
PHYSICAL REVIEW E 99, 022607 (2019)

Numerical simulation of optical control for a soft particle in a microchannel
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Technologies that use optical force to actively control particles in microchannels are a significant area of
research interest in various fields. An optical force is generated by the momentum change caused by the refraction
and reflection of light, which changes the particle surface as a function of the angle of incidence of light and
which in turn feeds back and modifies the force on the particle. Simulating this phenomenon is a complex task.
The deformation of a particle, the interaction between the surrounding fluid and the particle, and the reflection
and refraction of light should be analyzed simultaneously. Herein, a deformable particle in a microchannel
subjected to optical interactions is simulated using the three-dimensional lattice Boltzmann immersed-boundary
method. The laser from the optical source is analyzed by dividing it into individual rays. To calculate the optical
forces exerted on the particle, the intensity, momentum, and ray direction are calculated. The optical-separator
problem with one optical source is analyzed by measuring the distance traveled because of the optical force. The
optical-stretcher problem with two optical sources is then studied by analyzing the relation between the intensity
of the optical source and particle deformation. This simulation will help the design of sorting and measuring by
optical force.
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I. INTRODUCTION

The deformability of cells varies [1–5] and can affect
the behavior of cells in circulatory systems. For instance,
the deformability of red blood cells (RBCs) is an extremely
important determinant of flow because a slight decrease in
deformability results in a sharp decrease in capillary flow rate.
In severe malaria, RBC deformability is reduced in parasitized
RBCs and in uninfected RBCs. Cell deformability is used for
cancer diagnosis [4,5]. Circulating tumor cells (CTCs) deform
to exit a tumor and enter circulation. Although CTCs are
rare in the blood, deformation-based methods for identifying
CTCs in patient blood can elucidate the process of cancer
metastasis and aid in making informed clinical decisions
[6]. Therefore, the measurement of cell deformation and the
separation of cells by deformability in a cell papulation are
highly relevant for novel clinical investigation, monitoring,
and diagnostics [7].

Several techniques have been developed to measure cell
deformability. Microfluidic filtration composed by micropore
filters was the first method used for measurements of RBC
deformability [8]. While the filtration is simple, its disadvan-
tage is to only yield the average information in a cell popula-
tion or the endpoint information. To measure deformability
distributions in a cell population, static single-cell analysis
has been introduced. This accurate cell analysis utilizes strain
control imposed by suction of a cell in a constriction such as
micropipette aspiration [9,10], or by a force exerted with a
tip such as cell poker and atomic force microscopy [11–13].
However, these methods have low throughput, which is not
applicable to practical situations.
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Numerous studies have considered cell separation based on
cell size and deformability [14–21]. When a cell suspension
containing mouse lymphoma cells (MLCs) and human periph-
eral blood mononuclear cells (PBMCs) is injected through a
two-dimensional (2D) filter array comprising funnel constric-
tions, PBMCs, which are smaller and more deformable than
MLCs, could easily flow through the constrictions, whereas
the larger and less deformable MLCs are blocked [19]. When
cells from each of eight tumor cell lines are loaded into the
device, all cancerous cells are isolated based solely on cell
size and deformation characteristics [20]. Inertial focusing
is used to manipulate the position and alignment of RBCs
within a microchannel; inertial focusing is incorporated into
a microfluidic device to isolate and enrich CTCs from diluted
blood samples [21]. However, these passive techniques have
low purity as well as high fabrication cost, which makes them
not suitable for clinical applications.

Nowadays, optical forces, comprising a scattering force
pointing in the direction of the light propagation and gradient
force acting in the direction of the light-intensity gradient, are
used as label-free techniques in a variety of fields [22]. The
optical stretcher based on the optical forces has been invented
for the measurement of cell deformability distributions in a
cell population of cancer cells [23], leukocytes [24–26], or
erythrocytes [27–30]. In addition to its capacity of precise
control, the optical stretcher has fast and large throughput.
Furthermore, the interactions between cells and wall surface
that result in cell activation or damage can be ignored in the
optical stretching technique [31]. Although the deformability
of several cells has been analyzed by the optical stretcher, no
standard formula exists yet to explain the relationship between
cell deformability and optical forces.

Optical forces can sort biological cells according to sev-
eral parameters, such as refractive index, size, shape, and
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fluorescence signal [32–36]. After being aligned in the cen-
ter of the channel by flow focusing, cells may be analyzed
and then switched based on their detected fluorescence [37].
Target cells are then directed by the laser to the collection
output, whereas all other cells flow to the waste output. The
optical mobility of blood cells tends to increase with cell size
because of the radiation force, and the optical mobility of
RBCs is larger than the spherical shape cells owing to their
biconcave shape [36]. The deformation of the cell membrane
can change the magnitude of the optical force exerted on the
cell. The dimensionless scattering parameter K (m) represents
the conversion efficiency based on the change in photon
momentum during the application of the scattering force and
tends to be higher for disklike or oval-shaped cells than for
spherical cells [37]. This means that the optical mobility
of cells should depend on cell deformability when a cell
flowing through a microchannel interacts with a laser directed
perpendicular to the fluid flow direction. Nevertheless, to our
knowledge there is no optical separating technique based on
cell deformability. Optical force is generated by the change
in momentum that occurs as light refracts and reflects from
an interface. Therefore, to analyze the optical force acting
on a cell, the refraction and reflection from the cell must be
considered in addition to the light intensity. Most microfluidic
devices that use other types of active forces can be simulated
using a potential to determine the external force as a function
of distance between the force source and cells. However,
optical force is difficult to describe with such a potential. In
the well-known simulation of optical tweezers, optical force is
not applied directly to the cell surface but via a light-emitting
microbead attached to the cell, thereby generating a constant
optical force for cell expansion [38,39]. The microbead is
not deformed by the optical force; therefore, a constant force
is generated. However, when an optical force targets a cell
surface directly, it deforms the cell surface such that the
angle of incidence and reflection change, thereby changing
the magnitude of the optical force acting on the cell surface.
Therefore, even if the same laser is applied, the optical force
exerted on the cell surface changes owing to cell deformation.

Numerically interpreting the optical forces acting on float-
ing cells in a fluid is necessary to support, microfluidic
channel design, development of the experiments, sorting, and
measuring. Solving the optical forces acting on floating cells
in a fluid is one of the most challenging and complicated prob-
lems in microfluidic science. The complication is arisen by

the deformation of cell and interactions with the surrounding
fluid. A full description of the floating cell with optical force
requires a complete understanding of the interactions between
the cell and optical force, interaction between the particles
and the matrix fluid, and interactions between channel and
particles. Thus, consideration of the above factors can lead to
a better understanding of the floating cell with optical force.

In this study, a deformable particle in a microchannel
subjected to optical interactions is simulated using the three-
dimensional (3D) lattice Boltzmann immersed-boundary
method. The results are compared with the experimental data
for the validation purpose. In the optical separator problem, a
laser is directed perpendicular to the direction of fluid flow so
that the optical force shifts deformable cells from their initial
fluid streamline to another streamline. To analyze the retention
distance and the optical mobility of cells, the effects of cell
deformability, flow velocity, and cell size are analyzed. In
the optical stretcher problem, the optical forces are generated
using two light sources. The cell deforms when it passes
through the laser, and the deformation is quantified using the
deformation index ε(ID). Overall contents and objectives of
this paper are shown in Fig. 1.

II. NUMERICAL METHOD

A. Lattice Boltzmann method

The lattice Boltzmann method is widely used to simulate
microfluidic flow problems [40,41]. The single-relaxation-
time Bhatnagar-Gross-Krook model is used to describe an
incompressible fluid. The governing equation with the forcing
term is [42]

fi(x + ei�t, t + �t ) − fi(x, t )

= − 1
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[
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For the D3Q19 model,
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(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18.

(4)

In Eq. (1), the density distribution function fi(x, t ) indi-
cates the fraction of particles moving with lattice velocity i at

lattice site x and time t , �t is the time step, τ is the particle
relaxation time, ei is the discrete microscopic velocity, fi

eq is
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FIG. 1. The objectives of this study are schematically shown. We simulate both optical separator and optical stretcher to analyze the particle
deformations. In the optical separator simulations, the more rigid the particle is the more retention distance, because the optical force induced
by laser has more dominant effects on lifting force rather than on particle deforming. In the optical stretcher simulations, deformation indices
log-linearly decrease as the deformability (shear modulus) increases. Through these simulations, three components—optical force, fluid, and
solid—are actively interacted. When the particle starts to move with inlet flow, fluid-solid interaction occurs. In the laser region, the optical
force deforms the particle and the deformed particle interacts with the surrounding fluid. After the particle escapes from the laser, the deformed
particle is relaxed by elastic recovery and interacts with the surrounding fluid.

the local equilibrium distribution function, and cs(= c/
√

3) is
the speed of sound (c = �x/�t). Fluid density ρ and velocity
u can be calculated using

ρ =
∑

i

fi, ρu =
∑

i

fiei. (5)

The kinematic viscosity is

ν =
(

τ − 1

2

)
cs

2�t . (6)

Physiologically, a cell is composed of a membrane and
cytoplasm. The inner fluid is called the cytoplasm, which
contains biomolecules and other proteins. Because of these
components, the cytosol is nonlinear viscosity and optically
inhomogeneous. The viscosity difference between matrix and

cytosol affects the cell deformation and motion. In this study,
the cytosol viscosity and matrix viscosity are set to reduce
the viscosity difference effect, the scattering and absorption
of light at the cell membrane is set to homogeneous to deduce
the general, as in many other numerical studies [39,43–46].

B. Three-dimensional deformable-particle mechanics

To simulate cell deformation, a spring-network model is
used as shown in Fig. 2. Triangular meshes, which are the
most common meshes for simulating the spectrin network of
cell membranes, are used. For the constrained spontaneous
shape of cells, volume, area, stretching, and bending are used.
We use a viscoelastic spring-network model, which accounts
for conservation of total volume, dilation of surface area, and
bending and stretching of the membrane and mesh density
[47–49].
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FIG. 2. Spring network of faces �123 and �134. (a) L is the
distance between Lagrangian nodes. N123 is the center of nodes X1,
X2, and X3. (b) �n is the normal vector of face �, and θ�123�134 is the
instantaneous angle between faces �123 and �134.

The cell membrane is represented by the spring network
comprising Lagrangian nodes (see Fig. 2). The stretching
force between Lagrangian nodes X1 and X2 is

FS (X1, X2) = −FS (X2, X1)

= −kSκ (λ12)�L12�L12
(
�L12 = L12 − L0

12
)
, (7)

where kS is the spring constant. The nonlinear (hyperelastic)
function κ for neo-Hookean behavior is [50]

κ (λ12) = (λ12)0.5 + (λ12)−2.5

λ12 + (λ12)−3 ,

(
λ12 = L12

L0
12

)
, (8)

where L is the instantaneous distance and L0 is the sponta-
neous distance between Lagrangian nodes.

The normal vector of face �123 is

�n123 = (X2 − X1) × (X3 − X1)/|(X2 − X1) × (X3 − X1)|.
(9)

The center of the plane is

N123 = (X1 + X2 + X3)

3
. (10)

The bending force between faces �123 and �134 is

FB(X2)/�n123 = FB(X4)/�n134

= −kB
[
1 − cos

(
θ�123�134 − θ0

�123�134

)]
, (11)

θ�123�134 = π − cos−1(�n123 ·�n123) when c�123�134 � 0

otherwise,

θ�123�134 = π + cos−1(�n123 ·�n123), (12)

c�123�134 = (N123 − N134) · �n123, (13)

FB(X3) = FB(X3) = FB(X2) + FB(X4)

2
, (14)

where kB is the bending constant, θ is the instantaneous angle,
and θ0 is the spontaneous angle. c�� is the angle indicator,
which determines whether the angle is obtuse or acute. To
simulate the deformation, the spring energy relating a single-
triangle face to the overall energy is

EAL(�123) = kAL
[�A(�123)]2

2A(�123)
. (15)

Similarly, the volume energy can be expressed as [48]

EV (�123) = −kV
(V − V0)2

V0
�n123. (16)

The spring-network model used in this study is a simplified
alternative to the energy model. The constraints of conserva-
tion of area and volume yield [49,51]

FA(�123, X1) = FAL(�123, X1) + FAG(�123, X1)

= −
(

kAL
�A(�123)√

A(�123)
+ kAG

�AT

AT

)
(X1 − N123),

(17)

A(�123) = [(X2 − X1) × (X3 − X1)]/2, (18)

FV (�123, X1) = −kV
V − V0

3V0
A(�123)�n123, (19)

V =
∑
�

(N ·�n)A(�)/3, (20)

where kAL, kAG, and kV are the local-area-, global-area-, and
volume-constraint constants, respectively. The quantities AT ,
V , and V0 are the total area, instantaneous total volume, and
spontaneous total volume, respectively. The total elastic force
under given the constrained spontaneous shape is

F = FV + FA + FS + FB. (21)

C. Optical force

To calculate the optical forces acting on a cell, the inten-
sity, momentum, and direction of the laser are calculated by
dividing it into individual rays. Refraction and reflection are
calculated for each ray based on the normal vector at the cell
surface. The ray optics approach is valid when the object is
much larger than the wavelength of the light. For spherical
objects, the condition is given as 2πa/λ�1, where a is the
radius of the sphere and λ is the laser wavelength. The radius
of the soft particles that we used in this study is greater than
9 μm and the laser wavelength is less than 1 μm, so the
condition was satisfied [52]. The optical force resulting from
the change in momentum of an individual ray is depicted in
Fig. 3.

The difference in momentum between the incident ray and
the refracted and reflected rays is used to calculate the optical
force, which yields

−→
R1 = −(−→p1 + |−→p1 · −→n |−→n ), (22)

−→
R2 = −−→

R1
n1

n2
, (23)

−→p2 = −→
R2 − −→n

√
|−→p1 |2 − |−→R2 |

2
, (24)

−→
F = −c(−→p2 − −→p1 ), (25)

where −→p is the momentum of the individual ray, n is the index
of refraction, and c is a constant relating momentum to force.
The refractive index for the fluid is n1 = 1.33 and for the cell,
n2 = 1.4. We assume that Fresnel coefficient is 0.
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FIG. 3. Optical force generated by change in momentum of
individual ray owing to (a) refraction and (b) reflection.

We calculated the laser by dividing it into rays of Cartesian
mesh type at regular intervals. The intensity of the rays
follows the Gaussian distribution where the intensity becomes
stronger toward the center of the laser.

The momentum of each ray is

p = nE/cl , (26)

where E is the energy of the ray and cl is the speed of light in
vacuum [53,54]. The optical force obtained is summed with
the elastic force [Eq. (21)].

D. Lattice Boltzmann immersed-boundary method

We use the immersed-boundary method to determine the
interaction between the fluid and cells [55–57]:

f(x, t ) =
∫

D[x − X(s, t )]F(s, t )ds, (27)

∂X(s, t )
∂t

= u[x(s, t ), t ] =
∫

u(x, t )D[x − X(s, t )]dx, (28)

D(x − X(s, t )) = 1

64h3

[
1 + cos

(πx

2h

)][
1 + cos

(πy

2h

)][
1 + cos

(πz

2h

)]
for D3Q19

when |x and y and z| � 2h, otherwise D(x) = 0, (29)

where f, x, and u are the force density acting on the fluid

node, Eulerian coordinates, and fluid velocity, respectively,
and X and F are the Lagrangian coordinates and restoring
force density of the cell, respectively. D is the Dirac δ

function for interpolation. Equations (27) and (28) represent
the immersed-boundary equation for communication between
Eulerian and Lagrangian coordinates. The unknown quantities
are the force per unit volume f(x, t ), applied by the immersed
boundary in the fluid, and the velocity of each Lagrangian
node, u[X(s, t ), t ]. Equation (27) describes the force density
f (x, t ) of the fluid calculated from the Lagrangian restoration
of the elastic force density, F(s, t ), via interpolation over the
immersed boundary. Equation (28) assumes that the no-slip
boundary condition is applied to the membrane because the
Lagrangian nodes move at the same velocity as the sur-
rounding fluid. Equation (29) uses the 3D Dirac δ function
D[x − X(s, t )], which relates the interactions between Eu-
lerian coordinates (fluid nodes) and Lagrangian coordinates
(deformable-particle boundary nodes).

III. RESULTS

A. Simulation overview

Figure 4 shows the snapshots of the simulation domain
for simulating an optical stretcher and optical separator. The
sphere models the geometry of a cell. The laser cross-sectional
area is 100 × 20 μm2 for the optical separator and 4 ×
4 μm2 for the optical stretcher. The power of the laser is
normally distributed about the laser center. For the optical
separator, the laser irradiates from a single side, and the
optical stretcher is placed on both sides of the laser. The
body force FP is summed over all fluid nodes to determine

the pressure-gradient-driven flow. The pressure gradient is a
function of L:

�p = ρLFP, (30)

where L is the length of the computational domain.
For this study, the viscosity and the density of the fluid are

μ = 10−3 Pa s and ρ = 1000 kg/m3. The stretching constant
kS and area-dilation constant kAL for most deformable-solid
simulations are based on a continuum model, which is de-
termined by the shear modulus Gs = √

3kS/4 and Young’s
modulus E = 2kS/

√
3 [58]. For the sake of simplicity and

generality, the dimensionality of the constant elasticity is re-
duced using the ratio between the bending forces and in-plane
stretching forces. The ratio of the bending force to the stretch-
ing force may be approximated as ξ ≈ kB/(R2kS ) = O(10−3)
[46,59]. Similarly, the dilation modulus can be approximated
as kA/kS ≈ 2.0.

B. Optical separator

To validate the proposed model, the retention distance of
each cell component is measured using 3 W of laser power
and various white blood cells: lymphocytes, granulocytes,
and monocytes, which have different cell sizes. The retention
distance is calculated by measuring the position of the cell just
before passing through the laser and the change in the cell’s
vertical position after passing through the laser. The results
shown in Fig. 5 indicate that the retention distance increases
with cell sizes. The optical force is larger for larger cells
because of the growth of the membrane area over which the
optical force is exerted. Flow velocity also affects retention
distance. A high inertial force caused by high flow velocity

022607-5



MOON, CHOI, LEE, TANNER, AND LEE PHYSICAL REVIEW E 99, 022607 (2019)

FIG. 4. Snapshots of domain are used for simulating an optical stretcher and optical separator. The laser is normally distributed about the
laser center. For the optical stretcher, the laser is irradiated from both sides. For the optical separator, the laser is irradiated from a single side.
(a) Initial condition of optical-separator simulation. (b) Initial condition of optical-stretcher simulation. (c) Snapshot showing the cell passing
through a laser at Gs = 25 μN/m, 1 W.

drives the cells quickly through the laser so that the retention
distance decreases with increasing flow velocity.

To understand the effect of both cell size and flow velocity
on the retention distance, we use the concept of optical

FIG. 5. Change in retention distance for different cells: (a) lymphocytes, (b) granulocytes, and (c) monocytes.
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FIG. 6. Experimentally determined optical mobility of lympho-
cytes, granulocytes, and monocytes for optical separator (data points
with error bars) compared with the results of simulation (histogram
bars).

mobility, which is expressed as

zopt = zz

(
cuω0

2n1P

)
, (31)

where u is the flow velocity, ω0 is the waist of the laser, n1

is the index of refraction of the medium, and P is the laser
power. The optical mobility expresses the relation between
cell, laser, and flow. Calculating the optical mobility allows
the effect of cell size and flow velocity to be normalized.
Figure 6 shows the optical mobility for different cells and
shows that the optical mobility increases with cell diameter.
The results of the simulation are consistent with experimental
results [36].

Figure 7(a) shows that the retention distance depends on
shear modulus. The retention distance gradually increases
with shear modulus at all particle sizes. To investigate how
the retention distance depends on shear modulus, we calcu-
late the optical force applied in the y direction (perpendicular
to the flow). As shown in Fig. 7(b), the optical force that

FIG. 8. Comparison of HL60 response to step-like increase in
applied optical power between experimental results [60] and numer-
ical results in this paper.

increases with shear modulus provides a good prediction of
the relation between retention distance and shear modulus.
The optical force depends on many variables, such as cell
shape, position, and cell-flow interaction. The resulting hy-
drodynamic force decreases with increasing shear modulus
because of drag, which is influenced by cell deformation.
When the laser is projected onto the cell membrane, the cell
is deformed into an elliptical shape, which reduces drag.
In turn, the reduced drag leads to a larger hydrodynamic
force. Therefore, softer particles with low shear moduli are
deformed more into elliptical shapes and are lifted higher
because of reduced drag. However, the hydrodynamic force
is much smaller than the optical force, which means that
hydrodynamic contributions on the retention distance can be
ignored. Instead, the deformability of particles has a sig-
nificant effect on the retention distance. The optical energy
has contributions to the deformation of soft particle and the
retention distance. For softer particles, the optical energy has
more contributions to the deformation of the particles rather

FIG. 7. (a) Retention distance as a function of shear modulus at different particle size. At all range of shear modulus, the retention distance
is proportional to shear modulus. (b) Normalized force applied in y direction (perpendicular to flow) and time-averaged deformation as a
function of shear modulus.
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FIG. 9. Deformation index ε(ID ) changes as a function of the time for different laser power: (a) 1, (b) 1.5, (c) 2 W, and (d) 4W. In all cases,
two peaks typically appear.

than the retention distance. On the contrary to this, the optical
energy has more contributions to the retention distance for
more rigid particles.

C. Optical stretcher

The numerical results of a deformable cell with optical
force is compared with the optical stretcher experiment for
the validation purpose [60]. Figure 8 shows the comparison
between our results, and experiment data. For this procedure,
the numerical experiment of optical stretcher was set with
the following values for HL60: E = 2675 Pa [61]. HL60 is a
cell line of human promyelocytic leukemic. Optical stretch-
ing simulations are performed by applying a steplike laser
power increase to the HL60 cell. Stretching experiments are
performed by applying a steplike laser power increase to the
HL60 cells. When the cell is stationary, Pdown = 180 mW
applied for 2 s, the steplike stimulus increase the power to
a value Pup for 4 s, finally the power is decreased to the
same initial Pdown for 2 s. We calculated deformation ε and
deformation index ε(ID) computed by the following formula:

ε = a

a0
, (32)

ε(ID) = a − b

a + b
, (33)

where a and b are the laser axis and flow axis of the cell size
during the stretching process, respectively. a0 is initial size of
cell.

Figure 9 shows ε(ID) as a function of time for five different
shear moduli of cells (5, 25, 125, 500, and 1000 µN/m). Four
laser powers (1, 1.5, 2, and 4 W) are used to pull and stretch
the cells. As a cell passes through the lase, two peaks appear
in ε(ID). Cell size is 10 µm in all cases. The first peak occurs
when the cell first interacts with the laser, and the second
peak appears just before the cell leaves the optical force trap
generated by the laser. As P increases, ε(ID) peaks become
larger, and the time taken until the second peak occurred after
the first peak occurred increased. When P is 4 W, the cells
could not pass and were trapped.

In general, as P increases, the transverse diameter of the
cell becomes greater than the axial diameter; therefore, ε(ID)
increases. Despite the increasing power of the laser, the height
of the first peak change is relatively small, irrespective of P:
when laser strikes the cell, the cell is pulled toward the laser
and is trapped. ε(ID) difference between the first and second
peaks decreased as the deformability of the cells decreased.
The time difference between the first peak and the second peak
increases with the trap effect as P increases.

We now derive the relation between ε(ID) for the optical
stretcher and cell deformability by analyzing the trends of the
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FIG. 10. (a) Deformation index ε(ID ) and (b) normalized deformation index εN (ID ) for different laser power P as a function of the shear
modulus at second peak in Fig. 9.

two peak heights in Fig. 9, which are because of the cells
passing through the optical stretcher. No tendency is found for
the first peak, but one is found in the second peak. Figure 10
shows ε(ID) and normalized deformation index εN (ID) from
the second peak as a function of shear modulus of the cell and
for several laser powers. In terms of the shear modulus, ε(ID)
can be expressed as ε(ID) ∝ ln(Gs). To generalize this, ε(ID)
is normalized to P, which provides

εN (ID) = ε(ID)

P0.67
= a ln(Gs)

P0.67
, (34)

where a is constant. The shear modulus is

Gs = e
εN (ID) × P0.67/

a. (35)

Equation (35) expresses the relation between shear modu-
lus, ε(ID), and P. A more accurate relation may be obtained
by adjusting the above equations based on more experimental
results and simulations that consider fluid conditions.

IV. CONCLUSIONS

This study analyzes cell deformation and soft particle
behavior caused by optical forces in pressure-driven flow. In
a Cartesian mesh, we use the lattice Boltzmann method to
analyze the fluid and an unstructured moving mesh to analyze
particle deformation. The laser is modeled as rays, and the
optical force is calculated from the change in momentum

caused by refraction and reflection. Optical and hydrodynamic
forces generated by the surrounding fluid deforms the particle,
which modifies the degree of refraction and of refraction of
the ray, thereby changing the hydrodynamic force exerted
on the particle. The simulation accounts for the three-way
coupling among laser, particle, and fluid.

To simulate optical separation, an optical force is generated
using only a single laser source. This optical force moves
the particle to the opposite side of the light source, and the
retention distance, which is the distance the particle moves,
depends on the particle characteristics. For shear modulus,
the retention distance is inversely proportional to the shear
modulus. For an optical stretcher, the optical forces are gen-
erated using two laser sources. The particle deforms when
it passes through the laser, and the deformation is quantified
using ε(ID). ε(ID) peaks show exponential decay as a function
of shear modulus as the particle passes through the optical
stretcher, and we derive a relation between the deformation
and the particle properties based on the second peak. This
study will help design and optimize microfluidic devices using
optical forces.
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