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Dynamic ordering of driven spherocylinders in a nonequilibrium suspension of small colloidal
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The ordering effects of driven spherocylinder-shaped rods in a colloidal suspension of small spheres
confined to a two-dimensional channel geometry are observed via Brownian dynamics simulations without
hydrodynamics. To describe the ordering, an order parameter and an expression for a potential of mean force
of an equivalent equilibrium system are defined and analyzed. By varying the application point of the external
force along the rods and thus the resulting lever, a transition from a preferred orientation parallel to the direction
of the force to a preferred orientation perpendicular to the direction of the force was observed. It is shown that
this effect can only be found if the spheres and multiple rods are present. Furthermore, a dependency of the order
parameter on the absolute value of the force was discovered. The analysis of the potential of mean force further
indicates a transition between two different phases of mean orientation. An observation of the flow equilibrium
mean velocity in channel direction led to a s-shaped progression regarding the lever dependency, also marking
a transition between two states linked to the mean orientation of the rods. A finite size analysis was conducted.
Its results indicate that the transition between the two orientation states is a general phenomenon of the observed
rod-sphere mixture.
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I. INTRODUCTION

Nonequilibrium systems are of high interest for mod-
ern research. In comparison with the well known classical
equilibrium physics, many phenomena are completely new
or unknown. Therefore, out-of-equilibrium colloidal model
systems are a venue to analyze and find different dynami-
cal phenomena [1–8]. Moreover, colloidal studies regarding
restricted microchannels [9–13] further the understanding of
complex systems like atomic wires [14,15] and laboratory-on-
a-chip devices [16,17].

Binary colloid systems of differently driven two- or three-
dimensional particles are very suitable for extensive nonequi-
librium studies and many detailed observations of such sys-
tems based on spherical particles [18–22] exist. An important
phenomenon of these models is the formation of lanes, which
corresponds to a common observation on pedestrians moving
in opposite directions [23–25].

Due to the symmetry of the spherical particles, the ori-
entation is not a relevant state variable in these systems.
This is changed by replacing multiple spherical particles by
rods. These so formed rod-sphere mixtures provide interesting
results in equilibrium and nonequilibrium simulations [26–28]
and experiments [29]. A recent study has also shown that
different types of complex large particles in a bath of small
driven spheres show ordering in stripes and clusters [30].

By driving the rod-shaped particles through the spheres
by means of a constant force acting on their center of mass,
the typical lane formation and an additional aligning effect
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are found in simulations [31]. This indicates exciting ordering
effects of driven rods in a nonequilibrium bath of spheres.

Due to the shape of the rods, a degree of freedom is given
by the position of the point of force application in relation
to their particular centers. An off-center force results in a
force moving the centers of the rods and an additional torque,
consequently the orientation of the rods is affected. So the
preferred orientation of the rod should exhibit a dependency
on the resulting lever arm.

In this work the main objective is to study the ordering of
driven rods surrounded by additional spheres in a liquid bath
by two-dimensional Brownian dynamics simulations without
hydrodynamic interactions. The lever dependency of the pre-
ferred orientation is investigated, so that statements about the
different ordering effects are possible. The definition of an
order parameter and the analysis of probability distributions,
potentials of mean force, and the flow equilibrium mean
velocities in channel direction lead to a better understanding
of the resulting rod orientation.

Surprising ordering mechanisms are found regarding the
rod-sphere mixture: A force applied to one end of the rods
results in an ordering parallel to the direction of the driving
force. In contrast to this process, the rods order differently for
a force applied to their centers. A force applied to the centers
of the rods leads to a preferred orientation perpendicular to
the direction of the force. All observed quantities indicate a
transition between these two states.

This paper is structured as follows: In Sec. II the model and
the numerical methods are discussed and the order parameter
as well as the potential of mean force for a corresponding
equilibrium system are defined. Following that, the results
are presented in Sec. III, whereby the nonequilibrium state of
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FIG. 1. Sketch of a spherocylinder in two dimensions. It consists
of a rectangle and two half circles. A spherocylinder is described by
its length L, the line segment l , and its diameter σsc.

the spheres, the mean orientation of the rods, the influence
of the different parts of the simulation setup, the resulting
effective potentials, and the flow equilibrium mean velocity
are discussed separately. Furthermore, a finite size analysis
is presented in this section. This work is concluded with a
summary in Sec. IV.

II. MODEL AND METHODS

Brownian dynamics (BD) simulations of a two-
dimensional rod-sphere mixture in a channel geometry
confined by soft walls perpendicular to the y direction
and periodic boundary conditions in the x direction were
performed. The particles are suspended in a liquid and
hydrodynamic interactions are neglected.

A. Colloid modeling and BD method

The geometrical form of the rods is given by a spherocylin-
der. In the two-dimensional case, this special form consists of
a rectangular middle section with a half circle at each end, as
shown in Fig. 1.

The spherocylinder is defined by two parameters: its width
or diameter σsc and its aspect ratio q = L/σsc, where L is the
length of the spherocylinder. In the simulations a spherocylin-
der is represented by a line segment of length l = L − σsc in
its center. The surface of this geometrical form is defined by
all points that have a distance of σsc/2 to this line segment.

The motion of the colloidal particles is assumed to be
describable in overdamped approximation so that the inertial
terms of the equations of motion are negligible. Thus, the
masses of the spheres and the spherocylinders do not appear
explicitly in the associated relations. The resulting equation
of motion of a sphere in a fluid is given by the overdamped
Langevin equation

v(t ) = Ds

kBT
(F(t ) + δF(t )), (1)

where the velocity of a particle is determined by the instan-
taneous force F based on the sum of external forces and
interaction forces and by the fluctuation force δF which is
modeled by an independent, Gaussian distributed white noise.
The constant of proportionality is composed of the diffusion
coefficient of the spheres Ds, the Boltzmann constant kB, and
the temperature T . The position ri(t ) of the ith sphere was
updated according to the Euler-Maruyama method. The new
position after a time step �t can be calculated with [32]

ri(t + �t ) = ri(t ) + Ds

kBT
Fi(t )�t +

√
2Ds�tR, (2)

where Fi(t ) is the force acting on the ith particle and R is a
vector with Gaussian random numbers characterized by van-
ishing mean 〈Ri〉 = 0 and variance unity 〈R2

i 〉 = 1, which we
will call random numbers with standard normal distribution.
In this study the diffusion coefficients themselves are used
as fixed parameters. Hence, the variance of the fluctuation of
the Brownian dynamics depends only on the used diffusion
coefficient and �t .

By means of the integrator (2), the movements of the cen-
ters of the spheres are completely described. To implement the
Brownian motion of the rods, the orientation dependent diffu-
sion of a spherocylindric colloid has to be taken into account.
The implementation of the Brownian dynamics algorithm for
the spherocylinders is based on the description in Ref. [33].
Therefore the motion of the center of a rod has to be split
within a moving coordinate system in components parallel
and perpendicular to the direction of the corresponding rod.
Thereby, the rod direction can be represented with a unit
vector ê parallel to the line segment of the structure. Then,
the diffusion coefficients D‖ and D⊥ for these components are
relevant. The position of the ith rod with the orientation êi can
be split into

r‖i (t ) = (êi(t ) · ri(t ))êi(t ), (3)

r⊥i (t ) = ri(t ) − r‖i (t ). (4)

The corresponding components of the force are given by

F‖
i (t ) = (êi(t ) · Fi(t ))êi(t ), (5)

F⊥
i (t ) = Fi(t ) − F‖

i (t ). (6)

To calculate the movement of the rods in three dimensions,
the equations in Ref. [33] can be used as the numerical inte-
grators. Variations of these equations for two dimensions are

r‖i (t + �t ) = r‖i (t ) + D‖

kBT
F‖

i (t )�t +
√

2D‖�tR1êi(t ), (7)

r⊥i (t + �t ) = r⊥i (t ) + D⊥

kBT
F⊥

i (t )�t +
√

2D⊥�tR2ê⊥
i (t ), (8)

where Rk are random numbers with standard normal distribu-
tion and ê⊥

i = (−ey, ex )T is the unit vector perpendicular to
the orientation vector êi = (ex, ey)T of the ith rod.

The rotational Brownian motion of the two-dimensional
rods in the overdamped limit is modeled by

˙̂e(t ) = Dr

kBT
[M(t ) + δM(t )]ê⊥(t ), (9)

where Dr is the rotational diffusion coefficient, M is an
additional scalar torque, and δM is a stochastic torque with
analogous properties as the components of δF. The numerical
implementation of the rotational movement is given by the
equation in Ref. [33] adjusted for two dimensions. Thus, the
time evolution of the unit vector parallel to the line segment
of the ith rod can be computed by

êi(t + �t ) = êi(t ) + Dr

kBT
Mi(t )ê⊥

i (t )�t +
√

2Dr�tR3ê⊥
i (t ).

(10)
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It should be noted that êi(t + �t ) has to be renormalized after
each step. The diffusion coefficients for the translation and the
rotation of the rods can, for example, be calculated by means
of the equations in Ref. [33], which are based on the work of
Ref. [34].

In our study, a model system is observed for which the
diameter of the spherocylinders σsc is chosen as σsc = 5 σs

and the aspect ratio is q = 3, where σs is the diameter of the
spheres. For the diffusion constants of the rods D‖ = 2.41 ×
10−2 Ds, D⊥ = 2.03 × 10−2Ds, and Dr = 3.93 × 10−4Ds/σ

2
s

are used. With this parameter combination, the rods are still
significantly bigger than the spheres, but the time scale of the
diffusive rod movement is not too large in comparison with
the simulation time and the characteristic time scale of the
sphere diffusion. The set of diffusion coefficients used in this
model system differs from the results of the related equations
in Ref. [33].

By using these Brownian dynamics integrators, the system
of spheres and spherocylinders corresponds to a binary colloid
mixture in an external bath given by a liquid. Thereby, the
effects of the bath on the particles are inherently contained in
the Brownian dynamics algorithm by the friction forces and
the stochastic terms of the integrators. The smaller spheres
act like an additional bath for the observed spherocylinders.
Thus, in the following the sphere system is often called a bath
of spheres. The overdamped approximation of the particle
motion is always handled in regard to the inherent bath of the
Brownian dynamics.

B. Interactions and external drive

The interactions between the different parts of the observed
system are solely repulsive. This is implemented as a soft
repulsion by means of the Weeks-Chandler-Andersen poten-
tial [35]. The Weeks-Chandler-Andersen pair interaction is
given by

V (�r) =
{

4ε
[(

σ
�r

)12 − (
σ
�r

)6
]

+ ε, �r � 21/6σ,

0, �r > 21/6σ,
(11)

where ε is the interaction strength, σ is the effective size of
the interacting objects and �r is their distance.

For the interaction between two spheres σ = σs is chosen.
To calculate the force on the rod i due to the rod j, Eq. (11)
is used as a Kihara like potential [36] by using the shortest
distance between the corresponding line segments of the
rods for �r. For nonparallel rods, this shortest distance and
the corresponding vector �r are calculated by means of the
algorithm in Ref. [37]. The size σ of the rods is modeled
by σ = σsc. By understanding the spheres as spherocylinders
with line segment l = 0, the interaction between rods and
spheres can be calculated analogously. Then, the expansion σ

is chosen as σ = σeff = (σsc + σs)/2. The interaction strength
is set to ε = 1kBT for all particle interactions.

Describing the collision between two particles, one can
assume that the equilibrium between the total force acting on
a colloid and the friction force is reached in every time step.
So the usage of the overdamped approximation stays justified
under particle collision and the interaction of different-shaped
particles is completely captured by using σeff in the potential.

FIG. 2. Interaction of parallel spherocylinders: The left and the
middle rods show the selection of �r and the point of force ap-
plication for an existing imaginary displacement perpendicular to
the rod orientation resulting in an overlap of the lines. If there
is no displacement causing an overlap, �r and the point of force
application will be chosen as presented by the middle and the right
spherocylinder and as marked with �r′.

Due to the nonspherical shape of the spherocylinders, the
point of force application is important. In the more general
case of nonparallel rods, it is assumed that it is given by
the point which the shortest distance connects to the other
particle of the pair interaction. For parallel spherocylinders,
an additional case differentiation has to be done, whereby
the approach used in this work differs from Ref. [37]. If an
imaginary displacement perpendicular to the orientation of
the rods which results in an overlap of the line segments
does exist, the center of this overlap on the corresponding
line segment is used as the point of force application. This
is shown via the left and middle spherocylinder in Fig. 2.
If there is no displacement which results in an overlap, the
end of the line segment pointing to the other particle is used.
This is presented by the interaction of the middle and the
right spherocylinder in Fig. 2. In both cases, the specific
points mentioned are also used as a basis to calculate the
shortest distance �r and the corresponding vector �r for the
computation of the interaction force.

An off-center force results in an additional torque M with
the absolute value

|M| = hF sin(�(h, F)). (12)

Consequently, the orientation of the interacting rods is af-
fected. Here, h is the vector characterizing the lever, h = |h|
and F = |F|.

To compute the influence of the walls on a sphere, �r
is chosen as the vector parallel to the shortest distance �r
between the wall and the center of the regarded particle.
For rods, the interaction between the wall and the spherical
caps is used to calculate the resulting forces. In both cases,
ε = 10kBT is used and σ is σs/2 for spheres and σsc/2 for
rods.

Central to the following observations, a constant force F
pointing in the x direction is applied to the spherocylinders to
drag them through the bath of smaller spheres. The direction
of the force can be represented with the unit vector êF . Based
on the shape of the rods, a degree of freedom is given by
the position h ∈ [0, l/2] of the point of force application on
the line segment measured in relation to the center of the
rods. An off-center force is connected to an additional external
torque affecting the orientation of the rods. In the case of
absent spheres, the rotational movement of a single rod is
based solely on rotational diffusion for a force applied to the
center due to the decoupling of the rotation and the translation
ensured by the symmetry of the spherocylinders.
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The applied external driving forces used in this study are
of the magnitude F � 200kBT/σs. As a consequence, the
resulting velocities of the rods are limited by vM = 5Ds/σs

which can be approximated by means of Eq. (7) after ne-
glecting the noise. Therefore, the spherocylinders move less
than a distance of 1.25σs in the time scale the overdamped
two-dimensional spheres need to diffuse through an area
of σ 2

s . Thereby, the time scale of sphere diffusion can be
characterized in units of the Brownian time τD = σ 2

s /Ds. It
follows that the movement of the rods due to the driving force
is still comparable to the Brownian motion of the spheres
and thus the characteristic time scale for the spherocylinder
drive is also of the magnitude of the Brownian time τD. The
other relevant time scale is the Brownian relaxation time,
which can be used as a crude upper bound on the colloid
velocity decorrelation time [38]. Furthermore, it is used as an
indicator for the negligibility of inertial terms in the Langevin
description. In the following, it is assumed that the Brownian
relaxation time of the rods can be roughly approximated by
ten times the Brownian relaxation time τB = ms/ζs of the
sphere. Here, ms is the mass of the spheres and ζs is the
friction coefficient of the spheres according to the Stokes law.
In general colloid systems the Brownian relaxation time τB

is small against the Brownian time τD which characterizes
also the time scale in which the movement due to the driving
force is relevant. This stays valid for the rods. Hence, it is
reasonable to assume that inertial terms are still negligible and
the description of the motion by the overdamped Langevin
equation stays valid regardless of the external force.

Another aspect is that the characteristic length scale of the
rods regarding the flow of the inherent bath of the Brownian
dynamics algorithm differs from the one of the spheres by a
factor of the magnitude of the rod length L. One can conclude
that the Reynolds number of a single spherocylinder in the
flow based on the application of the force F is still significantly
small for the overdamped approximation regarding the rod
movement to be justified.

In colloidal systems with additional external forces it is
also justified to assume the fluctuation terms of the equations
of motion to be Brownian, if the overdamped approximation
stays valid. This corresponds to the simplification of replacing
the noise by its equilibrium counterpart.

C. Observables and order parameter

To check whether the bath of spheres is in a nonequilibrium
state, the mean square displacement of the colloidal spheres in
flow equilibrium is observed. The equilibrium behavior of the
one-dimensional mean square displacement in the x direction
of the channel follows the well-known relation

MSD(t ) = 2Defft (13)

in the long-time limit, where Deff � Ds is the diffusion co-
efficient for one sphere diffusing through its environment
of other particles. Deviations of this law corresponding to
a superdiffusive behavior are used as an indication that
the spheres are driven out of equilibrium by the moving
rods.

The main topic of this work is the ordering of the driven
spherocylinders in the systems relative to the direction of the

FIG. 3. A spherocylinder with the corresponding unit vector ê
marking its orientation. The application point of the constant driving
force F is always placed in the half of the line segment to which ê is
pointing. The angle ϕ is defined by the angle between ê and the force
direction êF .

driving force. To analyze the mean orientation of the rods, the
order parameter

PO(τ ) := 1 − 2〈(ê(t ) · êF )2〉 (14)

was defined, where τ = 1
Nt

∑Nt
j=1 t j and Nt is the number of

adjacent simulation steps t j for a mean over the time to smooth
the resulting curve. Altogether, the average in Eq. (14) is given
by averages over the time, the N rods in the system, and
different simulations. By definition of the inner product, it is
clear that the relation

PO(τ ) = 1 − 2〈cos2(ϕ(t ))〉 (15)

is satisfied, where ϕ(t ) = �(ê(t ), êF ) is the angle between
the force direction and the rod orientation. Thus, a perfect
orientation parallel to the force corresponds to PO = −1 and
a perfect perpendicular ordering is equivalent to PO = 1. A
totally random orientation of the rods results in PO = 0. To
categorize the ordering, one can assume that PO < 0 relates to
a preferred mean orientation parallel to the force and PO > 0
means that a mean orientation perpendicular to êF is favored.
The angle ϕ is marked in Fig. 3.

To further describe the ordering phenomena of the sphe-
rocylinders, an examination of free energy surfaces is done.
Therefore, this nonequilibrium system is compared to an
effective equilibrium system with equivalent properties based
on one rod in an effective mean potential Weff. The influences
of the external torque, the nonequilibrium environment of
spheres, the wall boundary conditions, and the additional rods
in the system are condensed into Weff which generates the
mean torque affecting the rod. This potential of mean force
[39] is observed with fixed lever h as a function of the angle
ϕ. The probability density of ϕ for a random orientation of the
rod is given by the uniform distribution

p0(ϕ) = 1

π
. (16)

In a histogram with nbin bins of size �ϕ = π/nbin the
probability distribution is approximated at angles ϕi = (i −
0.5)�ϕ, i = 1, . . . , nbin by counting the number Q(ϕi ) of
observed values of ϕ ∈ [ϕi − �ϕ

2 , ϕi + �ϕ

2 ]. Thus, the proba-
bility density p(ϕi ) is approximated by dividing the particular
values through the total number of counts and the bin size.
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The effective potential Weff can be estimated by assuming
a Boltzmann distribution

p(ϕi )

p0(ϕi )
!= exp

(
−Weff(ϕi )

kBT

)
. (17)

By using Eq. (16), one obtains the relation

Weff(ϕi )

kBT
= − ln

(
Q(ϕi )

�ϕ/π

)
(18)

for the potential of mean force.
Another observable calculated in this work is the mean

velocity in force direction 〈vx〉. This quantity is analyzed
analogously to the order parameter.

D. Bridging to experimental realizations

In the following, only the above presented numerical treat-
ment of the system is considered. Nevertheless, it is important
to motivate and discuss possible experimental realizations
of this complex two-dimensional system. The experimental
observation of general two-dimensional (2D) colloid systems
and monolayers [1,40] as well as two-dimensional channel
geometries [10,11,41] is a wide field with diverse methods. To
realize the two-dimensional binary mixture of spherocylinders
and spheres, a monolayer of rodlike colloids mixed with
smaller disks could be absorbed on a flat surface. Thereby,
the rods should be absorbed in a way that they only rotate
in the monolayer of colloids. A homogeneous force field like
gravity in sedimentation experiments would act like a force on
the center of a spherocylinder. But in experiments with optical
tweezers it would in principle be possible to apply a force
on a different point on the main axis of the spherocylinder.
In general, the suspension of soft spheres models a complex
fluid. Thus, one could expect similar ordering phenomena for
the spherocylinder in specific liquids without additional disks.

As stated, hydrodynamic interactions are neglected in the
following studies. However, in different experimental real-
izations various hydrodynamic interactions exist. These ad-
ditional long range interactions become significant for the
system due to the relatively high area fractions used in the
system and the motion of the spherocylinders. For example,
hydrodynamic interactions are found to affect the lane forma-
tion in three-dimensional sphere systems [42]. Despite this, it
is reasonable to assume that the inclusion of hydrodynamic
interactions modify the ordering effects discussed here but do
not completely suppress them.

III. RESULTS AND DISCUSSION

All results of the Brownian dynamics simulations are given
in units of the sphere diameter σs, the thermal energy kBT ,
the diffusion coefficient of the spheres Ds, and the Brownian
time τD, which is of the magnitude of the time a small sphere
needs to diffuse roughly the distance of its own diameter σs.
Only the lever arm h corresponding to the application point of
the external driving force is presented in units of l/2 instead
of σs.

All performed simulations consist of 8.0 × 106 simulation
steps with a length of �t = 7.5 × 10−5. The start positions
and orientations are chosen randomly. During all simulations,

every 800th time step is saved and used for the following
analysis. For the mean over the saved steps Nt = 625 is
chosen. The full system is based on a channel geometry
with box lengths Lx = 200 in the x direction and Ly = 40 in
the y direction. Altogether 40 spherocylinders are randomly
placed in the resulting simulation box. So, an area fraction of
φsc ≈ 34.82% results. The remaining area is filled with 2500
spheres, so that the area fraction of the spheres compared to
the remaining area is φs ≈ 37.65%. Deviations of this setup
are mentioned in the corresponding sections.

It was investigated how the application point of a constant
driving force which is applied to the spherocylinders influ-
ences the structures formed in the channel. In the performed
simulations the point of force application is placed on a
positive multiple of the orientation vector ê, as implied in
Fig. 3. This selection rule breaks the symmetry between ϕ <

π/2 and ϕ > π/2 regarding the rod orientation in comparison
to the force direction so that the external torque M favors an
angle ϕ = 0.

First, the two limits of a centered force and a force applied
to one end of the spherocylinders were checked. Hereby,
“ends of spherocylinder” denotes the end points of the line
segment, hence the maximum lever is h = l/2.

Figure 4(a) shows a snapshot of the system, where the
force F = 100 in the x direction is applied to one end of the
spherocylinders which corresponds to a lever h = l/2 taken
after 5.0 × 106 simulation steps. For the full movie see Movie
1 of the Supplemental Material [43]. It can be found that
this setup causes a mean orientation of the rods parallel to
the force direction. Furthermore, formation of lanes can be
identified, as known from pedestrians and animals moving
in opposite directions [23–25,44], from analogous colloidal
systems [3,18–22], and from binary plasmas [45].

Figure 4(b) shows a snapshot of the system, where the
force F = 100 in the x direction is applied to the center of
the spherocylinders. It is taken at the same simulation time as
the snapshot of Fig. 4(a). For a full movie of this setup see
Movie 2 of the Supplemental Material [43]. Surprisingly, in
contrast to the previous process, a different ordering effect
occurs. After some time, the spherocylinders order in an
orientation perpendicular to the direction of the force forming
long clusters. The ordering state of Fig. 4(b) is not stable in
the configuration of the force of Fig. 4(a).

In Fig. 4(a) as well as in Fig. 4(b), it is apparent that
the moving rods generate density fluctuations in the bath of
spheres, which are a sign of its nonequilibrium character.
Without the external force the spheres enter an equilibrium
state but due to the external force acting on the spherocylin-
ders the bath of spheres is constantly driven out of equilibrium
while the spherocylinders enter a dynamical equilibrium.

A. Nonequilibrium state of the spheres

The nonequilibrium state of the small spheres in the case
of driven rods is visible in a deviation of the equilibrium pro-
gression of the mean squared displacement in the x direction.
To check the nonequilibrium behavior of the sphere bath, the
mean square displacement in the x direction for F = 0 as
well as F = 100 are computed, so that a direct comparison
is possible.
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FIG. 4. Rods dragged through a bath of small spheres with a constant force F = 100 applied (a) either to one of their ends (see Movie 1 of
the Supplemental Material [43] for the full movie) or (b) to their centers (see Movie 2 of Supplemental Material [43] for the full movie). The
snapshots are taken after 5.0 × 106 simulation steps. The arrows indicate the point of application of the force and its direction. In the first case
the spherocylinders order in an orientation parallel to the applied force and form lanes, whereas in the latter case the spherocylinders orient
perpendicular to the applied force and form clusters.

Only the limits of a centered force and a force attached to
one end of the spherocylinders is checked. However, if these
two states show a nonequilibrium behavior, all lever arms
between h = 0.00 and h = 1.00 will show similar results.
The curves for the particular mean square displacements are
plotted in Fig. 5. The results are calculated by means of an
average over all spheres and ten simulations. The black line in

100 101 102 103
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M
SD

(t
)
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h = 0.00, F = 0
h = 0.00, F = 100
h = 1.00, F = 100

FIG. 5. Mean square displacement of the small spheres for a
force F = 100 and the levers h = 0.00 and h = 1.00 applied to the
rods in comparison with the result for rods which are not driven.
The black lines shows the limit MSD = t2 for ballistic motion with
velocity vx = 1.

Fig. 5 indicates the limit MSD = t2 for ballistic motion with
velocity vx = 1.

For F = 0 the spheres can enter the thermal equilibrium
and thus the mean square displacement follows the well
known law given by a linear time dependency. The curves for
the systems with driven rods possess higher slopes in the log-
arithmic plot of Fig. 5. This clearly points to a superdiffusive
behavior indicating a nonequilibrium of colloidal spheres: The
movement of the rods affects the bath by dragging some of the
spheres along the spherocylinder trajectories. This results in a
superdiffusive motion regarding the average over all particles
of the bath of spheres. This phenomenon entails the density
fluctuations visible in Fig. 4. In conclusion, it is safe to say
that the bath of spheres is in a nonequilibrium state regarding
the full accessible time window of the simulations.

B. Mean orientation of the spherocylinders

Different levers lead to different quasistatic mean orien-
tation states of the spherocylinders. Hereby, the mean orien-
tation of the rods shifts from a parallel to a perpendicular
orientation compared to the force direction for decreasing
lever arms. In the following, this behavior is analyzed with
the defined order parameter.

A constant driving force F = 100 is applied in the x
direction on the spherocylinders. The orientational ordering
due to the constant driving force is an effect that occurs in a
flow equilibrium. From a random starting position the system
needs some time to reach this flow equilibrium.

Figure 6(a) shows the time dependency of the order pa-
rameter (14) for different levers h ∈ {0.00, 0.10, 0.20, 0.30,
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(ê

·ê
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FIG. 6. (a) Time evolution of the order parameter for F = 100
and different levers. A negative order parameter corresponds to
an orientation parallel to the driving force and a positive value
corresponds to an orientation orthogonal to the force. The value for a
random orientation is marked with a black dashed line. The last five
points of every curve are used to calculate the final state order param-
eter. (b) The approximated final state value of the order parameter as
a function of the lever for different forces F ∈ {50, 100, 150}. The
random orientation PO is marked with a dashed black line.

0.40, 0.50, 1.00}. All values are averaged over 20 simulations
with different random starting positions. The uncertainty of
the order parameter is estimated by the standard deviation of
the mean value for the average over all simulations. The value
for a completely random orientation is PO = 0.00. It is marked
with the black dashed line.

For long levers, the order parameter converges to a value
near PO = −1.00 and thus to an orientation parallel to the
force. In a sufficient approximation, quasistatic values be-
tween PO = −1.00 and PO = 0.00 can be found regarding the
accessible time window by reducing the lever arm. Hereby, the
corresponding end values are increased for shorter lever arms.
For the centered force, the order parameter rises distinctly
over the value of random orientation. On average an orien-
tation perpendicular to the force is favored for h = 0.00. The

resulting order parameter for h = 0.10 is also slightly above
the value for random orientation.

It should be noted that the curves in Fig. 6(a) do not reach
a perfectly static end value in the observed time window:
The results for long levers still show a small downward trend
and the curves for short levers seem to possess an upwards
tendency. For example, the last points of the curve of h =
0.00 seem to indicate that the order parameter starts to rise
again for higher times. Similar results are present for other,
larger forces. However, in the following, it is assumed that
the order parameters reached a quasistatic final state regarding
the observed time window in a sufficient approximation.
This assumption ensures a comparison between the different
levers which corresponds to the used maximum number of
simulation steps. Because the curves for long levers show a
small downward trend and the curves for short levers show
a small upward trend, the observed separation in two distinct
ordering states would only become more obvious for more
simulation steps and thus the utilized assumption can easily
be justified: The qualitative results of the following analysis
would only become more apparent for a larger time interval.
Further simulations with more simulation steps may lead to
different final state values for short levers like h = 0.00. For
long levers the calculated finale state values most certainly
match the corresponding flow equilibrium values of the long-
time limit.

In conclusion, the final state value of the order parameter
rises with a decreasing lever arm. A force applied near the
center of the rods results in a preferred orientation of the rods
perpendicular to the direction of the applied force.

An approximation for the flow equilibrium order parameter
depending on the lever arm can be calculated with the results
of the time evolution. Therefore, an average of the last five
points of every curve in Fig. 6(a) is taken as an estimate for
the final state value regarding the observed time window. Its
uncertainty is estimated with error propagation. The calcu-
lated final state values serve a mostly qualitative analysis of
the observed phenomenon and its lever dependency. Thus, the
choice of five points for the average is a sufficient approxi-
mation for the end values regarding the accessible simulation
time. The resulting values can be plotted over the lever arm
h. The final state order parameter is calculated for the seven
levers used in the analysis of the time dependency as well as
the additional levers h ∈ {0.05, 0.15}.

The corresponding curve is plotted in Fig. 6(b) and in
Fig. 8(a) with red circles. With decreasing lever arms the mean
orientation of the rods shifts from a parallel to orthogonal
orientation compared to the direction of the applied force,
whereby the process starts in a region of h = 0.50. The result-
ing curve intersects the line for random orientation between
h = 0.15 and h = 0.10, around which we define the critical
lever for a transition between phases ordered parallel and
perpendicular with respect to the applied force.

It is reasonable to assume that the mean orientation of
the rods depends on the strength of the external force. Thus,
for each force F ∈ {50, 100, 150} the order parameter is
plotted as a function of the lever arm h in Fig. 6(b). For
these three forces the order parameter for h = 0.00 reaches
approximately its flow equilibrium value regarding the time
window of the simulation.
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FIG. 7. Crystal of spheres formed due to the density enhance-
ment in the front area of the spherocylinder structures for F = 200
and h = 0.00. The resulting triangular lattice is marked with white
lines in some areas of the crystal.

All order parameter curves of the different forces intersect
roughly in a range between h = 0.20 and h = 0.05. With this
one can identify three distinct regions regarding the observed
forces: long lever arms (h > 0.20) with parallel orientation,
intermediate levers (0.05 < h � 0.20) with mixed orientation
clearly dominated by a favored parallel orientation, and short
lever arms (h � 0.05) with mixed orientation mostly domi-
nated by an orientation orthogonal to the force.

As shown in Fig. 6(b), the values of the order parameter
are higher for smaller forces in the range of longer lever arms
h > 0.20. This is a reasonable result, since the external torque,
which aligns the spherocylinders parallel to the force, de-
creases by weakening the applied force. For smaller forces the
orientational fluctuations become more and more dominant
and hinder the perfect parallel orientation. In the domain of
short levers given by h � 0.05, the ordering orthogonal to the
force direction is strengthened by increasing the force and thus
the maximum of the order parameter at h = 0.00 increases
with higher absolute values of the force. An important result
is that the found transition between the two ordering states is
clearly visible for all analyzed forces.

Simulations with higher forces like F = 200 showed an
additional interesting phenomenon affecting the order param-
eter especially clearly: A temporary crystallization of the
bath of spheres. By dragging the spherocylinders through the
surrounding system, bow waves of spheres are created. These
waves cause high density fluctuations in the environment
of the rods based on the spheres. This effect is especially
dominant for short lever arms and thus most notably for h =
0.00. The local density around the front area of the ordered
rod structures are primarily increased. The strength of this
density enhancement grows with the absolute value of the
applied force. For high forces the density is increased so much
that even crystallites of the solely repulsive spheres can form.
This effect is shown in Fig. 7 for F = 200. To enhance the
visibility, the resulting triangular lattice is marked with white
lines for some areas of the crystal.

Rods surrounded by the two-dimensional sphere crystal
orient along the crystal planes. From the perspective of the
dynamics of the system, the resulting crystal appears to be

a stronger obstacle of the spherocylinders. So they reorient
due to the interaction with it. Due to alignment effects of
the crystal planes parallel to the channel walls, an orientation
of the spherocylinders perpendicular to the driving force is
hindered, and thus order parameter values can become smaller
compared to the values in a system with slightly smaller
driving forces (like F = 150). In general, the formed sphere
crystals are not stable regarding the full simulation time.
Thus, in the long-time limit the dissolution of the crystals
allowed short lever final state order parameters of F = 200 to
climb above the corresponding values of lower forces. Similar
crystallization phenomena occur for all analyzed forces in a
lesser extent.

C. Influence of the specific system parts

The simulation setup based on the channel and the binary
colloid mixture represents a highly complex system. So the
particular parts of the setup influence the outcome of the
ordering processes in different ways. By selectively removing
and re-adding parts of the system, we found that the observed
ordering phenomenon appears mostly due to the small spheres
and the usage of multiple rods.

To gain a better understanding of the observed phe-
nomenon, it is necessary to remove crucial elements of the
simulation setup and compare the different results. Therefore,
we check different area fractions, systems with and without
small spheres, and the influence of the channel walls.

We start with systems without small spheres, to see which
effects can already be seen in a system of spherocylinders
dispersed in a simple liquid. The first system consists of a
box characterized through Lx = 200 and Ly = 500, periodic
boundary conditions, and N = 40 spherocylinders without
any spheres. The resulting area fraction of the rods, φsc ≈
2.79%, is so low that interactions are negligible. Thus, the
ordering behavior due to the rotational Brownian motion can
be observed adequately enough without losing the statistic
based on the number of rods. The result averaged over 50
simulations is marked with blue downward-pointing triangles
in Fig. 8(a). For h � 0.10 the rods order mainly parallel to
the force because of the external torque caused by the off-
center driving force. In the range of h � 0.05, the external
torque is smaller than the rotational diffusion. Thus, the order
parameter rises to the value of random orientation PO = 0.00
marked with a black dashed line. At the lever arm h = 0.00,
the final state order parameter reaches the value for random
orientation. In general, the progression of the order parameter
in this system can be explained by the ratio of the aligning
torque and the rotational diffusion alone.

The next step is to increase the number of the sphero-
cylinders to N = 500, while still omitting the small spheres.
By this means, the area fraction of rods φsc ≈ 34.82% is
similar to the one of the full system. With this setup the
influence of the enhanced interaction probability due to the
higher area fraction is investigated. Due to the higher number
of spherocylinders the results were only averaged over 20
simulations. In Fig. 8(a) the resulting curve is marked with
green upward-pointing triangles. For this system the order
parameter already starts to rise between h = 0.15 and h =
0.10, so that the corresponding curve progresses above the
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FIG. 8. (a) The final state order parameter as a function of
the lever arm for different combinations of the system parts and
F = 100. The value for random orientation is marked with a black
dashed line. The two upper curves originate from systems with small
spheres. Thereby, the curve marked with orange squares is based on
a rod-sphere mixture without a channel geometry. The three lower
curves originate from systems without small spheres. In both cases
the channel walls reduce the order parameter for h → 0. (b) The final
state order parameter as a function of the lever for a single rod in the
bath of spheres. The values for the lever arm h = 0.00 are clearly
below the value for random orientation PO = 0.00.

result for φsc ≈ 2.79%. Moreover, the order parameter for a
force acting on the center at h = 0.00 is lowered compared
to the previous result. Overall, the enhanced area fraction
reduces the orientation parallel to the force a little bit for short
levers. But a preferred orientation perpendicular to the applied
force is not reached solely due to the enhanced interaction
probability.

To study the influence of the restriction caused by the
channel walls, 50 simulations of only spherocylinders in a
channel are conducted. N = 40 spherocylinders are used. The
results are depicted with cyan diamonds in Fig. 8(a). In this
system the order parameter is strongly reduced for small
levers because of the channel geometry. Only a value of
PO(0.00) = −0.52(1) is reached, since the channel boundary
conditions enforce an orientation parallel to the force, because
the rods align parallel to the walls while approaching them.

By re-adding the spheres into the system and changing
the channel boundary conditions into periodic ones, the curve
marked with orange squares in Fig. 8(a) is an average over
20 simulations with a box based on Lx = 200 and Ly = 40.

A preferred orientation perpendicular to the force is achieved.
The final state order parameters for the levers h = 0.00 and
h = 0.05 are clearly above the random value and the order pa-
rameter rises already in the region of h = 0.50. Consequently,
the bath of spheres is crucial to the observed perpendicular
ordering mechanisms.

By comparing the results for periodic boundary conditions
with spheres and the results of the full system, one obtains
a similar relation as through the comparison of the curve for
periodic boundary conditions without spheres and the channel
geometry without spheres: The channel results in a reduction
of the order parameter for short lever arms.

Another crucial element of the system is the many-body
character of the spherocylinder system. Thus, the mean orien-
tation of a single rod in the bath of spheres is observed to see
the difference in orientation compared to a system with multi-
ple rods. Therefore, the length of the box is rearranged to save
simulation time. The new simulation parameters are given
by Lx = 125 and Ly = 40. 2350 spheres were used, so that
the area fraction compared to the rest area is φs ≈ 37.44%.
Simulations for periodic boundary conditions and a channel
geometry are conducted. The results are presented in Fig. 8(b).

The values for the lever arm h = 0.00 of both curves are
close to the value PO(0.00) ≈ −0.70. This value is clearly
below the value for random orientation. So the spherocylinder
orients parallel to the force and without the other rods in the
system a mean orientation parallel to the force results.

To summarize, the bath of small spheres has opposite
effects on the orientation of a single spherocylinder and of
multiple interacting spherocylinders if the force is applied
near the center. A single spherocylinder in a bath of small
spheres prefers an orientation parallel to the force instead
of a random orientation, whereas multiple interacting sphe-
rocylinders in a bath of small spheres prefer an orientation
perpendicular to the force.

What is the mechanism in systems of multiple rods in
a bath of spheres that leads to the formation of clusters of
rods with an orientation perpendicular to the force direction
in the case of short lever arms? As visible in movies of the
simulations (see Movie 2 of the Supplemental Material [43])
this is a nonequilibrium many-body phenomenon, that has its
origin in the enhanced clustering due to the different velocities
in the channel direction of the particular spherocylinders.

Rods which are by chance orientated orthogonal to the
force direction move slower than rods with a parallel ori-
entation to the force direction. This comes already from the
lower diffusion coefficient orthogonal to the main axis of the
spherocylinder D⊥, but is strongly enhanced by the influence
of the spheres facing the rods in the force direction. Thus,
orthogonal oriented slower spherocylinders are caught up by
faster moving spherocylinders. This effect is further enhanced
by the additional velocity difference due to the sphere slip-
stream created by the slower spherocylinders (and already
existing clusters) which benefits the rods catching up. This
results in a rapid formation of big clusters. Thereby, the par-
ticular spherocylinders of a cluster are aligned by interactions
with the surrounding particles and additional spherocylinders
which also catch up to the cluster.

Once these clusters are formed, an orientation perpendic-
ular to the force direction is the most stable state for them.
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For example, if the individual rods of the cluster are oriented
parallel to the force, the cluster is easily destroyed due to
velocity fluctuations. In contrast, if the spherocylinders of the
cluster are oriented perpendicular to the force direction, the
lifetime of the cluster is considerably enhanced. Moreover, the
influence of the sphere flow on the cluster becomes symmet-
rical if they form an angle ϕ = π/2 with respect to the flow.
The bath of spheres should also enhance the lifetime of the
particular rod clusters in the system analogously to the well
known enhanced clustering due to entropic depletion forces
in colloidal equilibrium systems [46] with depletion agents.

In conclusion, the bath of spheres and high enough area
fractions of the spherocylinders are both crucial for the ob-
servation of the transition between the different mean orienta-
tions.

D. Distribution functions and potential of mean force

According to the previous section, the different parts of the
systems alter the results for the order parameter in various
ways so that a detailed description of the full system is highly
complex. However, some information regarding transition
between the two observed ordering effects is contained in the
probability densities p(ϕ) for different levers.

In the following, the distribution of the orientation of the
spherocylinders in the flow equilibrium and a description
based on a potential of mean force of a virtual equilibrium
system are used to further visualize the transition between two
different ordering states.

For this analysis we used the results of the force F = 150,
which showed the maximum effect. Figure 9(a) shows an
analysis of the angular distributions by calculating a normal-
ized ϕ histogram with a bin size of �ϕ = π/25 by means
of the data of 20 simulations. For this, the orientations of
the rods were computed every 800 steps after the threshold
step 3.2 × 106 is passed. As a reference curve for random
orientation the uniform probability density is marked with the
black dashed line. The levers h ∈ {0.00, 0.10, 0.20, 0.30} are
analyzed.

For h ∈ {0.10, 0.20, 0.30}, the probability for values of ϕ

lower than ϕ ≈ π/6 is increased compared to the random ori-
entation. Only for h = 0.00, one gets a contrary result for this
range. The resulting values near ϕ = π/2 are enhanced for
h ∈ {0.00, 0.10}. The curve of h = 0.30 is distinctly lowered
for mid- and high-range values of ϕ.

By using the numerically computed distributions of the
orientations for F = 150 shown in Fig. 9(a), the potential of
mean force Weff of a corresponding equilibrium system with
the same angle distribution can be calculated by means of
Eq. (18). The resulting free energy surfaces are displayed in
Fig. 9(b). To enhance clarity, the particular curves are shifted
by steps of 4kBT . The marked black lines correspond to the
relative zero levels.

For h > 0.10, a dominant minimum can be found for ϕ =
0. Due to the external torque, the effective potential proceeds
below the relative zero level. Passing a region of ϕ = π/6,
the effective potential is enhanced for higher values of ϕ.
Figure 9(b) shows that this dominant minimum diminishes
for decreasing lever arms. On the other hand, an additional
minimum is formed near ϕ = π/2. For h = 0.00, the min-

(a)

0 π/6 π/3 π/2 2π/3 5π/6 π
�

10-3

10-2

10-1

100

101

p(
�
)

h = 0.00
h = 0.10
h = 0.20
h = 0.30

(b)

0 π/6 π/3 π/2 2π/3 5π/6 π
�

-2

0

2

4

6

8

10

12

14

16

18

W
ef

f

h = 0.30
h = 0.20
h = 0.10
h = 0.00

FIG. 9. (a) The probability density p(ϕ) of the orientation angle
ϕ for a driving force of F = 150 and for different lever arms after
a final state is reached, in a histogram with bin size of �ϕ = π/25.
The black dashed line indicates the uniform angular distribution of
free spherocylinders. (b) Potential of mean force for the final state
in dependency of the angle ϕ for a driving force of F = 150 and
for different lever arms. The particular curves are shifted in steps
of 4kBT . At ϕ = 0, a minimum can be found which diminishes for
decreasing lever arms. On the other hand, a second minimum is
formed near ϕ = π/2.

imum at ϕ = 0 is nearly completely above the zero level
and the second minimum is clearly dominant. The discrep-
ancy between the angles for the second minimum regarding
h = 0.00 and h = 0.10 is a result of the external torque, in
general shifting the orientation to lower angles. This can be
seen in the probability densities as well. The first minimum
corresponds to the orientation parallel to the force direction
and the second minimum near ϕ = π/2 is connected with the
orientation perpendicular to the applied force, so the vanishing
dominance of the minimum at ϕ = 0 and the formation of
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the second minimum near ϕ = π/2 for decreasing lever arms
is a clear indication for a transition between two phases. For
h = 0.00, the resulting effective potential exhibits a symmetry
where the second minimum near ϕ = π/2 acts as symmetry
center. In Figure 9(b) it is visible that this symmetry is broken
by shifting the point of force application from the center to
one end of the spherocylinders. Hence, an increasing lever
results in a tilt of the effective potential to lower values of
ϕ and a vanishing of the minimum near ϕ = π/2. It should
be mentioned that the tilt of the curves caused by the external
torque is a result of the broken symmetry due to the numerical
selection rule regarding the positioning of the point of force
application on the different halves of the line segments.

By observing the progression of the potentials of mean
forces in Fig. 9(b), it seems as if the formation of the second
minimum for decreasing lever arms starts not at the angle
where the first minimum is located. This discrepancy between
the angles corresponding to the first minimum and the for-
mation of the second minimum indicates that the transition
between the two observed phases of orientation can be de-
scribed by a first order phase transition [47] (for equilibrium
systems in the thermodynamic limit). This is backed by the
coexistence of both phases which can be found in Fig. 4(b).

E. Flow equilibrium mean velocity

Another interesting observable is the mean velocity of the
spherocylinders in the channel direction because it is directly
linked to the orientation of the rods. For different levers the
mean velocity also reaches different quasistatic final values.
The progression of these values regarding the lever further
confirms the transition between two orientation states.

To analyze the mean velocity, the data of the simulations
with F = 100 are used. The results of these calculations are
presented in Fig. 10(a). The uncertainties are estimated with
the standard deviation of the mean value for the average
regarding the different simulations.

For all lever arms h it can be noticed that the mean velocity
first increases until it fluctuates around a constant value of the
flow equilibrium. Looking at levers h > 0.20, this final state
velocity increases for longer levers. In contrast, this clear or-
dering is not true for short levers. Here the resulting value for
h = 0.00 is above the results of h = 0.10 and h = 0.20. Even
for a centered force an enhancement of the particle velocity
over time can be observed. With this one can argue that the
ordering reduces internal friction between the spherocylinders
and the bath of small spheres.

The results depicted in Fig. 10(a) imply that the flow
equilibrium behavior of the mean velocity can be controlled
by the lever arm. Therefore, the transport properties of the
colloid system in the channel could be adjusted by changing
the point of force application.

To analyze the lever dependency, a procedure similar to
the calculation of the final state order parameter is chosen.
As marked in Fig. 10(a), the average of the last five points
of every curve is taken. The resulting values are plotted over
the lever arm h in Fig. 10(b). In this case the uncertainties are
estimated by error propagation.

In general, the resulting functional progression of the fi-
nal state mean velocity in dependency of the lever can be
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FIG. 10. (a) Time evolution of the mean velocity for F = 100
and different levers. The curves converge to a flow equilibrium value.
The mean of the last five points of every curve is used to calculate
the final state velocity. (b) Final state mean velocity in dependency
of the lever arm h. The functional progression results in an s-shaped
curve.

approximated by an s-shaped curve typically marking the
transition between two distinct states. The first state is given
by the low mean velocity values of the curve depicted in
Fig. 10(b), which correspond to the previously discussed
mean orientation perpendicular to the force. After the value
h = 0.15 is reached, a lengthening of the lever arm entails a
rise of the final state mean velocity. For long levers the slope
of the curve declines until the second state is reached. This
state is connected with a mean orientation parallel to the force.
For short levers h � 0.15 the resulting final state velocities are
close together and a clear trend of the final state mean velocity
in this region is not apparent.

F. Finite size analysis and critical lever

To check the influence of finite size effects on the observed
ordering transition, a finite size analysis was conducted. The
results of this analysis suggest that the observed ordering
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transition of the rods seems to be a general phenomenon of the
rod-sphere mixture and independent of the chosen size of the
channel geometry. However, the absolute values of the final
state order parameters can vary for different setups. Only for
too small channel lengths Lx, nonphysical finite size effects
suppress the transition.

First, we define the critical lever as the lever hc for which
PO(hc) = 0. This specific quantity marks the transition be-
tween the range of favored parallel orientation with PO < 0
and the range with a preferred orientation perpendicular to
the force characterized by PO > 0. This is the quantity of
interest.

Two different studies are performed: First, the effect of
the general size of the system on the ordering transition is
observed by scaling the area of the simulation box by varying
Lx and Ly while the ratio Ly/Lx is kept constant. In total
the areas LxLy ∈ {1600, 2000, 2666.67, 4000, 8000, 16 000}
are checked. The second study analyzes the influence of the
periodic boundary conditions by varying the channel length
Lx for two different channel widths Ly ∈ {30, 40}. Here, simu-
lations for the lengths Lx ∈ {40, 50, 66.67, 100, 200, 400} are
performed. For both studies and all observed systems the area
fractions of rods and spheres are kept constant.

To calculate a first approximation of the critical
lever, the final state order parameters for the levers h ∈
{0.08, 0.10, 0.12} are calculated analogously to the previous
sections. The two consecutive values h1, h2 with PO(h1) > 0
and PO(h2) < 0 of the levers h ∈ {0.08, 0.10, 0.12} are used
to calculate a straight line. Then, the zero crossing of this line
is used as an approximation for hc. If there is not a consecutive
pair of the observed levers which marks a conversion of
the final state order parameter, simulations with additional
levers are conducted. The errors of the calculated hc are
approximated with maximal error estimation by using the
various straight lines which result from all possible combi-
nations of the mean values and corresponding error interval
limits. Hereby, lines with a zero crossing not in the range
between h = 0.00 and h = 0.15 are neglected: All performed
simulations showed that the final state order parameter of
h = 0.15 is clearly below zero.

Due to the low particle number of rods in the small
systems, the resulting order parameters fluctuate strongly. So,
a transition of the ordered states and thus the critical lever
is only accepted, if there is at least one additional lever
h ∈ {0.00, 0.04, 0.08, 0.10} with an order parameter value
PO(h) > 0.10.

The results of the first study are depicted in Fig. 11(a). The
approximations of the critical lever arms of all observed areas
are within good agreement with each other. Thus, one can
assume that the ordering transition is a phenomenon of the
sphere-rod mixture and not of the dimensions of the simula-
tion box. Even small simulation setups showed the transition
between the two ordering phases. However, it should be noted
that the absolute vales of final state order parameters for short
levers vary for the different areas. The average of particular
values for the different areas is presented with the dashed line
in Fig. 11(a). It is of the magnitude of hc ≈ 0.11.

Figure 11(b) shows the results of the second study. The
small systems with Lx ∈ {40, 50} do not show the ordering
transition so the corresponding values are absent in Fig. 11(b).
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FIG. 11. (a) Critical lever hc in dependency of the inverse of the
area of the simulation box, whereby the ratio Ly/Lx is kept constant
for the different observed areas. The dashed line shows the average
regarding the particular points. (b) Critical lever hc in dependency of
the inverse length of the channel geometry for two different channel
widths. The dashed lines show the averages which correspond to the
resulting points of the particular widths.

For these simulation setups, finite size effects seems to matter:
The system is likely to form structures with lengths as long
as the channel in front of one of the channel walls. Due
to the periodicity of the simulation box, these structures
move through the channel without interacting with spheres
in their direction of motion. This is valid for both channel
widths.

The critical levers of the different channel lengths are
comparable with the results of the first study. Therefore,
one can assume that finite size effects regarding the periodic
boundary conditions do not affect the ordering transition in a
dominant way for systems with acceptable channel lengths.
The averages of the resulting points of the particular widths
are marked with dashed lines in Fig. 11(b). The average of
Lx = 30 is of the magnitude of hc ≈ 0.11 and the average of
Lx = 40 is of the magnitude of hc ≈ 0.10.

In conclusion, the finite size studies indicate that the or-
dering phenomena of the observed system are independent of
the absolute area for Ly/Lx = const. and of the used channel
length for sufficient Lx. Thus, it seems that a change of
preferred orientation is a general phenomenon of the rod-
sphere mixture. By means of the studies, the critical lever of
the chosen parameters is around hc ≈ 0.11 l/2. By using the
definition of the line segment and σsc = 5σs, it shows that the
critical lever is of the magnitude of σs/2. However, it should
be noted that the critical lever depends on the used diffusion
coefficients of the spherocylinders and thus it differs for other
parameters.
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IV. CONCLUSION

The detailed study of nonequilibrium systems leads to
interesting phenomena that are a central topic of modern
research. The aim of this work was to analyze the order-
ing phenomena of driven spherocylinders in a suspension
of smaller spheres embedded in a two-dimensional channel
geometry. Therefore, an order parameter was defined and
analyzed after the nonequilibrium character of the bath of
spheres was confirmed by an observation of the mean square
displacement.

By means of numerically computed probability distribu-
tions, an analysis of the potential of mean force for an equiv-
alent equilibrium system was possible. The dynamic ordering
of the rods is linked to the mean velocity in the channel
direction. Thus, this observable was numerically calculated
and discussed.

The main finding is a transition from a preferred orienta-
tion parallel to the force direction to a preferred orientation
perpendicular to the force when shortening the lever arm.
Furthermore, a force dependency was found for this transition.
An analysis of potentials of mean force showed a diminishing
minimum for the orientation parallel to the force and the
formation of a minimum for the orientation perpendicular to
the force further indicating the transition between two phases.
This transition is also backed by the results for the lever
dependency of the final state mean velocity. To increase the
understanding of the observed highly complex colloid system,
crucial parts of the systems were removed and combined in
different variations. This led to the result that the small spheres

and the many-body character of the rod system are necessary
to find a mean orientation perpendicular to the applied force
at short levers. In simulations of a single spherocylinder in the
bath of spheres the favored state is a mean orientation parallel
to the force.

The results of a finite size study indicates that the ordering
transition is a general phenomenon of the observed rod-sphere
mixture. The performed studies allude to a critical lever of
the magnitude of hc ≈ 0.11 l/2, where l is the length of the
spherocylinder line segment.

The presented results show the interesting nature of the
observed complex nonequilibrium system. In further studies
it would be interesting to observe the system in the limit of
large simulation time values and to investigate the parameter
behavior focused on different aspect ratios, spherocylinder
diameters, and forces. Furthermore, a detailed analysis anal-
ogous to Ref. [48] could bring a deeper understanding of
the collective behavior of the rod clusters for short levers.
Regarding the critical lever, further simulations with different
ratios of σsc and σs could lead to a better understanding of the
critical quantities and thus to a deeper insight of the whole
system.
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