently, the contributions from the demagnetizing
field are much smaller than those produced by the applied
radial field, and demagnetizing effects can be neglected. We
emphasize that this is not the case for a ferrofluid droplet sub-
jected to a uniform magnetic field, perpendicular to the plates
of a Hele-Shaw cell [47–50]: In this situation, the applied
perpendicular field has a zero gradient, and the demagnetizing
field effect must be taken in account since it is the first nonzero
correction to the magnetic body force. So, contrary to what
occurs in our radial magnetic field case, the demagnetizing
effects cannot be neglected in the perpendicular field situation
and are in fact essential to describe the emergence of the
resulting labyrinthine pattern-forming structures.

In the framework of our first-order perturbative theory, the
perturbed shape of the interface can be written as R(θ, t ) =
R + ζ (θ, t ), where R is the radius of the initially circular
two-fluid interface and θ is the azimuthal angle (Fig. 1). Here
ζ (θ, t ) = ∑+∞

n=−∞ ζn(t ) exp (inθ ) represents the net interface
perturbation with complex Fourier amplitudes ζn(t ) and dis-
crete azimuthal wave numbers n.

The effectively 2D dynamics of the system can be de-
scribed by a generalized Darcy’s law for the gap-averaged
velocity [47–50]

v j = − b2

12η j
∇� j, (2)

where the index j is 1 for the inner fluid and 2 for the
outer one. In Eq. (2) the gap-averaged generalized pressure
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is defined as

� j = 1

b

∫ +b/2

−b/2
[Pj − �] dz = p j − ψ, (3)

where Pj is the 3D pressure, p j = [
∫ +b/2
−b/2 Pj dz]/b is the gap-

averaged pressure, and

� = μ0

∫ H

0
MdH = μ0χH2

2
(4)

represents a magnetic pressure [17], with μ0 denoting the
magnetic permeability of free space. In Eq. (4) we used
the linear relationship M = χH, with M = |M| being the
magnetization of the ferrofluid and χ its magnetic suscepti-
bility. Note that since the radial magnetic field [Eq. (1)] is
independent of z, we have that the gap-averaged magnetic
pressure ψ = [

∫ +b/2
−b/2 � dz]/b = �. Additionally, notice that

for the nonmagnetic outer fluid χ = 0 and � = 0.
We point out that as in Refs. [17–20,51,52], in our current

problem magnetophoresis effects can be neglected. The phe-
nomenon of magnetophoresis [53] occurs when a magnetic
field gradient produces a gradient in the magnetic particle
concentration. Such a magnetophoretic effect drives magnetic
particles to areas of larger magnetic field strength, leading
to particle agglomeration where the magnetic field is larger.
However, as in Refs. [17–20,51,52] we consider that the
concentration of magnetic particles is constant, and magne-
tophoresis effects are not relevant. As a matter of fact, it
has been shown [54] that under typical ferrohydrodymanics
circumstances, the characteristic time for the magnetophoresis
effect to become relevant is of the order of 105 s, being much
larger than the characteristic time for the viscous dominated,
Darcy’s law flow that occurs in Hele-Shaw cells (which are of
order of seconds). In this case, suspended magnetic particles
do not have enough time to move relative to the surrounding
nonmagnetic liquid carrier due to the Stokes drag, and mag-
netophoresis effects can be disregarded.

From Darcy’s law Eq. (2) and the incompressibility con-
dition ∇ · v j = 0, it can be verified that the velocity poten-
tial φ j , where v j = −∇φ j obeys Laplace’s equation. In the
context of Hele-Shaw flows [26,27], our Laplacian problem
is completely specified by two boundary conditions at the in-
terface r = R. The first one is the augmented Young-Laplace
pressure boundary condition [17,18,33–38],

(p1 − p2)|r=R = [
ν
(

1
2κ3 + κss

) − 1
2μ0(M · n̂)2

]
r=R,

(5)

where

κ = R2 + 2
(

∂R
∂θ

)2 − R ∂2R
∂θ2[

R2 + (
∂R
∂θ

)2]3/2 (6)

denotes the interface curvature in the plane of the cell, and
the subscripts of κ indicate derivatives with respect to the
arclength s. In addition, n̂ denotes the unit normal vector at
the interface. The first term on the right-hand side of Eq. (5)
is related to the pressure jump due to the elasticity of the
interface. It is obtained by minimizing the Canham-Helfrich

energy functional [33–38],

E = 1

2

∫
νκ2ds, (7)

and represents the simplest model for the elastic response
of the interface. The second term on the right-hand side of
Eq. (5) is commonly known as the magnetic normal traction
term [17,18] and incorporates the influence of the discontin-
uous normal component of the magnetization at the interface.
Notice that as in Refs. [55–57], in contrast to the usual Hele-
Shaw cell problem, surface tension effects are neglected in
Eq. (5).

The other relevant boundary condition (known as the kine-
matic boundary condition [26,27]) connects the velocity of the
ferrofluid with the motion of the interface itself

∂R
∂t

∣∣∣∣
r=R

=
[

1

r2

∂R
∂θ

∂φ j

∂θ
− ∂φ j

∂r

]∣∣∣∣
r=R

. (8)

Equation (8) expresses the fact that the normal components of
the fluids velocities are continuous across the interface.

After presenting the equation of motion of the system
[Eq. (2)], and the related boundary conditions [Eq. (5) and
Eq. (8)], we now present a perturbative linear stability analysis
of the problem. In this framing, our primary task is to derive
the linear dispersion relation (or the linear growth rate). In
order to do that, we define Fourier expansions for the velocity
potential and use the kinematic boundary condition (8) to
express the Fourier coefficients of φ in terms of the Fourier
perturbation amplitudes ζn. Substituting these relations and
the pressure jump condition (5) into the modified Darcy’s law
Eq. (2), always keeping terms up to first-order in ζ and Fourier
transforming, we find the dimensionless equation of motion
for the perturbation amplitudes ζn,

ζ̇n = λ(n)ζn, (9)

where the overdot represents a total time derivative with
respect to time and

λ(n) = |n|
{

2NBχ (1 + χ ) + (n2 − 1)

R5

[
5

2
− (n2 + 1)

]}

(10)

is the linear growth rate. In Eqs. (9) and (10) lengths and
time are rescaled by r0 and (12ηr5

0 )/(νb2), respectively, where
r0 is a typical length being on the order of the unperturbed
ferrofluid droplet radius R. Within this dimensionless descrip-
tion the system is conveniently characterized by the magnetic
susceptibility χ and by a magnetoelastic number,

NB = μ0H2
0 r5

0

2L2ν
, (11)

which measures the ratio of magnetic to elastic forces [58,59].
By examining Eq. (10) for the linear growth rate, one im-

mediately notices that it is time- independent. Consequently,
Eq. (9) can be easily integrated, resulting in the exponential
growth (decay) of the linear perturbation amplitudes with time
if λ(n) > 0 [λ(n) < 0]. We can also directly verify the depen-
dence of the linear growth rate on mode n. For the modes that
preserve circular shape (i.e., n = 0 and n = 1) we have mode
n = 0 (uniform expansion of the circular interface) is marginal
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FIG. 2. Linear growth rate λ(n) as a function of the azimuthal
wave number n for χ = 0.5, and three values of the magnetoelastic
number NB: 0, 200, and 400. Here we have that R = 1.

[λ(n = 0) = 0], while mode n = 1 (global off-center shift of
the circular interface) is unstable, since 2NBχ (1 + χ ) > 0.
However, if n � 2 the stability of the elastic interface depends
on the interplay of the two terms of Eq. (10). Notice that the
only destabilizing term in Eq. (10) is the one related to the
radial magnetic field (term proportional to NB). On the other
hand, the contribution coming from the bending elasticity of
the interface [term proportional to (n2 − 1)] acts to restrain
interface deformation.

Figure 2 illustrates how the linear growth rate λ(n) varies
with mode n for three increasingly larger values of the magne-
toelastic number NB, for χ = 0.5, and R = 1. From Fig. 2 the
destabilizing role of NB becomes quite evident: Larger values
of NB increase the width of the band of unstable modes as well
as the peak location of the curves. Therefore, by manipulating
NB one can induce deformations at the elastic interface in our
magnetoelastic problem.

A useful quantity that can be calculated in closed form
from the growth rate expression (10) is the mode of maximum
growth rate nmax [i.e., the one that gives the peak location
of the λ(n) curves]. It can be obtained by the condition
[dλ(n)/dn]n=nmax = 0, leading to

nmax = 1
2

√
3 +

√
9 + 8

5 [4NBχ (1 + χ )R5 − 3]. (12)

At the linear level, the closest integer to nmax provides an
estimate for the number of undulations formed at the elastic
interface. Note that the number of undulations increases with
both NB and χ .

Another quantity of interest that can be extracted from the
linear growth rate (10) is the critical value of the magnetoe-
lastic number at which the nth mode becomes unstable. This
happens when λ(n) = 0, yielding

Ncrit
B (n) = (n2 − 1)

2χ (1 + χ )R5

[
(n2 + 1) − 5

2

]
. (13)

These [Eqs. (10)–(13)] are basically the most relevant pieces
of information that one can extract at the purely linear level
(i.e., stability behavior of a circular elastic interface against
small radial magnetic field-induced perturbations).

One additional and interesting issue that can be perceived
already at the linear regime is the “rotating Hele-Shaw cell
limit” [43]. By this we mean the limit χ → 0 such that the
product χNB remains constant. In this limit the interface
behavior of a ferrofluid droplet under a radial magnetic
field in a motionless Hele-Shaw cell reverts to the behavior
of a nonmagnetic fluid droplet in a rotating Hele-Shaw
cell [60,61]. This curious connection between these two
apparently unrelated physical systems comes from the fact
that in both problems (i.e., magnetically and centrifugally
driven cases) the scalar potentials are proportional to r2. This
limit can be useful to try to link our current magnetoelastic
problem to other existing situations in which elastic and
centrifugal forces act in the spatially confined environment of
a Hele-Shaw cell [62–64].

Within the scope of a perturbative linear theory, the in-
terfacial disturbances must be of small magnitude (ζ � R).
Moreover, at the linear level the participating Fourier modes n
decouple [as expressed by Eq. (9)]. Thus, at the linear regime
each participating mode grows or decays independently of
one another. So, essentially, linear analysis offers access to
the stability of the interface with regards to the action of a
particular, single mode. As a result of these considerations,
through a linear description, only small, purely sinusoidal
shaped fingers would emerge at the elastic interface. In this
sense, linear analysis would be able to make a fair mimic
of the onset of the wrinkling instability [1–4], as long as
the wrinkles are small, smooth, and described as sinusoidal
undulations across the entire elastic boundary. However, as
the wrinkles grow in amplitude and their shapes become more
complex (not exactly sinusoidal) the linear description fails.
By the same token, a perturbative linear approach is not able
to reproduce the shape of the rising folds which are more
complicated, nonlinear structures that can be nonperiodic and
quite convoluted and that can reach large amplitudes. The lim-
itations of a linear analysis are even more serious if one wishes
to describe the folding patterns that can be highly localized,
and possibly asymmetric, or that present nearly touching,
multifold configurations as those that appear in a compressed
elastic membrane supported by a fluid substrate [1–9].

III. FULLY NONLINEAR STATIONARY SHAPES

In Sec. II we have verified that under the action of an
applied radial magnetic field, perturbative linear analysis
provides useful information about the stability of the elastic
interface at initial stages of the Hele-Shaw flow dynamics. In
the present section, we go beyond the purely linear level of
the pattern formation process and explore important aspects of
the fully nonlinear regime in a nonperturbative manner. More
specifically, we access highly nonlinear, wrinkling and folding
pattern morphologies through the calculation of stationary
(equilibrium) solutions of our magnetoelastic problem. In or-
der to accomplish such a task, we employ a technique known
as the vortex sheet approach [40–43]. This approach al-
lows a deeper analysis of the magnetoelastic pattern-forming
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phenomenon, giving access to its large-deformation limit,
including situations in which the interface contacts itself.
As in the case of a fluid-supported elastic membrane under
compression [1–9], the ability to contemplate the formation
of more strongly deformed interfacial structures, and the
possible occurrence of self-contact is central to describe the
folding instability in our magnetoelastic problem.

Irrespective of the fact that the normal component of the
fluids velocities are continuous across the two-fluid interface
[26,27] [as expressed by the kinematic boundary condition -
Eq. (8)], the tangential components of the velocities are
discontinuous when one crosses the fluid-fluid boundary. The
vortex sheet formalism explores this jump in the tangential
component of the fluid velocity and defines the vortex sheet
strength as

� = (v2 − v1) · ŝ, (14)

where v1 and v2 are the two limiting values of the fluids’
velocities at a given point of the interface. In Eq. (14) ŝ
denotes the unit tangent vector along the interface, with s
being the interface arclength. From the generalized Darcy’s
law Eq. (2), we can say that

η1v1 = − b2

12
[∇p1 − ∇�] (15)

for the ferrofluid and

η2v2 = − b2

12
∇p2 (16)

for the nonmagnetic fluid. Using these expressions, and by
subtracting Eq. (16) from Eq. (15), both evaluated at the
interface, one obtains

η2v2 − η1v1 = − b2

12
[∇p2 − ∇p1 + ∇�]. (17)

This equation can be conveniently rewritten in terms of the
sum and difference of v2 and v1 as

(v2 − v1)

2
+ A

(v2 + v1)

2
= b2

12(η1 + η2)
∇[(p1 − p2) − �],

(18)

where A = (η2 − η1)/(η2 + η1) is the viscosity contrast.
Then, by taking the dot product of Eq. (18) with ŝ, utilizing

Eq. (14), and writing the pressure difference (p1 − p2) by
using the pressure jump condition [Eq. (5)], we get

�

2
+ AV · ŝ = b2

12(η1 + η2)
∇

[
ν

(
1

2
κ3 + κss

)

− 1

2
μ0(M · n̂)2 − �

]
· ŝ, (19)

where V = (v1 + v2)/2 is an average velocity of the interface
which can be expressed as a Birkhoff integral [40–43]

V(s, t ) = 1

2π
P

∫
ds′ ẑ × [r(s, t ) − r(s′, t )]

|r(s, t ) − r(s′, t )|2 �(s′, t ), (20)

where P means a principal-value integral and ẑ is the unit
vector along the direction perpendicular to the cell. Finally,
by explicitly writing the expression for � [using Eqs. (1) and
(4)] into Eq. (19), and considering that in our problem the

viscosity of the nonmagnetic fluid is negligible (η2 � η1 =
η), and, consequently, A = −1, a dimensionless equation for
the vortex sheet strength can be obtained, yielding

�

2
= V · ŝ + ∂s

[(
1

2
κ3 + κss

)
− NBr2χ [1 + χ (n̂ · êr )2]

]
,

(21)

where ∂s = ∂/∂s is the derivative along the tangent direction
to the interface. The term (n̂ · êr )2 in Eq. (21) is reminiscent
of the magnetic normal traction contribution in Eq. (5). No-
tice that Eq. (21) is made dimensionless by using the same
rescaling utilized to nondimensionalize Eqs. (9) and (10).

If one intends to describe the time evolution of the in-
terface, then one has to solve numerically a complicated
nonlinear integrodifferential equation defined by Eq. (21)
and Eq. (20) [40]. However, a significantly simpler vorticity
equation is obtained if one focus on the, still fully nonlinear,
but stationary solutions of Eq. (21) where magnetic and elastic
forces are equally balanced at the interface. In this equilibrium
scenario, we have that v1 = v2 = 0 [42]. By taking V = 0 in
Eq. (21), considering the condition of zero vorticity (� = 0),
and writing n̂ · êr = rθs [43], we find a nonlinear ordinary
differential equation

3

2
κ2κs + κsss − 2NBχ

[
rrs + χr3

(
2rsθ

2
s + rθsθss

)] = 0,

(22)

which describes the shape of the elastic two-fluid interface.
The determination of a closed-form, exact analytical solution
of this shape equation is challenging and poses a rather
difficult problem. In this work, we solve Eq. (22) numerically
by employing a numerical approach originally presented in
Ref. [43]. Such numerical solutions offer a nonperturbative
way to gain access to fully nonlinear, stationary interfacial
shapes in our magnetoelastic pattern formation problem. No-
tice that in the rotating Hele-Shaw cell limit [42,43,64] the
shape equation [Eq. (22)] reduces to a considerably simpler
form

3
2κ2κs + κsss − 2C rrs = 0, (23)

where C = NBχ .
Here we make a few important remarks about the uncon-

strained nature of the vortex sheet approach used to obtain the
equilibrium magnetoelastic patterns presented in this work.
This issue was briefly discussed at the end of Sec. I, and
it is now discussed further. The majority of the studies that
look for equilibrium shape solutions for the problem of a
fluid-supported elastic membrane under compression employ
Lagrangian, Hamiltonian, and rod-theory-based methods (see,
for example, Refs. [6–9]). In framework of these theoretical
approaches, one essentially writes down the energy func-
tional for the system, taking into account some constraints
and boundary conditions. Usually, membranes are considered
as inextensible objects and therefore must present a fixed
length (that can be either finite or infinite), being subjected to
clamped, periodic, or far-field boundary conditions. Such an
energy functional is then minimized, leading to a differential
equation whose solution provides the desired equilibrium
structures. Nevertheless, as one can find out by inspecting
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Refs. [1–9], the derivation and solution of such differential
equations are not always straightforward.

In this work, we follow an alternative route and derive
the differential equation for the equilibrium magnetoelastic
shapes by employing an unconstrained vortex sheet approach
[40–43]. This theoretical tool offers a particularly simple
method to obtain the differential equation that governs the
shape of the stationary magnetoelastic patterns [Eq. (22)],
allowing one to probe the morphology of such fully nonlin-
ear shapes. However, in contrast to the theoretical approach
adopted in Refs. [6–9], the vortex sheet technique imposes
no constraints over the contour lengths and areas of the
resulting closed and non-self-crossing equilibrium structures.
Nonetheless, it should be emphasized that the unconstrained
nature of the vortex sheet approach does not obscure its most
convenient feature: its ability to allow proper access to promi-
nent fully nonlinear morphological elements of the resulting
equilibrium magnetoelastic patterns. The formulation of a
constrained version of the vortex sheet approach is certainly
an appealing and challenging research topic but goes beyond
the scope of our current work.

Before proceeding, we briefly discuss how to conciliate the
establishment of the problem of determining stationary shapes
for the magnetoelastic situation [governed by Eq. (22)], with
the instability related to the rigid translational motion of the
circular ferrofluid droplet [mode n = 1 in the linear growth
rate given by Eq. (10)]. Of course, the displacement mode
n = 1 is just one of the many possible unstable modes of
the problem; however, it is the one directly connected to
the rigid motion of the droplet, something that in principle
could jeopardize the notion of a truly stationary solution.
From a general point of view in nonlinear dynamics [65],
it is important to know all fixed points of the dynamics,
either stable or unstable, even if the unstable ones may not
be easily observable. The effect of the unstable ones in the
dynamics may be directly observable as a slowing down when
the system passes nearby a steady solution (which may be
forces through the choice of initial conditions). In the case
of the displacement mode n = 1, in particular if the initial
condition is carefully well centered, it may take a long time
to excite the displacement mode by noise. Note, for instance,
that in experiments of centrifugal fingering of nonmagnetic
fluids in Hele-Shaw cells [60,61], as well as for experiments of
free surface flows with ferrofluids under radial magnetic fields
[31,32], the mode n = 1 is also unstable, but the experiments
have been carried out without any observable, significant
global displacement of the droplet. By the way, stationary
solutions have already been determined for the nonmagnetic
centrifugally driven fingering problem in Hele-Shaw cells
[42,43] and for the nonelastic case of a confined ferrofluid
droplet subjected to a radial magnetic field [29]. In both cases,
it has been shown that stationary solutions are indeed of
relevance to reveal important morphological and dynamical
properties of these systems. Based on these facts, we can say
that there is no incompatibility between the instability of mode
n = 1 and the establishment of stationary solutions via the
vortex sheet approach.

At this point we turn to the discussion of a representative
collection of fully nonlinear pattern-forming solutions of the
nonlinear differential equation (22). We stress that all patterns

shown in this section are stationary (equilibrium) shapes,
corresponding to the situation in which magnetic and elastic
forces are equally balanced at the interface. A number of
important morphological features of the stationary solutions
can be obtained by the numerical evaluation of Eq. (22) via
the manipulation of the relevant control parameters of the
problem, namely NB and χ . Once these physical parameters
are chosen, we try various different sets of initial conditions
and search numerically for acceptable (i.e., physically rel-
evant) patterns whose boundaries must be closed and non-
self-crossing. For a thorough discussion about the numerical
approach used to solve the type of differential equation given
in Eq. (22), as well as the non-self-crossing nature and com-
mensurability of the stationary pattern-forming solutions, we
refer the interested reader to Refs. [43,66–68].

We begin our analysis by inspecting Fig. 3. In the top
row [Figs. 3(a)–3(c)] we have a collection of representative
stationary solutions for the problem considering that the mag-
netoelastic number NB = 48, while the magnetic susceptibil-
ity of the ferrofluid droplet takes increasingly larger values:
(a) χ = 0.5731, (b) χ = 0.6271, and (c) χ = 0.6547. On the
other hand, in the bottom row [Figs. 3(d)–3(f)] we represent
the corresponding rotating Hele-Shaw cell limit patterns to
those depicted in Figs. 3(a)–3(c) by keeping the product χNB

constant and by setting χ → 0.
By scrutinizing the top panels of Fig. 3 we observe

that these magnetoelastic patterns present a quite distinctive
morphology: Each equilibrium pattern presents an envelope
structure in the form of a concave-shaped “polygon” having
a given N-fold symmetry (with N = 3, 4, and 5). Moreover,
one notices the formation of a fairly wrinkled perimeter along
the elastic interface of such N-gons. It is also evident that by
increasing the value of χ , the result is an increase in both N
and in the number of the tiny wrinkles that emerge at the elas-
tic interface. Another noteworthy observation is the fact that,
in contrast to the wrinkles formed on the curved edges of the
N-fold polygons (these wrinkles are mostly sinusoidal-like),
the small size fingered shapes formed at the vertices look more
like folds (they are more deformed and present a teardroplike
shape). The patterns depicted in Fig. 3 resemble the wrinkled,
serpentine-like elastic structures that arise in some biological
systems (see, e.g., Fig. 1(b) in Ref. [4]). They are also similar
to some of the wrinkled shapes that appear in the problem of
a compressed fluid-supported elastic sheet [1–9].

As a matter of fact, as χ is increased one notices that these
isolated folds located at the vertices become more distorted,
favoring the contact of the interface with itself [see bottom
part of Fig. 3(c)]. We attribute such a behavior to the fact
that at the vertices one reaches the largest radial distances
from the ferrofluid droplet center, maximizing the strength
of the applied magnetic field in these outermost locations.
Higher magnetic field intensities tend to induce stronger lo-
cal interface deformation, facilitating interface self-contact.
Folding formation and tendency toward self-contact are also
favored by the action of the magnetic traction term in the
ferrofluid [see second term on the right-hand side of Eq. (5),
and the term involving (n̂ · êr )2 in Eq. (21)]: The magnetic
traction term is maximized as n̂ is collinear to êr, pushing
more ferrofluid into the folds located near the vertices. These
folds then experience large magnetic forces which push the
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FIG. 3. Top panels: Gallery of representative magnetoelastic patterns for NB = 48 and three increasing values of the magnetic suscep-
tibility: (a) χ = 0.5731, (b) χ = 0.6271, and (c) χ = 0.6547. Bottom panels: Rotating Hele-Shaw cell limit patterns corresponding to the
structures depicted in the top panel, where (d) corresponds to (a), (e) to (b), and (f) to (c). The patterns in the bottom panels are obtained by
keeping the product χNB constant and by taking the limit χ → 0.

folds’ tips further along the radial outward direction, ulti-
mately favoring interface self-contact. In closing, we can
say that Figs. 3(a)–3(c) reveal the emergence of peculiar
magnetoelastic pattern-forming structures in which smooth,
sinusoidal equispaced wrinkles and deformed, localized folds
may coexist.

On the other hand, by examining the bottom panels of
Fig. 3 we find the rotating Hele-Shaw cell limit patterns
that correspond to the magnetoelastic structures illustrated in
the top panels. First, it is indeed true that the nonmagnetic
patterns depicted in Figs. 3(d)–3(f) are not dramatically dif-
ferent from the magnetoelastic ones shown in Figs. 3(a)–3(c).
After all, they are also characterized by the formation of
N-fold polygonlike shapes that present a number of small
wrinkled structures along their perimeters. Nevertheless, a
closer look reveals that there exist some important differences.
The most apparent dissimilarity is the fact that, differently
from what is seen in the top panels of Fig. 3, the tips of
the fingered envelope structures (located near the vertices of
the polygons) in the bottom panels of Fig. 3 are wider and
rounded. Furthermore, in the rotating patterns, despite the
presence of regular sinusoidal wrinkles, we do not verify the
formation of teardroplike folds near the polygon vertices. In
addition, interface self-contact is not observed. These dif-
fering morphological features are simply due to the absence
of the magnetic traction term contribution in the rotating
Hele-Shaw cell limit, in which χ → 0. So, in the rotating
Hele-Shaw cell limit patterns illustrated in Figs. 3(d)–3(f) we
observe the favored formation of wrinkles in detriment to

the creation of folds. These findings are consistent with the
results obtained in Ref. [64] where similar serpentine interface
patterns (their family I which presents no self-contact) have
been found in the nonmagnetic centrifugally driven elastic
fingering problem.

Another situation of interest refers to the response of the
patterns to considerably larger values of the magnetoelastic
number NB, while the magnitudes of the magnetic suscepti-
bility χ are significantly smaller than the equivalent values
already considered in Fig. 3. This situation is investigated in
Fig. 4. The top panels [Figs. 4(a)–4(c)] depict representative
interfacial patterns generated by taking NB = 1143, and three
magnitudes of the susceptibility: (a) χ = 0.0538, (b) χ =
0.0729, and (c) χ = 0.125. Similarly to what we have in
Fig. 3, in the bottom panels of Fig. 4 [Figs. 4(d)–4(f)] we
display the rotating Hele-Shaw cell limit patterns that are
equivalent to the magnetoelastic structures portrayed in the
top panels.

Now, just by quickly inspecting Fig. 4 one can readily tell
that the magnetoelastic patterns shown in the top panels are
significantly different from their nonmagnetic counterparts
illustrated in the bottom panels. In the top panels we verify
the formation of highly deformed pattern-forming structures
presenting strongly folded fingers of different sizes and thick-
nesses. When χ is increased one notices an increase in the
number of folded fingers. It is also apparent that the inter-
face tends to make contact to itself for larger values of χ

[Fig. 4(c)]. It is curious to see that, despite their morphological
complexity, the patterns shown in Figs. 4(a)–4(c) exhibit a
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FIG. 4. Top panels: Gallery of representative magnetoelastic patterns for NB = 1143, and three increasing values of the magnetic
susceptibility: (a) χ = 0.0538, (b) χ = 0.0729, and (c) χ = 0.125. Bottom panels: Rotating Hele-Shaw cell limit patterns corresponding
to the structures depicted in the top panels, where (d) corresponds to (a), (e) to (b), and (f) to (c). The patterns on the bottom panels are
obtained by keeping the product χNB constant and by taking the limit χ → 0.

clear reflection symmetry along the vertical direction: while
the folds on the right bend in the counterclockwise direc-
tion, the folds on the left part of each pattern are bent in
the clockwise direction. Invaginated equilibrium morpholo-
gies amusingly similar to the folded structures disclosed in
Figs. 4(a)–4(c) arise when an elastic membrane is confined
in rigid, cylindrical and spherical containers [69]. Moreover,
equilibrium shapes that fold inwards analogous to the magne-
toelastic patterns illustrated in the top panels of Fig. 4 also
occur in the packing problem of a thin elastic planar ring
confined within another shorter flexible ring [70].

A quite distinct set of patterns is unveiled in the bottom
panels of Fig. 4, when one considers the rotating Hele-Shaw
cell limit of the magnetoelastic situations presented in the
top panels. In Figs. 4(d)–4(f) one observes the formation of
peculiar swirling patterns. Once again, by enlarging χ one
ends up producing patterns presenting a larger number of
bent folds. Additionally, by increasing χ the bases of the bent
folds get narrower and narrower, ultimately favoring the self-
contact of the elastic interface. Intriguingly, in contrast to what
happened in the patterns shown in the top panels, in the bottom
panels the patterns are all bent in the same (counterclockwise)
direction. Hence, instead of having a reflection symmetry
(as the structures in the top panels), the patterns in the bot-
tom panels possess a rotational symmetry. Despite of these
interesting findings, the physics underlying this symmetry-
breaking behavior when one passes from the magnetoelastic
to the centrifugally induced fingering case is nontrivial, still
not well understood, and requires additional study. It is worth

noting that similar type of bent finger shapes arise when
elastic wires fold in the confined geometry of motionless
[71,72] and rotating [62,63] Hele-Shaw cells. In addition, the
swirling nonmagnetic patterns shown in Figs. 4(d)–4(f) are
analogous to the structures obtained in families II and III
in Ref. [64]. Finally, we point out that the folded structures
displayed in Fig. 4 have no apparent direct match with the
folding patterns normally found in the problem of a laterally
compressed elastic sheet lying on a fluid substrate studied in
Refs. [1–9].

Note that there is no contradiction involved in the fact
of obtaining convoluted shapes from the action of a simple,
purely radial, applied magnetic field. The fully nonlinear
shapes illustrated in Figs. 3–5 are a result of complicated
nonlinear couplings including magnetic and elastic forces,
as expressed in the nonlinear ordinary differential equation
given by Eq. (22). The interaction of the radial applied field
(that naturally has a nonzero gradient), the magnetic traction
contribution, plus the nontrivial elastic dependence of the
elastic force term in Eq. (5) select the perturbation modes in
such a intricate way, generating patterns that can break the
initial radial symmetry of the problem. Therefore, despite the
simplicity of the radial applied field [Eq. (1)], quite complex
pattern-forming shapes can arise at the nonlinear regime.

It should be pointed out that we have searched for other
types of pattern-forming structures within and beyond the
range of the parameters NB and χ considered in Figs. 3 and
4, but have not found any other significantly distinct kinds of
patterned morphologies other than the ones already presented
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FIG. 5. (a) Representative magnetoelastic pattern for NB = 929,
and χ = 0.1794; (b) Rotating Hele-Shaw cell limit pattern corre-
sponding to the structure depicted in (a), produced by keeping the
product χNB constant and by taking the limit χ → 0.

in this work. Representative examples of such slightly differ-
ent patterns are illustrated in Fig. 5 which presents structures
morphologically related to those shown in Fig. 4. It should be
stressed that, despite of using various combinations of NB and
χ , we had no success in finding other types of serpentine-like
patterns that were dramatically different from those already
illustrated in Fig. 3.

Figure 5(a) discloses a magnetoelastic pattern obtained
for NB = 929 and χ = 0.1794, and Fig. 5(b) exhibits the
corresponding rotating Hele-Shaw cell limit structure. The
most evident aspect of the patterns plotted in Fig. 5 is the
verification that they are morphologically more complex than
the shapes presented in Fig. 4. For instance, when one com-
pares the magnetoelastic pattern depicted in Fig. 5(a) with
the equivalent magnetoelastic structure depicted in Fig. 4(c)
one observes that in Fig. 5(a) we have more fingers, and
the occurrence of more interface self-contact events. It is
worthwhile to note that the rotating Hele-Shaw cell limit
shape displayed in Fig. 5(b) is also more intricate than the
analogous structures obtained in Fig. 4. Namely, the swirling
pattern in Fig. 5(b) has many more fingers than the structure
appearing in Fig. 4(f). Additionally, in Fig. 5(b) the folded

fingers are about to touch one another, and in Fig. 4(f) the
fingers keep a distance from each other.

One more subtle, but still noticeable feature of the mag-
netoelastic pattern shown in Fig. 5(a) is the fact that it is
not completely reflection-symmetric with respect to a vertical
line that equally divides this magnetoelastic structure in two
sides (i.e., left and right). But in fact, an almost imperceptible
reflection asymmetry can be verified. Moreover, contrary to
what has been observed in Fig. 4(c), in the magnetoelastic
pattern shown in Fig. 5(b) fingers located on the same side
(left or right) of the structure are bent in opposite directions
(in Fig. 4(c), once you pick a side, all fingers bend in the
same direction). It is worth noticing that asymmetric folding
patterns (containing distorted folds) have also been identified
in Ref. [8] (see their Fig. 4) and in Ref. [9] (see their Fig. 6) in
the study of equilibrium shapes of elastic sheets over a liquid
substrate.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have studied an effectively 2D, magne-
toleastic analog of the 3D nonmagnetic problem of a fluid-
supported elastic membrane under compression. Specifically,
we have considered a situation in which a viscous ferrofluid
droplet, surrounded by a nonmagnetic fluid of negligible
viscosity, is confined in a Hele-Shaw cell and subject to an
in-plane, nonuniform external magnetic field pointing radially
outward. In addition, we assume that, due to a chemical
reaction at the fluid-fluid boundary, the two-fluid interface
becomes a thin elastic layer. In this setting, we analyzed
the possibility for the appearance of magnetically induced
wrinkled and folded structures at the two-fluid interface.

By employing a perturbative linear stability theory we
have examined the onset of the pattern formation process. We
derived the linear dispersion relation of the problem which
reveals the interplay of magnetic and elastic effects: While the
radial magnetic field destabilizes the interface, elastic bending
forces act to restrain interface disturbances. The net effect at
the linear stage is the possibility for the development of a reg-
ular pattern of small sinusoidal undulations, characterizing the
emergence of magnetically activated wrinkles at the interface.
However, linear stability analysis is unable to either predict
or capture the formation of much more convoluted structures
that may arise at the interface in the form of single or multiple
folds.

In order to have access to the creation of large-amplitude,
highly nonlinear folded structures, we resorted to the vortex-
sheet formalism. By utilizing such a nonperturbative the-
oretical tool, we derived a nonlinear ordinary differential
equation for the stationary pattern-forming shape solutions.
Such equilibrium structures correspond to the situation in
which magnetic and elastic forces are exactly balanced at
the interface. A representative collection of possible patterns
has been found. The first class of interface morphologies
reveals the formation of polygon-shaped patterns having mul-
tiple, tiny wrinkles disposed in a serpentine-like manner.
As the magnetic susceptibility is increased, one finds the
coexistence of sinusoidal wrinkles and teardroplike shaped
folds. Such a coexistence tends to disappear when the mag-
netic susceptibility approaches to zero (i.e., in the rotating

022608-10



WRINKLING AND FOLDING PATTERNS IN A CONFINED … PHYSICAL REVIEW E 99, 022608 (2019)

Hele-Shaw cell limit), favoring the sole formation of sinu-
soidal wrinkles.

A second type of characteristic pattern-forming ar-
rangement displays the uprising of complex-shaped, high-
amplitude folded structures at the interface. These invagi-
nated folding patterns present an evident reflection symmetry,
exhibiting folds that can bend in the clockwise direction in
one side of the pattern, or in the counterclockwise direction
on the opposite side of the structure. Large values of the
susceptibility facilitate the formation of multifold shapes in
which the interface can make contact with itself. On the other
hand, a completely different set of patterns is obtained in the
rotating Hele-Shaw cell limit, where rotationally symmetric,
swirling shapes arise in which all folds bend in the same
direction.

This work presents theoretical results that have not yet
been subjected to the scrutiny of laboratory experiments
and fully nonlinear, time-dependent numerical simulations.
In particular, it would be of interest to examine the time
evolution of the elastic ferrofluid interface from the onset of
the linear instability where smooth sinusoidal wrinkles arise,
up until the point in which highly nonlinear, intricate folds are
formed. As far as numerical simulations are concerned, the
time evolution of the magnetoelastic patterns examined here
could be described by the integro-differential equation for the
vortex sheet strength given by Eq. (21). We plan to tackle
this more complicated problem in the future by employing
boundary integral numerical techniques as those developed in
Refs. [73,74].

It would also be worth it to investigate variants of our
current magnetoelastic problem, by considering ferrofluid

droplets subjected to other magnetic field configurations: for
instance, a uniform magnetic field perpendicular to the Hele-
Shaw cell plates [47–50], or a rotating magnetic acting in
the plane of the cell [58]. An additional extension of the
present work is the study of the influence of magnetic and
elastic forces on a droplet of a more complex magnetic fluid,
such as a magnetorheological fluid [75], having an elastic
boundary. In this last case, important rheological effects like
magnetic field-induced yield-stress could be monitored by
external magnetic fields, probably leading to still unexplored
wrinkled and folded morphologies.

Our basic understanding of the radial magnetic field-
induced magnetoelastic problem proposed in this work is
still in its early stages, and many relevant questions remain
unanswered. For instance: are other classes of pattern-forming
shapes possible? Is it feasible to find exact stationary solutions
for the shape equation (22) analytically? If so, how about
the stability of such exact analytic solutions? Of course,
answering these types of questions, and making further pre-
dictions about the large-amplitude pattern shape deformations
is nontrivial, mainly due to intrinsic complications regarding
geometric nonlinearities. We hope this work will stimulate
further studies that might eventually lead to a better compre-
hension of these challenging, unresolved issues.
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