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We study the regimes of a diluted dipolar system through Monte Carlo numerical simulations in the NV T

ensemble. To accelerate the dynamics, several approximations and speed-up algorithms are proposed and tested.
In particular, it turns out that “cluster move Monte Carlo” algorithm speeds-up to two decades faster than the
traditional Monte Carlo, depending on temperature and density. We find simple-fluid, chain-fluid, ring-fluid, gel,
and antiparallel columnar regimes, which are studied and characterized through positional, orientational, and
thermodynamical observables.
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I. INTRODUCTION

Over the last decade, the study of self-assembling diluted
systems has received renewed attention from the experimen-
tal, theoretical, and numerical points of view. In particular,
particles with anisotropic interactions and interaction energy
of the order of kBT (where kB is Boltzmann’s constant and
T is the temperature) are now being synthesized [1,2] and
promissory applications have been proposed for them [3–6].
Examples of those kinds of systems include colloidal suspen-
sions of dipolar particles, particles with multipolar behavior
[7], patchy particles [8], or Janus particles [9].

The simplest particles with anisotropic interaction are per-
haps those endowed with a spherical hard core and a dipole
moment. Diluted dipolar systems (DDSs) have been exten-
sively studied through numerical simulations [10–25], which
include simple, gas-like order, chain-fluid, ring-fluid, gel, and
columnar structures with crystal-like order. Related studied
systems include discotic liquid crystals [26], dipolar spheres
interacting with nonmagnetic rods [27], simplified dipole-
like interaction models [15], binary mixtures of anisotropic
particles [28], and two-dimensional (2-D) systems [19]. Those
systems also display rich regime diagrams.

A major issue with simulations of diluted systems is the
extraordinary high computational cost, even for small systems
(one thousand particles), which has led to the development
of several speed-up strategies [29–31]. Here we introduce the
cluster move Monte Carlo (CMMC) algorithm to speed-up the
study of diluted self-assembling systems. For a wide range
of temperatures and densities, CMMC turns out to be faster
than previously proposed algorithms by a factor of about 10 in
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most cases, and up to 100 at some temperatures and densities,
see Supplemental Material (SM) [32]. The algorithm is tested
in a diluted system of simple dipolar particles, exploring
various regimes. CMMC do allows us to study much lower
temperature and density regimes. Using CMMC, we are able
to describe a hard to find antiparallel columnar regime with
crystal-like order in the very diluted low temperature region
among other well-known regimes.

The article is organized as follows. Section II presents
the CMMC algorithm. Section III gives details of the dipo-
lar model under study. Evidence of the speed improvement
brought about by CMMC at low densities and temperatures
is presented in Sec. IV. In Sec. V we show the different
structural regimes that arise varying temperature and density.
Finally, we collect all results to present a diagram with the
different regimes in Sec. VI, together with the conclusions.

II. CLUSTER MOVE MONTE CARLO

The algorithm is designed for the simulation of diluted
self-assembling particles. In this work, the algorithm is tested
on an off-lattice system of spherical particles with diameter
σ . The algorithm employs classical single-particle Monte
Carlo (MC) moves (displacement and rotation) together with
movements of groups of particles (clusters).

To define a cluster, two particles are considered neighbors
if they are separated by a distance rN = √

1.5σ or smaller
(notice that alternative definitions have been proposed [17]).
A cluster is then defined as the smallest set of particles such
that if particle i belongs to a cluster, all neighbors of particle
i belong to the same cluster. Each particle belongs to exactly
one cluster; there may be clusters with only one particle.

CMMC trial moves are as follows.
(1) With probability 1 − pCM, a single-particle movement

is proposed. This movement attempt is either one translation,
with probability pT , a rotation with probability pR , or a full
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movement (rotation plus translation), with probability pRT

(pT + pR + pRT + pCM = 1). The relative values of pT , pR ,
and pRT are modified every 250 MC steps, using an algorithm
that favors successful trials. In practice, pT , pR , and pRT are
always larger than 0.1, they evolve on the first 105 MC steps,
and have negligible changes for larger times.

(2) With probability pCM a cluster move is proposed.
A cluster is selected and displaced uniformly to a random
location in the simulation box. To ensure detailed balance,
the move is rejected if it results in a change in the number
of clusters. We used pCM = 0.001. Similar values give similar
speed-ups.

Trial moves are then accepted or rejected as usual with the
Metropolis criterion, i.e., they are accepted with probability
p = min[1, exp(−β �U )], where �U is the change in the
system total energy, as a result of the proposed move, and
β = 1/kBT .

Variants of CMMC, adding cluster rotations, and cluster
inversion (inversion of all dipole moments of the cluster) were
explored. However, no further acceleration was found adding
those trial moves to the cluster displacement.

We compare the performance of CMMC to standard MC
and with the aggregation volume bias (AVB) algorithm spe-
cialized for dipolar systems as described by Rovigatti, Russo,
and Sciortino [17,18]. This algorithm uses two kinds of trial
moves, performed as follows. Within AVB, a particle i is
chosen at random and the simulation volume is divided in two
fractions Vin, the positions close to i where another particle j

is considered bounded (roughly speaking they are neighbors
and their interaction energy is large and negative), and Vout

(the rest of the simulation box). Then either an in → out (with
probability x) or an out → in (with probability 1 − x) trial
move is proposed. For the in → out case, a particle j �= i

within Vin is chosen and a random position within Vout and
a random orientation are proposed. The out → in move is
proposed similarly [18,29].

III. DIPOLAR PARTICLE MODEL

To test the CMMC algorithm, a system of N particles of
size σ with a point dipole in the center of the particle is
studied. More precisely, the potential energy is [16,24]

U ({ri , pi}) =
N∑

i>j

U0(rij , pi , pj ), (1)

where ri , pi are the position and dipole moment of particle i,
rij = ri − rj , and the pair potential is

U0(r, p1, p2) = Ud (r ) + Up(r, p1, p2), (2)

Ud (r ) = ε
(σ

r

)36
, (3)

Up(r, p1, p2) =
(

εσ 3

p2
0

)
p1p2r

2 − 3(rp1)(rp2)

r5
, (4)

where r = |r|, ε is the energy scale, and all particles have
identical dipole moments, |pi | = p0. Simulations are carried
out in a periodic cubic box of side L and the average number
density is ρn = N/V , V = L3. The solvent is not considered

FIG. 1. Potential energy per particle as a function of MC steps for
T = 0.08, ρ = 1/83, N = 1000, rc = 7. U is computed as in Eq. (1),
replacing U0 by USP , Eq. (5). A line is drawn at 95% of asymptotic
energy value. Inset: Same results as a function of wall time. Results
where found using one core of a seventh generation Intel i7 computer.

explicitly here (apart from a possible electric permitivity
or magnetic permeability included in ε). We report results
using the dimensionless quantities U ′ = U/ε, r ′ = r/σ (and
similarly for all defined lengths), p′

i = pi/p0, T ′ = kBT /ε,
ρ ′ = σ 3ρn. For the sake of notational simplicity we omit the
primes from now on.

Notice that several similar models have been proposed
using the same dipole interaction Up, but different spherical
short-range potentials Ud , such as dipolar hard spheres or the
Stockmayer fluid.

Due to the relatively long range of the dipole interaction
potential, dipolar systems have been usually studied using
Ewald sums [18,27]. Computationally less demanding alter-
natives have also been proposed and studied in detail [33–36].
Following [35,36], in this work we replace U0 in Eq. (1) by a
shifted and truncated version USP ,

USP(r, p1, p2) = U0(r, p1, p2)
[
1 − r3/r3

c

]
(5)

for r < rc, and zero otherwise. We use a cutoff distance rc =
7σ . For some temperatures and densities we tested different
values of rc, ranging from rc = 4 to rc = 20, as well as
the Ewald sums method. We have not seen any qualitative
differences for rc > 5, but we have taken rc = 7 as a safe
choice [16]. The cell indexation method was used to speed-up
the interacting neighbors search [37].

IV. ALGORITHM PERFORMANCE

We simulated the dipolar particle system with MC, ABV,
and CMMC, using USP [the potential in Eq. (5)] instead of U0,
at temperatures T = 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.18, 0.2,
0.24, 0.3, 0.36, and densities ρ = 0.353, 0.253, 0.23, 0.1253,
0.13, 0.073, 0.053, and 0.033. Packing fraction φ can be related
to ρ using φ = πρσ 3/6. Unless stated otherwise, we report
results for N = 1000 and rc = 7.

The performance of standard MC, AVB and CMMC is
compared in Figs. 1, 2, and 3.
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FIG. 2. MC steps needed to reach 95% of the asymptotic value
of energy, as a function of temperature, ρ = 1/83, N = 1000, rc = 7.
Inset: Same results as a function of density, for T = 0.08.

In Fig. 1, we show energy evolution as a function of MC
steps for a system of N = 1000 particles, average density
ρ = 1/83, temperature T = 0.08, and cutoff distance rc = 7.
We see that all methods lead to the same asymptotic value. To
measure the time it takes to reach asymptotic value of energy,
we define τE as the number of MC steps needed for reaching
95% of energy asymptotic value. Energy as a function of wall
time (the real, physical time) is shown in the inset of that
figure. In terms of real time, both AVB and CMMC take less
than 10% more time than MC for performing the same number
of MC steps. The only exception is during the first �2000MC
steps, when there are many solitary particles, and the speed of
CMMC is reduced by a factor of almost 2.

In Fig. 2 we show τE for all methods, as a function of
T . In the inset, we do the same as a function of ρ. Both
AVB and CMMC considerably speed-up the evolution of
the dipolar fluid (compared to standard MC). Adding cluster
rotations, dipole inversion or cluster destruction to the cluster
displacement move of CMMC does not result in further
accelerations. The AVB versus CMMC comparison shows

FIG. 3. Energy correlation for T = 0.08, ρ = (1/8)3, N =
1000, rc = 7 using the same symbols as in Fig. 1. We define the
energy correlation time τC as the time needed for the normalized
correlation function to decay to 0.05. Inset: τC as a function of
temperature ρ = (1/8)3, for different algorithms.

FIG. 4. Energy per particle, as a function of wall time, for T =
0.08, ρ = (1/8)3 rc = 7, and several system sizes. From left to right:
N = 1000, N = 8000, N = 27 000, and N = 64 000. Inset: Same
results as a function of wall time per particle. Simulations were
performed on a seventh generation Intel i7 computer.

that AVB performs better at moderate temperatures, while
remarkably CMMC is better at low temperatures (CMMC is
more than 30 times faster at the lowest temperature we tested,
see SM [32].

In Fig. 3, we plot the connected, normalized, energy
correlation function ECorr(τ )

.= [〈E(t )E(t + τ )〉 −
〈E(t )〉2]/[〈E(t )2〉 − 〈E(t )〉2]. ECorr is one for a completely
correlated system (for instance at τ = 0) and zero for
completely uncorrelated ones. We measure it at time t when
the system has reached its asymptotic value of energy. To
measure the time it takes to decorrelate the energy, we
define τC as the time needed to decorrelate it a 95% [i.e.
ECorr(τC ) = 0.05]. In the inset of Fig. 3, we plot τC as a
function of temperature.

Next we study whether the speed-up algorithm is useful for
larger system sizes. We simulated systems of N = 8000, N =
27 000 and N = 64 000 particles, at moderate temperature
T = 0.08 and density ρ = 1/83. We plot the energy as a
function of wall time, in Fig. 4. In the inset, we show energy
as a function of wall time per particle. We see that CMMC
algorithm behaves well on system size (i.e., the wall time
needed for performing a MC step is roughly proportional
to N ).

The efficiency of CMMC is due to performing a collective
movement in a single step, which would require many single-
particle moves to be achieved otherwise. We thus do not
expect its efficiency to be sensitive to the truncation distance
rc. In SM, we show results with and without CMMC, for
several values of rc, and using Ewald sums. In all cases,
CMMC performs at least ten times faster than MC.

The final states reached with CMMC (the different regimes
that will be discussed in more detail in Sec. V) are very stable
within simulation times: all studied observables remain sta-
tionary over the last 90% of the simulation time and they pass
two equilibration tests. First, the derivative of the asymptotic
energy with respect to T ,

Cv,d

(
Ti + Ti+1

2

)
= U (Ti+1) − U (Ti )

Ti+1 − Ti

, (6)
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and the energy fluctuations

Cv,f (Ti ) = 〈U 2(Ti )〉 − 〈U (Ti )〉2

T 2
i

(7)

give compatible results. This is a sign that the simulation has
explored a fair portion of the phase space (in equilibrium,
Cv,d = Cv,f = Cv , where Cv is the constant-volume specific
heat). In addition, we obtain the same results starting the sim-
ulation from either high or low temperature configurations.
In typical runs, which we call “cooling” runs, we start from
completely random positions and orientations (i.e., a very
high temperature configuration) and quench it to temperature
T at t = 0. For “heating” runs, we take a configuration that
reaches asymptotic values of all observables at T = 0.04
and we increase temperature by �T = 0.0025 every 106 MC
steps, while measuring several observables. As shown below
in Sec. V B, the values obtained from heating or cooling
coincide, with no sign of hysteresis. That is, the algorithm
does not face obvious metastability problems. In particular,
the values reported below for the crossover temperatures are
independent of the procedure (heating or cooling) used to find
the different regimes.

V. REGIMES AND CROSSOVERS

A. Regimes

Numerical results allow us to distinguish several differ-
ent regimes, in terms of the structures the system forms.
We describe them first qualitatively. In the next subsection
we introduce several observables that are used for defining
crossovers between regimes. From high to low temperature,
we find the following.

(1) Simple-fluid. Corresponds to a homogeneous system
of solitary particles (i.e., particles that do not form clusters),
with negligible orientation correlations. A snapshot of this
regime is shown in Fig. 5(a).

(2) Complex-fluid. There may be a chain-fluid or a ring-
fluid. Those regimes are characterized by the presence of
many small clusters and almost uniform density. The system
does not percolate. Most particles have exactly two neighbors,
they are aligned head-to-tail, and a low but nonzero polariza-
tion can be measured (at least in small systems). A ring is
a cluster where every particle has exactly two neighbors. A
chain (also known as string [15,16]) is a cluster where every
particle has two neighbors, except for two of them (the chain
tips), which have exactly one neighbor. We find that chains are
more likely at high density, while rings dominate at very low
density. Snapshots of the ring-fluid and chain-fluid regimes
are shown in Figs. 5(b) and 5(c).

(3) Gel. It is a percolating system. Most particles belong
to the same cluster, which may, or may not span the whole
simulation box. Most particles have two neighbors, while
some of them have more than two. A snapshot of the gel
regime is shown in Fig. 6(a).

(4) Columnar. The antiparallel columnar regime is de-
fined by the presence of a single cluster containing all par-
ticles. Each particle has several neighbors, and dipoles are
oriented head-to-tail forming a chain which is surrounded
by similar chains with opposite orientation [see Fig. 6(b)].

FIG. 5. Snapshots of (a) portion of a simple-fluid (ρ = 1/83,
T = 0.16), and (b)–(c), complex fluid. In (b), there is a chain-fluid
sample (ρ = 1/43, T = 0.14), while in (c) there is a ring-fluid (ρ =
0.073, T = 0.08) sample.

Columnar structures show long-range crystal-like order (see
radial distribution function Fig. 7). The cluster tends to be
elongated in the direction of those chains. It is compact in the
sense that all particles are found within a small, high density
region, while the rest of the simulation box is empty. We
found this columnar regime at low and high densities. Crystals
have been found in previous work [15,19], but in situations
where the density was uniform over the simulation box. In
our case, the average density is roughly 250 times smaller
than the density of the crystal. The columnar shape we find is
probably related to the existence of a large void region in the
simulation box. Our result is similar to the columnar regime of
the Stockmayer model [21], which has the same dipolar term
Up, but a Lenard-Jones potential for the isotropic term Ud , i.e.,
in the Stockmayer model there is an attractive isotropic term
in addition to the anisotropic dipolar contribution. Columnar
regimes have been found under external applied field, either
experimentally [38,39] or in 2-D simulations [14].

We find that, at low temperatures and densities (i.e., in
the gel or crystal regime), there are high density regions and

FIG. 6. Snapshots of (a) gel including all particles in the simula-
tion (ρ = 1/83, T = 0.06), and (b) columnar regime at low density
(ρ = 1/83, T = 0.04). Snapshots were performed with JMOL [40].
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FIG. 7. Example of u(r )/ρ at density ρ = (1/8)3, for different
regimes. From top to bottom: columnar (T = 0.04), gel (T = 0.07),
chain-fluid (T = 0.10), and simple-fluid (T = 0.20).

voids. To identify different structures, we define

u(r ) =
∑
i,j

∫ r+�r

r

dV ′ δ(r ′ − |rij |)/[2(N − 1)4πr2�r]. (8)

When the density is homogeneous, u(r ) is equal to ρg(r )
[g(r ) is the radial distribution function]. Examples of u(r )/ρ,
for several regimes, are shown in Fig. 7. For the simple-
fluid, which has homogeneous density, we get a rather simple
diagram, which goes to 1 at r ∼ 3. For all other samples, we
have u(r ) 
 ρ. This is a direct consequence of having high
density regions and voids. For the columnar regime, there are
several peaks, that extend to typical column widths. In the
figure, arrows are drawn at the two-particle minimum energy
distance [i.e., the value of r that minimizes Eq. (5)], and
integer multiples of that distance.

B. Crossovers

Here we report observables that can pinpoint the crossovers
between regimes. All results shown are obtained from at least
eight independent systems at each density and temperature,
and data are collected after energy and energy fluctuations
reach a stationary state. The specific heat per particle Cv/N is
estimated from energy fluctuations Eq. (7) and from numerical
derivatives of the energy values Eq. (6). Both methods yield
similar results in the studied temperature range, suggesting
that the systems have reached equilibrium. Given the well-
known equilibration problems in these kinds of systems, we
do not claim that the regimes and crossovers we describe
below correspond to true equilibrium thermodynamic phases.
However, we do emphasize that they are extremely stable
within the simulation times reached, and that we can reach
them both from stabilized systems at high or low temperatures
as mentioned in Sec. IV. We would like to emphasize that
we are describing the regimes that, in practice, show up,
in the sense that in simulations of finite but extremely long
times they remain stable. Based on our stability tests, we
expect those structures to be stable enough to be accessible
in potential experiments.

We now explain how the crossovers between the different
regimes are calculated. In what follows NCl is the number of

FIG. 8. Crossover between simple-fluid and complex-fluid, de-
scribed using several variables as a function of temperature, for
ρ = 1/43. (a) Number of clusters, (b) local parallel order parameter,
Eq. (9), (c) energy, and (d) normalized derivatives of those variables.
In (b) triangles are obtained from heating, while circles are results
from cooling.

clusters, lj is the amount of particles in cluster j (cluster size),
and lmax the size of the largest cluster.

1. Simple-fluid to complex-fluid

At a very high temperature, only solitary particles at uni-
form density are found. This is a simple-fluid. Cooling the
system, at some point one starts to detect cluster formation,
accompanied by the onset of local parallel order. The number
of clusters NCl displays a sharp decrease on cooling at a
temperature roughly coincident with a peak in the specific
heat. One measure of the local parallel order is

F = 1

N

∑
i,j

pipj f (rij ), f (x) = 1

x2
H (4 − x), (9)

where H is the Heaviside step function. This is similar to the
local order parameter described in [20], except that a Heavi-
side function, if used here, to reduce the analysis volume. The
function f (x) is used so that nearest neighbors have more
relevance on F . Alternative choices of f (x) yield similar
results.

Figure 8 shows the behavior of the number of clusters, the
local parallel order parameter, energy, and their derivatives to
temperature. The derivatives of all those observables display
peaks at similar temperatures. Results for F as a function
of temperature are shown for both cooling and heating in
Fig. 8(b). They coincide within statistical error, and the same
holds for all other observables in the simple-fluid to complex-
fluid crossover.

2. Chain-fluid to ring-fluid

To distinguish between chain-fluid and ring-fluid, we mea-
sure the number of particles belonging to chains and rings.
We consider the system to be in the chain-fluid regime when
there are more particles forming chains than particles forming
rings, and in the ring-fluid regime if the opposite is true.
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FIG. 9. Behavior of the percolation parameter P , Eq. (10), versus
temperature for ρ = 1/43. Triangles: heating, circles: cooling.

3. Complex-fluid to gel

Cooling the complex-fluid further, the system forms a
single cluster. The most useful observable to detect the fluid–
gel crossover is the percolation parameter, also known as
(normalized) mean cluster size,

P = 1

N2

∑
j=1,Nc−1

l2
j , (10)

where the sum is over all clusters but the largest. It has a
peak at the percolation transition [41,42]. For a system divided
into n equal clusters P = (n − 1)/ n2 [for a gel, P = 0, for
a simple-fluid P � 1/N , P (n = 2) = 1/4, P (n = 3) = 2/9,
and so on]. Figure 9 shows percolation parameter P , for both
cooling and heating. Both curves show similar behavior and
have a peak at the same temperature. Another related observ-
able that separates complex-fluid from gel is the derivative of
lmax with T , which presents a peak at the same temperature
as P .

4. Gel to columnar

At the lowest studied temperatures we find a previously
uncharacterized (to the best of our knowledge) regime where a
compact, crystal-like structure, with columnar shape appears.
This structure can be distinguished from the gel by computing
the number of particles with more than two neighbors Nm,
local antiparallel order A, or the local density Nn (the density
in a sphere of radius 4, about the particle). Local antiparallel
order is measured through

A = 1

N

∑
i,j

|pipj f (rij )| − pipj f (rij ). (11)

For uncorrelated orientation and position, A = A∞ =
(N − 1)ρ/N , if all dipoles point in the same direction A = 0,
and A 
 A∞ in the antiparallel regime. In Fig. 10 we show
values of those observables for ρ = 1/43. All of them present
an abrupt drop around T = 0.05. The derivatives of those
quantities show a (negative) peak at the same temperature (see
Fig. 10). We repeated this method in the whole density range
(from ρ = 27 × 10−6 to ρ = 0.064). In all cases the peaks
take place at the same temperature. Results from heating and

FIG. 10. Behavior of some observables as a function of tempera-
ture, about the columnar to gel crossover. (a) Local antiparallel order
A, (b) number of particles with multiple neighbors (more than two)
Nm, (c) local density Nn, and (d) the normalized (negative of) the
temperature derivative of those observables. In (b) triangles: heating;
circles: cooling.

cooling coincide. Values of Nm obtained from heating and
from cooling are both shown in Fig. 10(b).

VI. DISCUSSION AND CONCLUSION

We outline a regime diagram, where we report the temper-
ature of the crossovers among the different regimes, detected
as discussed in Sec. V B for several densities (from ρ ∼
3 × 10−5 to ∼4 × 10−2) and temperatures (see Fig. 11). We
emphasize that boundaries in Fig. 11 are calculated using the
peak values of the observables under consideration. As may
be expected from Figs. 8, 9, and 10, there may be a broad
coexistence region about the peaks. The study of coexistence
regions is beyond the scope of this article.

FIG. 11. Regime diagram: Density versus temperature. From left
(low temperature) to right, there are columnar, gel, complex-fluid,
and simple-fluid regimes. Boundaries among regions are calculated
from the peaks of Figs. 8(d) (simple-fluid to complex-fluid), 9
(complex-fluid to gel), and 10(d) (gel to columnar). The complex-
fluid is divided into two regions: At high density, chain-fluid is found,
while at low density, there is a ring-fluid. A line dividing chain-fluid
from ring-fluid is shown. In the right y label, we included the packing
fraction φ = πρσ 3/6.
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From Fig. 11, we see that the antiparallel columnar struc-
ture is found at low temperatures. The crossover temperature
from columnar to gel does not have a strong dependence
on ρ. At higher temperatures, a gel shows up. The density
region where a gel is available decreases on diluting. It would
be interesting to study whether gel regime disappears at low
enough density. The gel-fluid crossover temperature grows
with ρ. At higher temperatures, a complex-fluid is found. It
may be a chain or a ring fluid. Chains are more likely to
take place at high density, whereas rings dominate at very low
density. Finally, there is a simple-fluid at high temperature.
The complex-fluid to simple-fluid crossover temperature also
grows with ρ.

Results in Fig. 11 are for rc = 7. We expect to find the
same regimes for other values of rc. We ran simulations
for several values of rc and with Ewald sums. We found
compatible structural results. In all cases, CMMC speeds-up
one to two orders of magnitude. Our choice of short-range
potential Ud ∝ r−36 represents hard spheres in such a way
that Ud and all its derivatives are continuous, and may be
reproduced under other dynamics such as molecular dynam-
ics. We also tested dipolar soft spheres (DSS, Ud ∝ r−12), and
dipolar hard spheres (DHS). CMMC considerably speeds-up
dynamics for DHS and DSS. See SM [32] for a descrip-
tion of results using other values of rC , Ewald sums, DSS,
and DHS.

In defining the above-mentioned regimes we combined
positional, orientational, and thermodynamic observables.
In most cases, there is more than one observable capable
of detecting the given crossover, at the same temperature.
For instance, the temperature and density range where large
fluctuations in local density take place is similar to the
temperature-density range where antiparallel orientational or-
der takes place.

Numerical studies of dipolar particles use similar potentials
to the ones used here. Temperature and density can be com-
pared in terms of the ratio T ′ between kBT and typical energy
value of two nearest-neighbor particles, ε. For instance, other
studies finding columnar structures in simplified dipolar-like
particles [15,19], would have effective temperatures and den-
sities in the range 0.1 < T ′ < 2 and 0.1 < ρ ′ < 1.4. Studies
of ring formation [18,24] were performed on densities about
ρ � 0.005, and temperatures T ′ > 0.125. The analysis per-
formed here considers temperatures as low as T ′ = 0.04 and
densities as low as 2.7 × 10−5, considerably extending the
regime diagram.

Magnetic nanoparticles consisting on iron oxides can be
easily synthesized. They have typical sizes of σ ∼ 10 nm,
and consist of a single domain crystal. Iron oxides have

typical magnetization per volume, of M0 ∼ 3 − 4 105A/m.
Thus, the largest dipole-dipole energy between two particles
is U = μ/4π M2

0 (π/6)2σ 3, which gives 3.3510−21J in water.
This gives kBT /ε ∼ 1.3 at room temperature. If particles
are coated with a nonmagnetic material of width d, former
formula reduces to U = μ/4π M2

0 (π/6)2σ 6 (σ + 2d )3. Re-
cently, σ � 20 nm particles covered by a 2-nm surfactant
layer have been synthesized [1], with a reported value of T ′ =
kBT /ε � 1/9. This results are compatible with single domain
nanoparticles. Single domain, cubic magnetite particles with
σ � 76 nm [2] have also been synthesized. Moreover, the
theoretical limit for single domain iron oxide nanoparticle size
is about σ = 128 nm for spherical magnetite particles [43],
which would give, without coating, values of T ′ = kBT /ε �
0.0008. Conversely, those particles could be coated, forming,
for instance, a 500-nm-size particle, with T ′ = 0.05. This
means that regimes such as the ones described here, should
be found in recent experiments. A more quantitative relation
among theoretical and experimental temperatures and densi-
ties should consider other factors, such as surface tension, or
nonequilibrated surface charges, which exceeds the scope of
this article.

In conclusion, we present an algorithm (CMMC) that
speeds-up simulations of dipolar diluted systems by a factor of
10 to 100, compared to other algorithms, at low temperatures
and densities. The algorithm is easy to implement and it
does reduce both the equilibration and relaxation time. The
physical time it consumes scales almost linearly with system
size. Using it, we were able to explore lower densities and
temperatures, where we find and characterize columnar struc-
tures in the extremely diluted dipolar system. The CMMC
algorithm can be combined with several speed-up algorithms,
such as AVB, umbrella sampling, and parallel tempering.
Thus it appears as a useful and potentially powerful tool for
the study of DDs, but also other diluted self-assembling [7–9]
or aggregating systems [44].

Finally, several numerical [45,46] and experimental studies
include permanent or time-dependent fields. It would be very
interesting to analyze the efficiency of this algorithm under
such circumstances.
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